乡宁县第三中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乡宁县第三中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )
A .﹣7
B .﹣1
C .﹣1或﹣7 D
.
2. 两个随机变量x ,y 的取值表为
若x ,y 具有线性相关关系,且y ^
=bx +2.6,则下列四个结论错误的是( )
A .x 与y 是正相关
B .当y 的估计值为8.3时,x =
6 C
.随机误差e
的均值为0
D .样本点(3,4.8)的残差为0.65
3. 设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4﹣2,3S 2=a 3﹣2,则公比q=( ) A .3
B .4
C .5
D .6
4
. 如果向量满足,且,则
的夹角大小为(
)
A .
30° B
.45° C .75° D .135°
5. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )
A .
B .
C .
D .
6. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列
{}n a 的前n 项和为( )
A .22n
-
B .
1
2
2n +
-
C .21
n - D .121n +-
7. 函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f (
)的值为( )
A .
B .0 C
. D .
8. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
乙校:
则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,9
9. 等差数列{a n }中,a 2=3,a 3+a 4=9 则a 1a 6的值为( )
A .14
B .18
C .21
D .27 10.若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,
AB=1,AC=2,∠BAC=60°,则球O 的表面积为( )
A .64π B
.16π C .12π D .4π
11.设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 12.等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( ) A .
B .6
C .
D .3
二、填空题
13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)
x
x
x e
x x x +≥++<,若函数y=f (f (x )﹣a
)﹣1有三个零点,则a 的取值范围是_____.
14.已知实数x ,y 满足2330220y x y x y ≤⎧⎪
--≤⎨⎪+-≥⎩
,目标函数3z x y a =++的最大值为4,则a =______.
【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 15.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .
16.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ . 17.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范
围是 .
18.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是
三、解答题
19.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.
(Ⅰ)求数列{a n}的通项公式
(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.
20.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
21.设0<a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用区间表示)
(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.
22.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.
(1)求S n 的最小值及相应n 的值;
(2)求T n .
23.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO 图案是多边形ABEFMN ,其
设计创意如下:在长4cm 、宽1
c m 的长方形ABCD 中,将四边形DFEC 沿直线EF 翻折到MFEN (点F 是线段AD 上异于D 的一点、点E 是线段BC 上的一点),使得点N 落在线段AD 上. (1)当点N 与点A 重合时,求NMF ∆面积;
(2)经观察测量,发现当2NF MF -最小时,LOGO 最美观,试求此时LOGO 图案的面积.
24.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.
(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;
(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.
乡宁县第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.
所以,解得m=﹣7.
故选:A.
【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.
2.【答案】
【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y
本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.
3.【答案】B
【解析】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,
两式相减得
3a3=a4﹣a3,
a4=4a3,
∴公比q=4.
故选:B.
4.【答案】B
【解析】解:由题意故,即
故两向量夹角的余弦值为=
故两向量夹角的取值范围是45°
故选B
【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.
5.【答案】B
【解析】解:在等差数列{a n}中,由a4+a8=22,得2a6=22,a6=11.
又a3=5,得d=,∴a1=a3﹣2d=5﹣4=1.
{}的前20项和为:
=
=.
故选:B .
6. 【答案】C
【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n
-,选C .
7. 【答案】C
【解析】解:由图象可得A=,
=
﹣(﹣
),解得T=π,ω=
=2.
再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣
,
故f (x )=sin (2x ﹣),
故f (
)=
sin (
﹣
)=
sin
=
,
故选:C .
【点评】本题主要考查由函数y=Asin (ωx+θ)的部分图象求函数的解析式,属于中档题.
8. 【答案】B
【解析】 1从甲校抽取110× 1 200
1 200+1 000
=60人,
从乙校抽取110× 1 000
1 200+1 000
=50人,故x =10,y =7.
9. 【答案】A
【解析】解:由等差数列的通项公式可得,a 3+a 4=2a 1+5d=9,a 1+d=3 解方程可得,a 1=2,d=1 ∴a 1a 6=2×7=14 故选:A
【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题
10.【答案】A
【解析】解:如图,三棱锥S ﹣ABC 的所有顶点都在球O 的球面上, ∵AB=1,AC=2,∠BAC=60°, ∴BC=
,
∴∠ABC=90°.
