基音和共振峰估计

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1-10页
基音和共振峰估计
X
天津商业大学信息工程学院
语音信号处理 电子教案
• 简化逆滤波器的原理框图如图3-26所示。其工作过程为:
• ①语音信号经过10kHz取样后,通过0-900Hz的数字低通 滤器,其目的是滤除声道谱中声道响应部分的影响,使峰值 检测更加容易。然后降低取样率5倍(因为激励序列的宽度 小于1 kHz,所以用2kHz取样就足够了);当然,后面要进 行内插。
基音和共振峰估计
X
天津商业大学信息工程学院
语音信号处理 电子教案
然而,反应信息的倒谱峰,在过渡音和含噪语音中将 会变得不清晰甚至完全消失。其原因当然主要是因 为过渡音中周期激励信号能量降低和类噪激励信号 干扰或含噪语音中的噪声干扰所致。对于一帧典型 的浊音语音的倒谱,其倒谱域中基音信息与声道信 息并不是完全分离的,在周期激励信号能量较低的 情况下,声道响应(特别是其共振峰)对基音倒谱峰 的影响就不可忽略。如果设法除去语音信号中的声 道响应信息,对类噪激励和噪声加以适当抑制,倒 谱基音检测算法的检测结果将有所改善,特别对过 渡语音的检测结果将有明显改善。
s(n)=e(n)*v(n)
• 设三者的倒谱分别为s^(n)、e^(n)及v^(n),则有:
s^(n)=e^(n)+v^(n)
• 可见,倒谱域中基音信息与声道信息可以认为是相对分离的。 采取简单的倒滤波方法可以分离并恢复出e(n)和v(n),根据 激励e(n)及其倒谱的特征可以求出基音周期。
第1-8页
第1-6页
基音和共振峰估计
X
天津商业大学信息工程学院
语音信号处理 电子教案
第1-7页
基音和共振峰估计
X
天津商业大学信息工程学院
源自文库
语音信号处理 电子教案
(4)倒谱(CEP)法
• 倒谱法是传统的基音周期检测算法之一,它利用语音信号的 倒频谱特征,检测出表征声门激励周期的基音信息。
• 正如在3.5小节介绍的,语音s(n)是由声门脉冲激励e(n)经 声道响应v(n)滤波而得。即:
• 图3-21所示的是一个并行处理法的实现框图,它是一种时域方 法,检测器找出语音波形的六个测度,而这六个测度应用于六 个独立的基音检测器。由六个检测器驱动“服从多数”逻辑电 路而进行最终的基音判决。用到的波形属性是正负峰值的幅度 和位置,后峰至前峰的测度以及峰值至谷值的测度。语音最初 经截止频率为900Hz的低通滤波,如果需要的话加高通滤波去 除60Hz的交流声。用这种方法找出的基音测度与经过检验确定 的基音测度相当吻合,而且处理过程具有抗噪声能力。
第1-4页
基音和共振峰估计
X
天津商业大学信息工程学院
语音信号处理 电子教案
(2)平均幅度差函数法(AMDF)
• 语音信号的短时平均幅度差函数(AMDF) Fn(k)定义为:
Nk1
Fn(k) Sn(mk)Sn(m) m0
• 与短时自相关函数一样,对周期性的浊音语音,Fn(k)也呈 现与浊音语音周期相一致的周期特性,不过不同的是Fn(k) 在周期的各个整数倍点上具有谷值特性而不是峰值特性,因 而通过Fn(k)的计算同样可以来确定基音周期。而对于清音 语音信号,Fn(k)却没有这种周期特性。利用Fn(k)的这种特 性,可以判定一段语音是浊音还是清音,并估计出浊音语音 的基音周期。
第1-9页
基音和共振峰估计
X
天津商业大学信息工程学院
语音信号处理 电子教案
(5)简化逆滤波法(SIFT)
• 简化的逆滤波跟踪(SIFT)算法是相关处理法进行基 音提取的一种现代化的版本。该方法的基本思想是: 先对语音信号进行LPC分析和逆滤波,获得语音信号 的预测残差,然后将残差信号通过自相关滤波器滤 波,再作峰值检测,进而获得基音周期。语音信号 通过线性预测逆滤波器后达到频谱的平坦化,因为 逆滤波器是一个使频谱子坦化的滤波器,所以它提 供了一个简化的(亦即廉价的)频谱平滑器。预测 误差是自相关器的输入,通过与门限的比较可以确 定浊音,通过辅助信息可以减少误差。
• ②提取降低取样率后的信号模型参数(LPC参数),检测出 峰值及其位置就得到基音周期值。
语音信号处理 电子教案
§3.7 基音周期和共振峰频率估计
§3.7 基音周期和共振峰频率估计
一、基音周期估计 二、共振峰估计
第1-1页
基音和共振峰估计
X
天津商业大学信息工程学院
语音信号处理 电子教案
一、基音周期估计 1.基音周期估计的重要性
一、基音周期估计
基音周期是语音信号最重要的参数之一,它描述 了语音激励源的一个重要特征。基音周期信息在多 个领域中有着广泛的应用,如:语音识别、说话人 识别、语音编码、语音合成、发音系统疾病诊断、 听觉残障者的语言指导等。因为汉语是一种有调语 言,基音的变化模式称为声调,它携带着非常重要 的具有辨意作用的信息,有区别意义的功能,所以, 基音的提取和估计对汉语更是一个十分重要的问题。
第1-2页
基音和共振峰估计
X
天津商业大学信息工程学院
语音信号处理 电子教案
2.基音周期估计的方法
(1)自相关法 (2)平均幅度差函数法 (3)并行处理法 (4)倒谱法 (5)简化逆滤波法 (6)小波变换法
第1-3页
基音和共振峰估计
X
天津商业大学信息工程学院
语音信号处理 电子教案
(1)自相关法
• 语音信号s(m)经窗长为N的窗口截取为一段加窗语音信号 Sn(m)后,定义Sn(m)的自相关函数(ACF)Rn(k)(亦即语音信 号s(m)的短时自相关函数)为:
第1-5页
基音和共振峰估计
X
天津商业大学信息工程学院
语音信号处理 电子教案
(3)并行处理技术(PPROC)方法
• 运用并行处理技术检测基音周期的方法的基本思想是:对经过 预处理的语音信号实施一系列的基音初步检测,或分别对原始 信号和经处理后的信号实施系列检测,然后根据系列检测的初 步结果,综合判定基音周期。
Nk1
Rn(k) Sn(m)Sn(mk) m0
• Rn(k)不为零的范围为是k=(-N+1)~(N—1),且为偶函数。 由3.3小节的分析可知,浊音信号的自相关函数在基音周期 的整数倍位置上出现峰值;而清音的自相关函数没有明显的 峰值出现。因此检测是否有峰值就可判断是清音或浊音,检 测峰值的位置就可提取基音周期值。
相关文档
最新文档