【数学】中考数学圆的综合解答题压轴题提高专题练习附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、圆的综合 真题与模拟题分类汇编(难题易错题)
1.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC
(1)求证:AC 是⊙O 的切线;
(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.
【答案】(1)见解析;(2)30.
【解析】
【分析】
(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.
【详解】
(1)证明:∵CD 与⊙O 相切于点E ,
∴OE CD ⊥,
∴90CEO ∠=︒,
又∵OC BE ,
∴COE OEB ∠=∠,∠OBE=∠COA
∵OE=OB ,
∴OEB OBE ∠=∠,
∴COE COA ∠=∠,
又∵OC=OC ,OA=OE ,
∴OCA OCE SAS ∆∆≌()
, ∴90CAO CEO ∠=∠=︒,
又∵AB 为⊙O 的直径,
∴AC 为⊙O 的切线;
(2)解:∵四边形FOBE 是菱形,
∴OF=OB=BF=EF ,
∴OE=OB=BE ,
∴OBE ∆为等边三角形,
∴60BOE ∠=︒,
而OE CD ⊥,
∴30D ∠=︒.
故答案为30.
【点睛】
本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.
2.已知▱ABCD 的周长为26,∠ABC=120°,BD 为一条对角线,⊙O 内切于△ABD ,E ,F ,G
为切点,已知⊙O 的半径为▱ABCD 的面积.
【答案】
【解析】
【分析】
首先利用三边及⊙O 的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD 的长即可解答.
【详解】
设⊙O 分别切△ABD 的边AD 、AB 、BD 于点G 、E 、F ;
平行四边形ABCD 的面积为S ;
则S=2S △ABD =2×
12
(AB·OE+BD·OF+AD·(AB+AD+BD ); ∵平行四边形ABCD 的周长为26,
∴AB+AD=13, ∴
;连接OA ;
由题意得:∠OAE=30°,
∴AG=AE=3;同理可证DF=DG ,BF=BE ;
∴DF+BF=DG+BE=13﹣3﹣3=7,
即BD=7,

13+7)
即平行四边形ABCD 的面积为.
3.如图1,以边长为4的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E . (1)图1中,线段AE= ;
(2)如图2,在图1的基础上,以点A 为端点作∠DAM=30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt △ADM 绕点A 逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD 与⊙O 交于点F .
①当α=30°时,请求出线段AF 的长;
②当α=60°时,求出线段AF 的长;判断此时DM 与⊙O 的位置关系,并说明理由; ③当α= °时,DM 与⊙O 相切.
【答案】(1)2(2)①2②2,相离③当α=90°时,DM与⊙O相切
【解析】(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;
(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,
∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;
②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;
③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得
α=∠NAD=90°.
点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.
4.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.
(1)求证:AD=BD.
(2)猜想线段AB与DI的数量关系,并说明理由.
(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.
23
【答案】(1)证明见解析;(2)AB=DI,理由见解析(3
【解析】
分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;
(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得
△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出
ID=BD,再根据AB=BD,即可证得结论;
(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.
详解:(1)证明:∵点I是∠ABC的内心
∴CI平分∠ACB
∴∠ACD=∠BCD
∴弧AD=弧BD
∴AD=BD
(2)AB=DI
理由:∵∠ACB=120°,∠ACD=∠BCD
∴∠BCD=×120°=60°
∵弧BD=弧BD
∴∠DAB=∠BCD=60°
∵AD=BD
∴△ABD是等边三角形,
∴AB=BD,∠ABD=∠C
∵I是△ABC的内心
∴BI平分∠ABC
∴∠CBI=∠ABI
∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD
∴∠BID=∠IBD
∴ID=BD
∵AB=BD
∴AB=DI
(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧
∵∠ACB=120°,弧AD=弧BD
∴∠AED=∠ACB=×120°=60°
∵圆的半径为2,DE是直径
∴DE=4,∠EAD=90°
∴AD=sin∠AED×DE=×4=2
∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,
∴∠ADB=60°
∴弧AB的度数为120°,
∴弧AM、弧BF的度数都为为40°
∴∠ADM=20°=∠FAB
∴∠DAI1=∠FAB+∠DAB=80°
∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°
∴∠DAI1=∠AI1D
∴AD=I1D=2
∴弧I1I2的长为:
点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.
5.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC.
(1)判断直线BE与⊙O的位置关系,并证明你的结论;
(2)若sin∠ABE=
3
3
,CD=2,求⊙O的半径.
【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 的半径为3. 【解析】 分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:
连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC .
∵OD =OE ,∴∠OED =∠ODE .
又∵∠ABE =∠DBC ,∴∠ABE =∠OED ,
∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,
∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;
(2)连接EF ,方法1:
∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2.
∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠=
∴23DC BD sin CBD
∠== 在Rt △AEB 中,∵CD =2,∴22BC =.
∵tan ∠CBD =tan ∠ABE ,∴
2222DC AE AE AE BC AB ,,==∴=, 由勾股定理求得6BE =
在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2. 设⊙O 的半径为r ,则222623r r +=()()
,∴r 3, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°.
∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2.
∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.
∵CD =2,∴22BC =.