∴△ABC 截球O 所得的圆O ′的半径r=1,
∵SA ⊥平面ABC ,SA=2
∴球O 的半径R=4,
∴球O 的表面积S=4πR 2
=64π.
故选:A .
【点评】本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题的关键.
11.【答案】B
考
点:函数的奇偶性与单调性.
【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 12.【答案】D
【解析】解:由等差数列的性质可得:S 15==15a 8=45,则a 8=3.
故选:D .
二、填空题
13.【答案】1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,)
【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,
当x ≥0时,由f (x )﹣1=0得
110x x
e
+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:
y=
1x x
e +≥1(x ≥0), y ′=1x
x e
-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,
x=1时,函数取得最大值:1
1e
+,
当1<a ﹣211e <+时,即a ∈(3,3+1
e )时,y=
f (f (x )﹣a )﹣1有4个零点,
当a ﹣2=1+1e 时,即a=3+1
e 时则y=
f (f (x )﹣a )﹣1有三个零点,
当a >3+1
e 时,y=
f (f (x )﹣a )﹣1有1个零点
当a=1+1
e 时,则y=
f (f (x )﹣a )﹣1有三个零点,
当11{ 21
a e a >+-≤时,即a ∈(1+1e
,3)时,y=f (f (x )﹣a )﹣1有三个零点.
综上a ∈1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,),函数有3个零点. 故答案为:11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,).
点睛:已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 14.【答案】3-
【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线
l 经过点5(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273
z a -=⨯+=,所以max 74z a =+=,故
3a =-.
15.【答案】1 【解析】
试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直
【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,
需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是2
12121c c
b b a a ≠=,当直线是斜截式直线方程时,两直线垂直
121-=k k ,两直线平行时,21k k =,21b b ≠.1
16.【答案】1-1,3] 【解析】
试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]
考点:集合运算 【方法点睛】
1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.
2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.
3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.
17.【答案】
.
【解析】解:作出不等式组对应的平面区域, 直线y=k (x+2)过定点D (﹣2,0),
由图象可知当直线l 经过点A 时,直线斜率最大,当经过点B 时,直线斜率最小,
由,解得,即A (1,3),此时k==
,
由
,解得
,即B (1,1),此时k=
=,
故k 的取值范围是
,
故答案为:
【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.
18.【答案】(],1-∞ 【解析】
试题分析:函数(){}
2
min 2,f x x x =-的图象如下图:
观察上图可知:()f x 的取值范围是(],1-∞。
考点:函数图象的应用。
三、解答题
19.【答案】
【解析】解:(I )∵2a 1,a 1+a 2+2a 3,a 1+2a 2成等差数列. ∴2(a 1+a 2+2a 3)=2a 1+a 1+2a 2.
∴2(1+q+2q 2)=3+2q ,化为4q 2
=1,公比q >0,解得q=.
∴a n =
.
(II )∵数列{b n }满足a n+1=()
,∴
=
,
∴b n=n,∴b n=n•2n﹣1.
∴数列{b n}的前n项和T n=1+2×2+3×22+…+n•2n﹣1.
2T n=2+2×22+…+(n﹣1)•2n﹣1+n•2n,
∴﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n,
∴T n=(n﹣1)•2n+1.
20.【答案】
【解析】解:(1)由题意可知第3组的频率为0.06×5=0.3,
第4组的频率为0.04×5=0.2,
第5组的频率为0.02×5=0.1;
(2)第3组的人数为0.3×100=30,
第4组的人数为0.2×100=20,
第5组的人数为0.1×100=10;
因为第3,4,5组共有60名志愿者,
所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,
每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;
应从第3,4,5组各抽取3,2,1名志愿者.
(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;
在这6名志愿者中随机抽取2名志愿者有:
(1,2),(1,3),(1,4),(1,5),(1,6),
(2,3),(2,4),(2,5),(2,6),
(3,4),(3,5),(3,6),
(4,5),(4,6),
(5,6);
共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,
所以第4组至少有一名志愿者被抽中的概率为.
【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力.21.【答案】
【解析】解:(1)令g(x)=2x2﹣3(1+a)x+6a,△=9(1+a)2﹣48a=9a2﹣30a+9=3(3a﹣1)(a﹣3).
①当时,△≥0,
方程g(x)=0的两个根分别为,
所以g(x)>0的解集为
因为x1,x2>0,所以D=A∩B=
②当时,△<0,则g(x)>0恒成立,所以D=A∩B=(0,+∞)
综上所述,当时,D=;
当时,D=(0,+∞).
