【典型题】高中必修五数学上期中试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型题】高中必修五数学上期中试卷含答案
一、选择题
1.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则
A .111A
B
C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形
C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形
D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形 2.下列命题正确的是 A .若 a >b,则a 2>b 2 B .若a >b ,则 ac >bc C .若a >b ,则a 3>b 3
D .若a>b ,则
1
a <1b
3.下列函数中,y 的最小值为4的是( )
A .4
y x x
=+
B
.2y =
C .4x x y e e -=+
D .4
sin (0)sin y x x x
π=+
<< 4.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪
-≥⎨⎪≥⎩
则z =x +y 的最大值为( )
A .0
B .1
C .2
D .3
5
)63a -≤≤的最大值为( )
A .9
B .
92
C
.3 D .
2
6.若正数,x y 满足20x y xy +-=,则3
2x y
+的最大值为( ) A .
13
B .38
C .
37
D .1
7.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A
.10 km
B
km
C .
D .
8.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫
⎨⎬⎩⎭
的前n 项和为n S ,则10n S =时,n 的值是( ) A .10
B .120
C .130
D .140
9.在ABC ∆中,,,a b c 分别是角,,A B
C 的对边,若sin cos 0b A B -=,且2b ac =,

a c
b
+的值为( ) A .2
B
C

2
D .4
10.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =
,c =,
30B =︒,则AB 边上的中线的长为( )
A

2
B .
3
4
C .32

2
D .
34
或2
11.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9
B .22
C .36
D .66
12.如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =( ) A .14
B .21
C .28
D .35
二、填空题
13.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .
14.已知各项为正数的等比数列{}n a 满足7652a a a =+,若存在两项,m n a a
使得
1=,则
14
m n
+的最小值为__________. 15.不等式211x x --<的解集是 .
16.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有
2343n n S n T n -=-,则93
5784
a a
b b b b +++的值为_______. 17.定义11222n n n a a a H n
-+++=L 为数列{}n a 的均值,已知数列{}n b 的均值12n n H +=,
记数列{}n b kn -的前n 项和是n S ,若5n S S ≤对于任意的正整数n 恒成立,则实数k 的取值范围是________.
18.数列{}n a 满足1(1)21n
n n a a n ++-=-,则{}n a 的前60项和为_____. 19.设2a b +=,0b >,则当a =_____时,
1||2||a a b
+取得最小值. 20.在锐角ΔABC 中,内角,,A B C 的对边分别为,,a b c ,已知
24,sin 4sin 6sin sin a b a A b B a B C +=+=,则ABC n 的面积取最小值时有2c =__________.
三、解答题
21.如图,游客从某旅游景区的景点A处下上至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50/min
m.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C,假设缆车匀速直线运动的速度为
130/min
m,山路AC长为1260m,经测量
12 cos
13
A=,3
cos
5
C=.
(1)求索道AB的长;
(2)问:乙出发多少min后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3min,乙步行的速度应控制在什么范围内?
22.设函数
1
()|(0)
f x x x a a
a
=++-
(1)证明:()2
f x≥;
(2)若(3)5
f<,求a的取值范围.
23.若n S是公差不为0的等差数列{}n a的前n项和,且124
,,
S S S成等比数列,
2
4
S=.(1)求数列{}n a的通项公式;
(2)设
1
3
,
n n
n n
b T
a a
+
=是数列{}
n
b的前n项和,求使得
20
n
m
T<对所有n N+
∈都成立的最小正整数m.
24.已知数列{}n a的前n项和为n S,且1,n a,n S成等差数列.
(1)求数列{}n a的通项公式;
(2)若数列{}n b满足12
n n n
a b na
=+,求数列{}n b的前n项和n T.
25.在ABC
∆中,角A、B、C的对边分别是a、b、c,如果A、B、C成等差数列且3
b=
(1)当
4
A
π
=时,求ABC
∆的面积S;
(2)若ABC
∆的面积为S,求S的最大值.