∵tan ∠CBD =tan ∠ABE ,∴22222
DC AE AE AE BC AB ,,=∴=∴=, ∴E 为AD 中点.
∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==,∴⊙O 的半径为32.
点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.
6.如图,Rt ABC ∆内接于⊙O ,AC BC =,BAC ∠的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD ,G 是CD 的中点,连接OG .
(1)判断OG 与CD 的位置关系,写出你的结论并证明;
(2)求证:AE BF =;
(3)若3(22)OG DE =-,求⊙O 的面积.
【答案】(1)OG ⊥CD (2)证明见解析(3)6π
【解析】
试题分析:(1)根据G 是CD 的中点,利用垂径定理证明即可;
(2)先证明△ACE 与△BCF 全等,再利用全等三角形的性质即可证明;
(3)构造等弦的弦心距,运用相似三角形以及勾股定理进行求解.
试题解析:(1)解:猜想OG ⊥CD .证明如下:
如图1,连接OC 、OD .∵OC =OD ,G 是CD 的中点,∴由等腰三角形的性质,有OG ⊥CD .
(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,而∠CAE =∠CBF (同弧所对的圆周角相等).在Rt △ACE 和Rt △BCF 中,∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF ,∴Rt △ACE ≌Rt △BCF (ASA ),∴AE =BF .
(3)解:如图2,过点O 作BD 的垂线,垂足为H ,则H 为BD 的中点,∴OH =12AD ,即AD =2OH ,又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG .在Rt △BDE 和Rt △ADB 中,
∵∠DBE =∠DAC =∠BAD ,∴Rt △BDE ∽Rt △ADB ,∴BD DE AD DB
=,即BD 2=AD •DE ,∴22622BD AD DE OG DE =⋅=⋅=-()
.又BD =FD ,∴BF =2BD ,∴2242422BF BD ==-()
①,设AC =x ,则BC =x ,AB =2x .∵AD 是∠BAC 的平分线,∴∠FAD =∠BAD .在Rt △ABD 和Rt △AFD 中,∵∠ADB =∠ADF =90°,AD =AD ,∠FAD =∠BAD ,∴Rt △ABD ≌Rt △AFD (ASA ),∴AF =AB =2x ,BD =FD ,∴CF =AF ﹣AC =221x x x -=-().在Rt △BCF 中,由勾股定理,得:
222222[21]222BF BC CF x x x =+=+-=-()()②,由①、②,得
22222422x -=-()()
,∴x 2=12,解得:23x =或23-(舍去),∴222326AB x ==⋅=,∴⊙O 的半径长为6,∴S ⊙O =π•(6)2=6π.
点睛:本题是圆的综合题.解题的关键是熟练运用垂径定理、勾股定理、相似三角形的判定与性质.
7.如图,已知BC 是⊙O 的弦,A 是⊙O 外一点,△ABC 为正三角形,D 为BC 的中点,M 为⊙O 上一点,并且∠BMC=60°.
(1)求证:AB 是⊙O 的切线;
(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问
BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.
【答案】(1)证明见试题解析;(2)BE+CF的值是定值,为等边△ABC边长的一半.【解析】
试题分析:(1)连结OB、OD,如图1,由于D为BC的中点,由垂径定理的推理得
OD⊥BC,∠BOD=∠COD,即可得到∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是得到AB是⊙O的切线;
(2)作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,由△ABC为正三角形,D为BC 的中点,得到AD平分∠BAC,∠BAC=60°,利用角平分线性质得DM=DN,得
∠MDN=120°,由∠EDF=120°,得到∠MDE=∠NDF,于是有△DME≌△DNF,得到ME=NF,
得到BE+CF=BM+CN,由BM=1
2
BD,CN=
1
2
OC,得到BE+CF=
1
2
BC,即可判断BE+CF的值是
定值,为等边△ABC边长的一半.
试题解析:(1)连结OB、OD,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,
∴∠ODB=90°,∵∠BMC=1
2
∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三
角形,∴∠ABC=60°,∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;
(2)BE+CF的值是为定值.
作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DM=DN,∠MDN=120°,∵∠EDF=120°,
∴∠MDE=∠NDF,在△DME和△DNF中,∵∠DME=∠DNF.DM=DN,∠MDE=∠NDF,∴△DME≌△DNF,∴ME=NF,∴BE+CF=BM﹣EM+CN+NF=BM+CN,在Rt△DMB中,
∵∠DBM=60°,∴BM=1
2
BD,同理可得CN=
1
2
OC,∴BE+CF=
1
2
OB+
1
2
OC=
1
2
BC,∴BE+CF
的值是定值,为等边△ABC边长的一半.
考点:1.切线的判定;2.等边三角形的性质;3.定值问题;4.探究型;5.综合题;6.压轴题.
8.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.(1)求证:∠DAC=∠ACO+∠ABO;
(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求
证:EF=EB;
(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.
【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.
