高考数学压轴专题2020-2021备战高考《函数与导数》专项训练答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学《函数与导数》复习资料
一、选择题
1.已知()2
ln33,33ln3,ln3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a << B .c a b << C .a c b <<
D .a b c <<
【答案】B 【解析】 【分析】
根据,,a b c 与中间值3和6的大小关系,即可得到本题答案. 【详解】
因为3
23e e <<,所以31ln 32
<<, 则3
ln3
22
3336,33ln 36,(ln 3)3a b c <=<=<=+>=<,
所以c a b <<.
故选:B 【点睛】
本题主要考查利用中间值比较几个式子的大小关系,属基础题.
2.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --
【答案】A 【解析】 【分析】
由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】
由()()22f x f x -=+得:()f x 关于2x =对称
又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数
()()()()()()()()()1281241240
f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2
123422f f f f e e +++=+
()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+
故选:A
【点睛】
本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.
3.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+
C .y x =
D .2y x =-
【答案】A 【解析】 【分析】
首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】
因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,
(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.
故选:A 【点睛】
本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.
4.已知()(1)|ln |
x
f x x x =
≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e
⎛⎫⋃ ⎪⎝⎭
B .11,e e ⎛⎫+
⎪⎝⎭
C .(1,)e e -
D .1
e e ⎛⎫ ⎪⎝⎭
,
【答案】C 【解析】 【分析】
由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】
由22
[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =
与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以
()|ln |ln x x f x x x =
=,令()ln x g x x
=,则'2ln 1()(ln )x g x x -=,由'
()0g x >得
x e >, 由'
()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示
要使原方程有4个根,则01m e
m e <<⎧⎨+>⎩
,解得1e m e -<<.
故选:C 【点睛】
本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.
5.已知定义在R 上的函数()f x 满足()()2
42f x f x x +-=+,设()()2
2g x f x x =-,
若()g x 的最大值和最小值分别为M 和m ,则M m +=( ) A .1 B .2 C .3 D .4
【答案】B 【解析】
∵()()2
42f x f x x +-=+,()()2
2g x f x x =-
∴2222
()()()2()24242g x g x f x x f x x x x +-=-+--=+-= ∴函数()g x 关于点(0,1)对称
∵()g x 的最大值和最小值分别为M 和m ∴122M m +=⨯= 故选B.
6.函数2
2()41
x x x f x ⋅=-的图像大致为( )
A .
B .
C .
D .
【答案】A 【解析】
∵函数()2
2?41x x x f x =-的定义域为(,0)(0,)-∞+∞U
∴22
2()2()()4114x x x x
x x f x f x --⋅-⋅-===---
∴函数()f x 为奇函数,故排除B ,C. ∵2
(1)03
f =>,故排除D. 故选A.
点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
7.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1
C .1ln2-
D .1ln2+
【答案】D 【解析】
由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000
002
ln y kx y x x =-⎧⎨=⎩,
0002ln kx x x ∴-=,00
2
ln k x x ∴=+
,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.
8.函数22cos x x
y x x
--=-的图像大致为( ).
A .
B .
C .
D .
【答案】A 【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫
-
=- ⎪ ⎪⎝⎭⎝⎭
排除选项D ; 根据特殊值502
f π
⎛⎫
>
⎪⎝⎭
排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】
对于选项D:由题意可得, 令函数()
f x = 22cos x x
y x x
--=-,
则5522
52252
2
f ππππ-
-⎛⎫-= ⎪⎝⎭
,552
2
52252
2
f ππππ--⎛⎫= ⎪⎝⎭
;
即552
2f f ππ⎛⎫
⎛⎫-=- ⎪ ⎪⎝⎭
⎝⎭
.故选项D 排除; 对于选项C :因为552
2
522052
2
f ππππ-
-⎛⎫=> ⎪⎝⎭
,故选项C 排除;
对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时
()0f x <.故选项B 排除;
故选项:A 【点睛】
本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.
9.函数()2
sin f x x x x =-的图象大致为( )
A .
B .
C .
D .
【答案】A 【解析】 【分析】
分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】
因为()()()()()2
2sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;
()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成
立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,
()()12f x f x ∴>,
所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A. 【点睛】
本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.
10.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,
()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1
()2
f x x <
-的解集是( ) A .(2,3) B .(,1)-∞
C .()(1,2)2,3⋃
D .()(,1)3,-∞⋃+∞
【答案】C 【解析】 【分析】
令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,
()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1
()|2|
f x x <
-等价
于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可. 【详解】
当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>, 令()|2|()F x x f x =-.
当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>, 即当2x >时,()F x 单调递增. 函数()f x 满足(2)(2)f x f x +=-,
所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1
()|2|
f x x <
-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,
所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U . 故选:C
【点睛】
本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.
11.已知函数()2
943,0
2log 9,0x x x f x x x ⎧+≤=⎨+->⎩
,则函数()()y f f x =的零点所在区间为( )
A .73,
2⎛⎫ ⎪⎝⎭
B .()1,0-
C .7,42⎛⎫ ⎪⎝⎭
D .()4,5
【答案】A 【解析】 【分析】
首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令
()()0f f x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93x f x x =+-=,利用
零点存在性定理,求得函数()()y f f x =的零点所在区间.
【详解】
当0x ≤时,()34f x <≤.