26.已知向量()1
sin
2
A
=,
m与()
3sin3
A A
=,
n共线,其中A是△ABC的内角.(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】 【详解】
111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角
形,由
,得21
2121
2
{2
2
A A
B B
C C πππ=
-=
-=
-,那么,2222
A B C π
++=,矛
盾,所以222A B C ∆是钝角三角形,故选D.
2.C
解析:C 【解析】
对于A ,若1a =,1b =-,则A 不成立;对于B ,若0c =,则B 不成立;对于C ,若a b >,则33a b >,则C 正确;对于D ,2a =,1b =-,则D 不成立.
故选C
3.C
解析:C 【解析】 【分析】
由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】
选项A 错误,x Q 可能为负数,没有最小值;
选项B 错误,化简可得2
2
222y x x ⎫=++, 2
222
x x +=
+,即21x =-,
显然没有实数满足21x =-;
选项D 错误,由基本不等式可得取等号的条件为sin 2x =,
但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4x
x
y e e -=+取最小值4,故选C.
【点睛】
本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).
4.D
解析:D 【解析】
如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故
max 303z =+=,故选D .
点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.
5.B
解析:B 【解析】 【分析】
根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:
369
(3)(6)22
a a a a -++-+≤
=
当且仅当36a a -=+,即3
2
a =-时,等号成立, 故选B. 【点睛】
本题主要考查了均值不等式,属于中档题.
6.A
解析:A 【解析】 【分析】
根据条件可得出2x >,212
y x =+-,从而33
222(2)52
x y x x =+-++-,再根据基本不
等式可得出3123x y ≤+,则32x y +的最大值为1
3
.
【详解】
0x Q >,0y >,20x y xy +-=,
2
122
x y x x ∴=
=+--,0x >, 333
222212(2)522
x y x x x x ∴
==
+++-++--,
22(2)5592x x -+
+≥=-Q , 当且仅当1
22x x -=-,即3x =时取等号, 31
232(2)52
x x ∴≤
-++-,即3123
x y ≤+,
32x y ∴+的最大值为13
. 故选:A. 【点睛】
本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.
7.D
解析:D 【解析】 【分析】
直接利用余弦定理求出A ,C 两地的距离即可.
【详解】
因为A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°, 则A ,C 两地的距离为:AC 2=AB 2+CB 2﹣2AB •BC cos ∠ABC =102+202﹣2110202⎛⎫
⨯⨯⨯-
= ⎪⎝⎭
700.
所以AC =km . 故选D . 【点睛】
本题考查余弦定理的实际应用,考查计算能力.
8.B
解析:B 【解析】 【分析】
根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】
设幂函数为()f x x α
=,将()4,2代入得1
42,2
α
α==
,所以()f x =所以
n a =1
n
a =
1n S =L 1=,由110n S ==解得
120n =,故选B. 【点睛】
本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.
9.A
解析:A 【解析】 【分析】
由正弦定理,化简求得sin 0B B =,解得3
B π
=
,再由余弦定理,求得
()2
24b a c =+,即可求解,得到答案.
【详解】
在ABC ∆中,因为sin cos 0b A B -=,且2b ac =,
由正弦定理得sin sin cos 0B A A B =, 因为(0,)A π∈,则sin 0A >,
所以sin 3cos 0B B -=,即tan 3B =,解得3
B π
=

由余弦定理得2
2
2
2
2
2
2
2
2cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()2
24b a c =+,解得2a c
b
+=,故选A . 【点睛】
本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.
10.C
解析:C 【解析】 【分析】
由已知利用余弦定理可得29180a a -+=,解得a 值,由已知可求中线1
2
BD c =
,在BCD V 中,由余弦定理即可计算AB 边上中线的长. 【详解】
解:3,33,30b c B ===o Q ,
∴由余弦定理2222cos b a c ac B =+-,可得239272332
a a =+-⨯⨯⨯,
整理可得:29180a a -+=,∴解得6a =或3.