【解析】
试题分析:(1)如图1中,连接OA,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO,由点C是=,推出∠BAC=∠DAC,即可推出∠DAC=∠ACO+∠ABO;
BD中点,推出CD CB
(2)想办法证明∠EFB=∠EBF即可;
(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF 于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.首先证明△EFB是等边三角形,再证明△ACK≌△ACT,Rt△DKC≌Rt△BTC,延长即可解决问题;
试题解析:(1)如图1中,连接OA,
∵OA=OC,∴∠1=∠ACO,
∵OA=OB,∴∠2=∠ABO,∴∠CAB=∠1+∠2=∠ACO+∠ABO,
∵点C是BD中点,∴CD CB
=,∴∠BAC=∠DAC,
∴∠DAC=∠ACO+∠ABO.
(2)如图2中,
∵∠BAD=∠BAC+∠DAC=2∠CAB,∠COB=2∠BAC,∴∠BAD=∠BOC,
∵∠DAB=∠OBA+∠EBA,∴∠BOC=∠OBA+∠EBA,
∴∠EFB=∠EBF,∴EF=EB.
(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF
于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .
∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,
∵∠EFB=∠EBF ,∴∠G=∠HOF ,
∵∠HOF=∠EOG ,∴∠G=∠EOG ,∴EG=EO ,
∵OH ⊥AB ,∴AB=2HB ,
∵OE+EB=AB ,∴GE+EB=2HB ,∴GB=2HB ,
∴cos ∠GBA=
12
HB GB = ,∴∠GBA=60°, ∴△EFB 是等边三角形,设HF=a ,
∵∠FOH=30°,∴OF=2FH=2a , ∵AB=13,∴EF=EB=FB=FH+BH=a+
132, ∴OE=EF ﹣OF=FB ﹣OF=
132﹣a ,OB=OC=OE+EC=132﹣a+2=172﹣a , ∵NE=12EF=12a+134
, ∴ON=OE=EN=(
132﹣a )﹣(12a+134)=134﹣32
a , ∵BO 2﹣ON 2=EB 2﹣EN 2, ∴(172﹣a )2﹣(134﹣32a )2=(a+132)2﹣(12a+134
)2, 解得a=
32
或﹣10(舍弃), ∴OE=5,EB=8,OB=7, ∵∠K=∠ATC=90°,∠KAC=∠TAC ,AC=AC ,∴△ACK ≌△ACT ,∴CK=CT ,AK=AT , ∵CD CB =,∴DC=BC ,∴Rt △DKC ≌Rt △BTC ,∴DK=BT ,
∵FT=12
FC=5,∴DK=TB=FB ﹣FT=3,∴AK=AT=AB ﹣TB=10,∴AD=AK ﹣DK=10﹣3=7.
9.在O 中,AB 为直径,C 为O 上一点.
(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;
(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小.
【答案】(1)∠P =34°;(2)∠P =27°
【解析】
【分析】
(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;
(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案.
【详解】
(1)连接OC ,
∵OA =OC ,
∴∠A =∠OCA =28°,
∴∠POC =56°,
∵CP 是⊙O 的切线,
∴∠OCP =90°,
∴∠P =34°;
(2)∵D 为弧AC 的中点,OD 为半径,
∴OD ⊥AC ,
∵∠CAB =12°,
∴∠AOE =78°,
∴∠DCA =39°,
∵∠P =∠DCA ﹣∠CAB ,
∴∠P =27°.
【点睛】
本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.
10.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.
(1)求证:AE与⊙O相切于点A;
(2)若AE∥BC,BC=23,AC=2,求AD的长.
【答案】(1)证明见解析;(2)23
【解析】
【分析】
(1)根据题目中已出现切点可确定用“连半径,证垂直”的方法证明切线,连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,根据同弧所对的圆周角相等,则可得到∠BAE=∠F,既而得到AE与⊙O相切于点A.
(2))连接OC,先由平行和已知可得∠ACB=∠ABC,所以AC=AB,则∠AOC=∠AOB,从而利用垂径定理可得AH=1,在Rt△OBH中,设OB=r,利用勾股定理解得r=2,在Rt△ABD中,即可求得AD的长为3
【详解】
解:(1)连接AO并延长交⊙O于点F,连接BF,
则AF为直径,∠ABF=90°,
∵AB AB

∴∠ACB=∠F,
∵∠BAE=∠ACB,
∴∠BAE=∠F,
∵∠FAB+∠F=90°,
∴∠FAB+∠BAE=90°,
∴OA⊥AE,
∴AE与⊙O相切于点A.
(2)连接OC,
∵AE∥BC,
∴∠BAE=∠ABC,
∵∠BAE=∠ACB,
∴∠ACB=∠ABC,
∴AC=AB=2,
∴∠AOC=∠AOB,
∵OC=OB,
∴OA⊥BC,
∴CH=BH=1
BC=3,
2
在Rt△ABH中,
AH=22
AB BH
-=1,
在Rt△OBH中,设OB=r,
∵OH2+BH2=OB2,
∴(r﹣1)2+(3)2=r2,
解得:r=2,
∴DB=2r=4,
在Rt△ABD中,AD=22
-=22
BD AB
-=23,
42
∴AD的长为23.
【点睛】
本题考查了圆的综合问题,恰当的添加辅助线是解题关键.。

相关文档
最新文档