当0x ≥时,()2
932log 92log 9x
x
x f x x =+-=+-为增函数,且()30f =,则3
x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以 令()()0f
f x =,得()32
log 93x
f x x =+-=,因为()303f =<
,
3377log 98 1.414log 39 3.312322f ⎛⎫
=->⨯+-=> ⎪⎝⎭
,
所以函数()()y f f x =的零点所在区间为73,2⎛
⎫
⎪⎝
⎭
.
故选:A 【点睛】
本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.
12.已知函数(
))
ln
f x x =,设()3lo
g 0.2a f =,()0.23b f -=,
()
1.13c f =-,则( )
A .a b c >>
B .b a c >>
C .c b a >>
D .c a b >>
【答案】D 【解析】
∵())
ln
f x x =
∴())f x x ==
∴())f x x -=
∵当0x >1x >;当0x <时,01x <
∴当0x >时,())))f x x x x ==-=,
())f x x -=;
当0x <时()))f x x x ==;
()))f x x x -=-=.
∴()()f x f x =- ∴函数()f x 是偶函数
∴当0x >时,易得())f x x =为增函数
∴33(log 0.2)(log 5)a f f ==, 1.1 1.1
(3)(3)c f f =-=
∵31log 52<<,0.2031-<<, 1.133>
∴ 1.10.2
3(3)(log 5)(3)f f f ->>
∴c a b >> 故选D.
13.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭
( ) A .
12e
- B .2e - C .1-
D .e
【答案】B 【解析】 【分析】
对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1
x e
=求得结果. 【详解】
由题意得:()()121f x f x
''=+
令1x =得:()()1211f f ''=+,解得:()11f '=-
()12f x x '∴=-+
12f e e ⎛⎫
'∴=- ⎪⎝⎭
本题正确选项:B 【点睛】
本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.
14.已知函数
()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设
12a f ⎛⎫
=- ⎪⎝⎭
,()3b f =,()0c f =,则a b c 、、的大小关系为()
A .b a c <<
B .c b d <<
C .b c a <<
D .a b c <<
【答案】A 【解析】 【分析】 根据
()1f x +图象关于y 轴对称可知()f x 关于1x =对称,从而得到()f x 在(),1-∞上
单调递增且()()31f f =-;再根据自变量的大小关系得到函数值的大小关系. 【详解】
()1f x +Q 为偶函数 ()1f x ∴+图象关于y 轴对称
()f x ∴图象关于1x =对称
()1,x ∈+∞Q 时,()f x 单调递减 (),1x ∈-∞∴时,()f x 单调递增
又()()31f f =-且1102-<-< ()()1102f f f ⎛⎫
∴-<-< ⎪⎝⎭
,即b a c << 本题正确选项:A 【点睛】
本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.
15.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0
C .x +y -2=0
D .3x -y -2=0
【答案】A 【解析】 【分析】
先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案.
当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以
2()ln f x x x =-,
(1)1f =,所以'1()2f x x x
=-,'(1)1f =,故切线方程为11y x -=-,即y x =. 故选:A .
【点睛】
本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.
16.函数()3ln 2x f x x x =
+的图象在点()()1,1f 处的切线方程为( ) A .64y x =-
B .75y x =-
C .63=-y x
D .74y x =- 【答案】B
【解析】
【分析】
首先求得切线的斜率,然后求解切线方程即可.
【详解】
由函数的解析式可得:()221ln '6x f x x x -=
+, 则所求切线的斜率()221ln1'16171k f -==
+⨯=, 且:()012121
f =+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-.
本题选择B 选项.
【点睛】
导数运算及切线的理解应注意的问题
一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.
二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.
三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.
17.下列求导运算正确的是( )
A .()cos sin x x '=
B .()1ln 2x x '=
C .()333log x x e '=
D .()22x x x e xe '
=
【解析】
分析:利用基本初等函数的导数公式、导数的运算法则对给出的四种运算逐一验证,即可得到正确答案.
详解:()'cos sin x x =-,A 不正确;()'11ln222x x x =
⨯= ,B 正确;()'33ln3x x =,C 不正确;()'222x x x x e xe x e =+,D 不正确,故选B.
点睛:本题主要考查基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.
18.对于任意性和存在性问题的处理,遵循以下规则:
19.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭
B .1,15⎛⎫ ⎪⎝⎭
C .51,3⎛⎫ ⎪⎝⎭
D .51,3⎛⎤ ⎥⎝⎦
【答案】D
【解析】
【分析】
根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩
,解不等式即可. 【详解】
0a >Q
5y ax ∴=-在定义域内单调递减
若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数
则需1530
a a >⎧⎨-≥⎩,解得513a <≤ 故选:D
【点睛】
本题考查对数函数的单调性,属于中档题.
20.已知函数()2ln 2x
x f x e x =+-的极值点为1x ,函数()2x g x e x =+-的零点为2x ,函数()ln 2x h x x
=的最大值为3x ,则( ) A .123x x x >>
B .213x x x >>
C .312x x x >>
D .321x x x >>
【解析】
【分析】
根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅< ⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭
;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =
<,即314
x <,从而可得三者的大小关系. 【详解】 ()1x f x e x x
'=+-Q 在()0,∞+上单调递增 且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增 且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭ 211,42x ⎛⎫∴∈ ⎪⎝⎭ 又()()11111211112220x g x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭
且()g x 单调递增 12x x ∴>
由()2
1ln 2x h x x -'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>
本题正确选项:A
【点睛】
本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。