Q 如图,CD 为AB 边上的中线,则1332BD c ==,
∴在BCD V 中,由余弦定理2222cos CD a BD a BD B =+-⋅⋅,可得:
222333336(
)26CD =+-⨯⨯⨯,或222333333()23CD =+-⨯⨯⨯
, ∴解得AB 边上的中线32CD =
或37
2
. 故选C .
【点睛】
本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.
11.D
解析:D 【解析】
分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.
点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.
12.C
解析:C 【解析】
试题分析:等差数列{}n a 中,34544123124a a a a a ++=⇒=∴=,则
()()17412747727282
2
a a a a a a a +⨯+++=
=
==L
考点:等差数列的前n 项和
二、填空题
13.【解析】【分析】【详解】由题意解得或者而数列是递增的等比数列所以即所以因而数列的前项和故答案为考点:1等比数列的性质;2等比数列的前项和公式 解析:21n -
【解析】 【分析】 【详解】
由题意,1423
149
8a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==,
而数列{}n a 是递增的等比数列,所以141,8a a ==, 即3
4
1
8a q a =
=,所以2q =, 因而数列{}n a 的前n 项和1(1)1221112
n n
n n a q S q --=
==---,故答案为21n -. 考点:1.等比数列的性质;2.等比数列的前n 项和公式.
14.【解析】【分析】由求得由可得结合为正整数讨论四种情况可得的最小值【详解】设等比数列的公比为由可得到由于所以解得或因为各项全为正所以由于存在两项使得所以可得当时;当时;当时;当时;综上可得的最小值为故
解析:
116
【解析】 【分析】
由7652a a a =+求得2q =1=可得5m n +=,结合,m n 为正整数,讨论四种情况可得14
m n
+的最小值. 【详解】
设等比数列的公比为q ,由7652a a a =+, 可得到6
662
a a q a q
=+, 由于0n a >,所以2
1q q
=+
,解得2q =或1q =-. 因为各项全为正,所以2q =.
由于存在两项,m n a a 1=,
所以,2
18m n a a a ⋅=,
112211188m n m n a q a q a q --+-⋅=∴=,28m n q +-∴=,可得5m n +=.
当1,4m n ==时,
14
2m n
+=; 当2,3m n ==时,14116m n +=; 当3,2m n ==时,147
3
m n +=;
当4,1m n ==时,14174
m n +=; 综上可得 14
m n +的最小值为116
, 故答案为
116
. 【点睛】
本题主要考查等比数列的通项公式和性质,考查了分类讨论思想的应用,属于中档题. 分类讨论思想的常见类型
⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;
⑶解题过程不能统一叙述,必须分类讨论的;
⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.
15.【解析】【分析】【详解】由条件可得
解析:{}|02x x <<
【解析】 【分析】 【详解】
由条件可得
16.【解析】【分析】由等差数列的性质和求和公式可得原式代值计算可得【详解】∵{an}{bn}为等差数列∴∵=∴故答案为【点睛】本题考查等差数列的性质和求和公式属基础题 解析:
1941
【解析】 【分析】
由等差数列的性质和求和公式可得原式11
11
S T =,代值计算可得. 【详解】
∵{a n },{b n }为等差数列, ∴
9393936
57846666
222a a a a a a a b b b b b b b b ++=+==++ ∵61111111111622a S a a T b b b +==+=211319411341⨯-=⨯-,∴66
1941a b =, 故答案为
19
41
. 【点睛】
本题考查等差数列的性质和求和公式,属基础题.