(2)f′(x)=6x2﹣6(1+a)x+6a=6(x﹣a)(x﹣1),
令f′(x)=0,得x=a或x=1,
①当时,由(1)知D=(0,x1)∪(x2,+∞)
因为g(a)=2a2﹣3(1+a)a+6a=a(3﹣a)>0,g(1)=2﹣3(1+a)+6a=3a﹣1≤0
所以0<a<x1<1≤x2,
②当时,由(1)知D=(0,+∞)
f x f x x
综上所述,当时,f(x)有一个极大值点x=a,没有极小值点;
当时,f(x)有一个极大值点x=a,一个极小值点x=1.
22.【答案】
【解析】解:(1)S n=2n2﹣19n+1=2﹣,
∴n=5时,S n取得最小值=﹣44.
(2)由S n=2n2﹣19n+1,
∴n=1时,a1=2﹣19+1=﹣16.
n≥2时,a n=S n﹣S n﹣1=2n2﹣19n+1﹣[2(n﹣1)2﹣19(n﹣1)+1]=4n﹣21.
由a n≤0,解得n≤5.n≥6时,a n>0.
∴n≤5时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣2n2+19n﹣1.
n≥6时,T n=﹣(a1+a2+…+a5)+a6+…+a n
=﹣2S 5+S n =2n 2﹣19n+89.
∴T n
=
.
【点评】本题考查了等差数列的通项公式及其前n 项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.
23.【答案】(1)
215cm 16;(2
)2
4. 【解析】试题分析:
(1)设MF x =
4x =,则158
x =
, 据此可得NMF ∆的面积是
211515
1cm 2816
⨯⨯=;
试题解析:
(1)设MF x =,则FD MF x ==
,NF =
∵4NF MF +=,
4x =,解之得15
8
x =
, ∴NMF ∆的面积是
211515
1cm 2816
⨯⨯=; (2)设NEC θ∠=,则2
NEF θ
∠=,NEB FNE πθ∠=∠=-,
∴()22
MNF π
π
πθθ∠=
--=-
,
∴1
1
2MN
NF cos MNF
sin cos πθ
θ==
=
∠⎛
⎫- ⎪
⎝
⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛
⎫-=- ⎪⎝⎭
,
∴22cos NF MF sin θ
θ
+-=.
∵14NF FD <+≤,∴114cos sin θθ-<
≤,即142
tan θ
<≤, ∴42πθα<≤(4tan α=且,32ππα⎛⎫
∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫
∈ ⎪⎝⎭
),
设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23
π
θ=, 列表得
∴当23
π
θ=
时,2NF MF -取到最小值, 此时,NEF CEF NEB ∠=∠=∠3
FNE NFE NFM π
=∠=∠=∠=,6
MNF π
∠=
,
在Rt MNF ∆中,1MN =,MF =
,NF =,
在正NFE ∆中,NF EF NE ===,
在梯形ANEB 中,1AB =,4AN =,43
BE =-,
∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形1441463233
⎛++⨯--⨯=- ⎝⎭.
答:当2NF MF -最小时,LOGO 图案面积为2
4. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.
24.【答案】(1)()21sin cos S θθ=+,其中02
π
θ<<
.(2)6
π
θ=
时,max 2
S =
【解析】试题分析:(1)求梯形铁片ABCD 的面积S 关键是用θ表示上下底及高,先由图形得
AOE BOF θ∠=∠=,这样可得高2cos AB θ=,再根据等腰直角三角形性质得()1cos sin AD θθ=-+,
()1cos sin BC θθ=++最后根据梯形面积公式得()2
AD BC AB
S +⋅=
()21sin cos θθ=+,交代定义域
02
π
θ<<
.(2)利用导数求函数最值:先求导数()'f θ()()22sin 1sin 1θθ=--+,再求导函数零点6
π
θ=
,
列表分析函数单调性变化规律,确定函数最值
试题解析:(1)连接OB ,根据对称性可得AOE BOF θ∠=∠=且1OA OB ==, 所以1cos sin AD θθ=-+,1cos sin BC θθ=++,2cos AB θ=, 所以()2
AD BC AB
S +⋅=
()21sin cos θθ=+,其中02
π
θ<<
.
考点:利用导数求函数最值
【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.。