17.【解析】【分析】因为从而求出可得数列为等差数列记数列为从而将对任意的恒成立化为即可求得答案【详解】故则对也成立则数列为等差数列记数列为故对任意的恒成立可化为:;即解得故答案为:【点睛】本题考查了根据
解析:712
[,]35
【解析】 【分析】
因为1112222n n n b b b n -+++⋯+=⋅,2121()2212n n
n b b b n --++⋯+=-⋅,从而求出
2(1)n b n =+,可得数列
{}n b kn -为等差数列,记数列{}n b kn -为{}n c ,从而将5n S S ≤对任
意的*(N )n n ∈恒成立化为50c ≥,60c ≤,即可求得答案. 【详解】
Q 1
112222n n n n b b b H n
-++++==L ,
∴ 1112222n n n b b b n -++++=⋅L ,
故2121()(22212)n n
n b b n b n --⋅++=-≥+L ,
∴112212()n n n n b n n -+=⋅--⋅1()2n n =+⋅,
则2(1)n b n =+,对1b 也成立,
∴2(1)n b n =+,
则()22n b kn k n -=-+,
∴数列{}n b kn -为等差数列,
记数列{}n b kn -为{}n c .
故5n S S ≤对任意的*
N ()n n ∈恒成立,可化为:50c ≥,60c ≤;
即5(2)206(2)20k k -+≥⎧⎨-+≤⎩
,解得,71235k ≤≤,
故答案为:712
[,]35
. 【点睛】
本题考查了根据递推公式求数列通项公式和数列的单调性,掌握判断数列前n 项和最大值的方法是解题关键,考查了分析能力和计算能力,属于中档题.
18.1830【解析】【分析】由题意可得…变形可得…利用数列的结构特征求出的前60项和【详解】解:∴…∴…从第一项开始依次取2个相邻奇数项的和都等于2从第二项开始依次取2个相邻偶数项的和构成以8为首项以1
解析:1830 【解析】 【分析】
由题意可得211a a -=,323a a +=,435a a -=,547a a +=,659a a -=,7611a a +=,…,504997a a -=,变形可得312a a +=,428a a +=,752a a +=,8624a a +=,972a a +=,121040a a +=,13152a a +=,161456a a +=,…,利用数列的结
构特征,求出{}n a 的前60项和. 【详解】
解:1(1)n n a ++-Q 21n a n =-,
∴211a a -=,323a a +=,435a a -=,547a a +=,659a a -=,7611a a +=,…,
504997a a -=,
∴312a a +=,428a a +=,752a a +=,8624a a +=,9112a a +=,121040a a +=,13112a a +=,161456a a +=,…,
从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,
{}n a 的前60项和为1514
152(15816)18302
⨯⨯+⨯+
⨯=, 故答案为:1830. 【点睛】
本题主要考查递推公式的应用,考查利用构造等差数列求数列的前n 项和,属于中档题.
19.【解析】【分析】利用代入所求式子得再对分并结合基本不等式求最小值【详解】因为所以又因为所以因此当时的最小值是;当时的最小值是故的最小值为此时即故答案为:【点睛】本题考查基本不等式求最值考查转化与化归 解析:2-
【解析】 【分析】
利用2a b +=代入所求式子得||4||4||a b a a a b
++,再对a 分0a >,0a <并结合基本不等式求最小值. 【详解】 因为2a b +=,
所以1||||||2||4||4||4||a a b a a b a a b a b a a b
++=+=++, 又因为0b >,||0a >,
所以
||14||b a a b +=…, 因此当0a >时,1||2||a a b +的最小值是15
144
+=; 当0a <时,
1||2||a a b +的最小值是13144
-+=. 故1||2||a a b +的最小值为34,此时,42,0,
a
b a b a b a ⎧=⎪⎪
⎪+=⎨⎪<⎪⎪⎩
即2a =-. 故答案为:2-.
【点睛】
本题考查基本不等式求最值,考查转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对a 的分类讨论及基本不等式求最值时,要验证等号成立的条件.
20.【解析】由正弦定理及得又即由于即有即有由即有解得当且仅当a=2b=2时取得等号当a=2b=1S 取得最小值易得(C 为锐角)则则
解析:5【解析】
由正弦定理及sin 4sin 6sin sin a A b B a B C +=, 得2246sin a b ab C +=, 又1
sin 2
S ab C =
,即22412a b S +=, 由于24a b +=,即有()2
22424164a b a b ab ab +=+-=-, 即有41612ab S =-,
由2
2422a b ab +⎛⎫≤ ⎪⎝⎭
,即有
16128S -≤,解得23S ≥, 当且仅当a=2b =2时,取得等号, 当a =2,b=1,S 取得最小值
2
3
,
易得2sin 3C =
(C 为锐角),则cos C =,
则22
2
2cos 5c a b ab C =+-=. 三、解答题
21.(1)=1040AB m (2)35
37
(3)1250625[
,]4314(单位:m/min ) 【解析】 【分析】 【详解】
(1)在ABC ∆中,因为12cos 13
A =,3cos 5C =,
所以5sin 13A =
,4
sin 5
C =,
从而
[]sin sin ()B A C π=-+sin()A C =+5312463sin cos sin cos 13513565
A C C A =+=
⨯+⨯=.
由正弦定理sin sin AB AC C B
=,得12604
sin 1040
63sin 565
AC AB C B =⨯=⨯=(m ). (2)假设乙出发min t 后,甲、乙两游客距离为d ,此时,甲行走了(10050)m t +,乙距
离A 处130t m , 所以由余弦定理得
22212
(10050)(130)2130(10050)13
d t t t t =++-⨯⨯+⨯
2200(377050)t t =-+, 由于1040
0130
t ≤≤,即08t ≤≤, 故当35
min 37
t =
时,甲、乙两游客距离最短. (3)由正弦定理
sin sin BC AC
A B
=, 得12605
sin 500
63sin 1365
AC BC A B
=
⨯=⨯=(m ). 乙从B 出发时,甲已走了50(281)550⨯++=(m ),还需走710m 才能到达C . 设乙步行的速度为/min vm ,由题意得5007103350v -≤
-≤,解得1250625
4314
v ≤≤, 所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在
1250625,4314⎡⎤
⎢⎥⎣⎦
(单位:/min m )范围内. 考点:正弦、余弦定理在实际问题中的应用. 【方法点睛】
本题主要考查了正弦、余弦定理在实际问题中的应用,考查了考生分析问题和利用所学知识解决问题的能力,属于中档题.解答应用问题,首先要读懂题意,设出变量建立题目中的各个量与变量的关系,建立函数关系和不等关系求解.本题解得时,利用正余弦定理建立各边长的关系,通过二次函数和解不等式求解,充分体现了数学在实际问题中的应用. 22.(1)详见解析;(2
). 【解析】
试题分析:本题第(1)问,可由绝对值不等式的几何意义得出min ()2f x =,从而得出结论;对第(2)问,由0a >去掉一个绝对值号,然后去掉另一个绝对值号,解出a 的取值范围.
试题解析:(1)证明:由绝对值不等式的几何意义可知:min ()f x =1
2a a
+≥,当且仅当1a =时,取等号,所以()2f x ≥.
(2)因为(3)5f <,所以
1335a a ++-<⇔1335a a ++-<⇔132a a
-<-⇔
11232a a a -<-<-a <<. 【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.
考点:本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键. 23.(1) 21n a n =- (2) m 的最小值为30. 【解析】
试题分析:第一问根据条件中数列为等差数列,设出等差数列的首项和公差,根据题中的条件,建立关于等差数列的首项和公差的等量关系式,从而求得结果,利用等差数列的通项公式求得数列的通项公式,第二问利用第一问的结果,先写出
()()3
311212122121n b n n n n ⎛⎫
=
=- ⎪-+-+⎝⎭
,利用裂项相消法求得数列{}n b 的前n 项和,
根据条件,得出相应的不等式,转化为最值来处理,从而求得结果.
试题解析:(1)因为{}n a 为等差数列,设{}n a 的首项为1a ,公差为d ()0d ≠,所以 112141,2,46S a S a d S a d ==+=+.又因为124,,S S S 成等比数列,所以
()()2
111462a a d a d ⋅+=+.所以2
12a d d =.
因为公差d 不等于0,所以12d a =.又因为24S =,所以1
a 1,d 2==,所以
21n a n =-.
(2)因为()()3
311212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭

所以311111123352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭L 31312212
n T n ⎛⎫=-< ⎪+⎝⎭. 要使20n m T <
对所有n N *∈都成立,则有
3
202
m ≥,即30m ≥.因为m N *∈,所以m 的最小值为30.
考点:等差数列,裂项相消法求和,恒成立问题.
24.(1)12n n a -=;(2)2
1122
n n n -++-
【解析】 【分析】
(1)利用数列的递推关系式推出数列{}n a 是以1为首项,2为公比的等比数列,然后求解
通项公式.
(2)化简数列的通项公式,利用分组求和法求和即可. 【详解】
(1)由已知1,n a ,n S 成等差数列得21n n a S =+①, 当1n =时,1121a S =+,∴11a =, 当2n ≥时,203m/s B B B
F m g
a m μ-=
=②
①─②得122n n n a a a --=即12n n a a -=,因110a =≠,所以0n a ≠, ∴
1
2n
n a a -=, ∴数列{}n a 是以1为首项,2为公比的等比数列,
∴11
122n n n a --=⨯=.
(2)由12n n n a b na =+得111
222
n n n b n n a -=+=+, 所以()1212111
1n n n
T b b b n n a a a =+++=
+++++L L ()()1111211211212
n n n n n n -⎡⎤
⎛⎫⨯-⎢⎥
⎪⎝⎭⎢⎥⎣⎦=++=-++-. 【点睛】
数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法. 25.(1
2

4
. 【解析】 【分析】
(1)由A 、B 、C 成等差数列可求得60B =︒,再由正弦定理和余弦定理分别求出a 和c 的值,最后利用三角形面积公式计算即可;
(2)由余弦定理可得2222cos b a c ac B =+-,即:2232a c ac ac ac ac =+-≥-=,可求得3ac ≤,进而求得S 的最大值. 【详解】
(1)因为A 、B 、C 成等差数列,
则:2A+C =B ,又A B C π++=,所以60B =︒,
因为:
sin sin b a
a B A
=⇒=
2222212cos 32102b a c ac B c c c ∴=+-⇒=+-⨯⇒-=⇒,(负值舍);
ABC ∆∴的面积1
1sin 22S ac B ==; (2)2222cos b a c ac B =+-Q ;
即:2232a c ac ac ac ac =+-≥-=,当且仅当a c =时等号成立;
1sin 2ABC S ac B ∆∴=≤

即S 【点睛】
本题考查正余弦定理的应用,考查三角形面积公式的应用,考查不等式的应用,考查逻辑思维能力和运算能力,属于常考题. 26.(1)π
3A =(2)△ABC 为等边三角形 【解析】
分析:(1)由//m n u r
r
,得3
sin (sin )02
A A A ⋅-=,利用三角恒等变换的公式,求解πsin 216A ⎛⎫
-
= ⎪⎝

,进而求解角A 的大小; (2)由余弦定理,得22
4b c bc =+-和三角形的面积公式,利用基本不等式求得
4bc ≤,即可判定当b c =时面积最大,得到三角形形状.
详解:(1)因为m//n,所以()
3
sin sin 02
A A A ⋅-=.
所以
1cos23022A A --=1
cos212
A A -=, 即 πsin 216A ⎛⎫-= ⎪⎝
⎭. 因为()0,πA ∈ , 所以ππ11π2666A ⎛⎫
-∈- ⎪⎝⎭
,. 故ππ262A -
=,π
3
A =. (2)由余弦定理,得 22
4b c bc =+-
又1sin 24
ABC S bc A bc ∆=
=, 而222424b c bc bc bc bc +≥⇒+≥⇒≤,(当且仅当b c =时等号成立)
所以1sin 4244
ABC S bc A bc ∆=
=≤=. 当△ABC 的面积取最大值时,b c =.又π
3
A =
,故此时△ABC 为等边三角形 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.。

相关文档
最新文档