旬邑县实验中学2018-2019学年上学期高三数学10月月考试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旬邑县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
则几何体的体积为( ) A.
6
B.
3
C. 1
D.
34
意在考查学生空间想象能力和计算能
.三棱柱
AB 上一点M 满足CM xCA yCB =+, 则当
x y
+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3
4. 复数z=
的共轭复数在复平面上对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
5. 已知全集为R ,集合{}
|23A x x x =<->或,{}2,0,2,4B =-,则()
R A B =ð( )
A .{}2,0,2-
B .{}2,2,4-
C .{}2,0,3-
D .{}0,2,4
6. 复数i i
i
z (21+=
是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2
【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 7. 下列关系式中,正确的是( ) A .∅∈{0} B .0⊆{0}
C .0∈{0}
D .∅={0}
8. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3
|
|log x x y a =的图象大致是 ( )
【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 9. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )
A .(1)与(2)
B .(1)与(3)
C .(2)与(4)
D .(3)与(4)
10
.已知向量=(﹣1,3),=(x ,2),且,则x=( )
A .
B .
C .
D .
二、填空题
11.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .
12.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .
13.若函数63e ()()32e
x x b
f x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.
14.1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆
______________. 【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
15.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .
16.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤02x -y +2≥0x +y -2≤0
,z =3x +y +m 的最小值为1,则m =________.
三、解答题
17.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.
(1)求0x =,1y =,2z =的概率;
(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.
【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3
23
1312
f x x k x kx =-
+++,其中.k R ∈
(1)当3k =时,求函数()f x 在[]
0,5上的值域;
(2)若函数()f x 在[]
1,2上的最小值为3,求实数k 的取值范围.
19.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中
随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
20.选修4﹣5:不等式选讲
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.
(Ⅰ)求a的值;
(Ⅱ)若恒成立,求k的取值范围.
21.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.
(1)求证:AD =1
2
2b 2+2c 2-a 2;
(2)若A =120°,AD =192,sin B sin C =3
5,求△ABC 的面积.
22.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯
(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.
(3)为了研究心肺疾病是否与性别有关,请计算出统计量2
K ,判断心肺疾病与性别是否有关?
(参考公式:)
)()()(()(2
d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)
旬邑县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】D 【



2. 【答案】A 【解析】
试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图
【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 3. 【答案】D 【解析】
试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设B M k B A =,则,1x k y k =-=-,
可得1x y +=,当
14x y +取最小值时,()141445x y
x y x y x y y x
⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()
1
,CN 2
CM xCA yCB CA CB =+=
+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫
⋅=++⋅=+=+= ⎪⎝⎭
.故本题答案选D.
考点:1.向量的线性运算;2.基本不等式. 4. 【答案】C
【解析】解:∵复数z=
=
=
=﹣+i ,∴ =﹣﹣i ,
它在复平面上对应的点为(﹣,﹣),在第三象限, 故选C .
【点评】本题主要考查复数的基本概念,复数代数形式的乘除运算,复数与复平面内对应点之间的关系,属于基础题.
5. 【答案】A 【解析】
考点:1、集合的表示方法;2、集合的补集及交集. 6. 【答案】A 【解析】()12(i)
122(i)
i i z i i i +-+=
==--,所以虚部为-1,故选A. 7. 【答案】C
【解析】解:对于A ∅⊆{0},用“∈”不对,
对于B 和C ,元素0与集合{0}用“∈”连接,故C 正确; 对于D ,空集没有任何元素,{0}有一个元素,故不正确.
8. 【答案】C
【解析】由|
|)(x a x f =始终满足1)(≥x f 可知1>a .由函数3
|
|log x x y a =
是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0|
|log 3
<=
x
x y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 9. 【答案】B
【解析】解:∵直线l ⊥平面α,α∥β,∴l ⊥平面β,又∵直线m ⊂平面β,∴l ⊥m ,故(1)正确; ∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;
∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;
∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B .
【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.
10.【答案】C
【解析】解:∵,
∴3x+2=0,
解得x=﹣.
故选:C.
【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.
二、填空题
11.【答案】[,3].
【解析】解:直线AP的斜率K==3,
直线BP的斜率K′==
由图象可知,则直线l的斜率的取值范围是[,3],
故答案为:[,3],
【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.
12.【答案】1ln 2 【解析】 试题分析:
()()111ln 2ln 2
f x k f x ''=
∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 13.【答案】2016
【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得00
63e 032e b
a -=,整理,得2016a
b =.
14.1




15.【答案】 4+ .
【解析】解:作出正四棱柱的对角面如图,
∵底面边长为6,∴BC=,
球O 的半径为3,球O 1 的半径为1,
则,
在Rt △OMO 1中,OO 1=4,


=

∴正四棱柱容器的高的最小值为4+.
故答案为:4+

【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.
16.【答案】
【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1,
∴m =4.
答案:4 三、解答题
17.【答案】
【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2, 此时的概率213111324P C ⎛⎫=⨯⨯= ⎪⎝⎭. (4分)
18.【答案】(1)[]1,21;(2)2k ≥.
【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;
试题解析:(1)解:3k = 时,()32691f x x x x =-++ 则()()()23129313f x x x x x =-+=--'
令0f x '=得1,3x x ==列表
由上表知函数()f x 的值域为[]
1,21
(2)方法一:()()()()2331331f x x k x k x x k =-++=--' ①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增
所以()()()min 31113132f x f k k ==-
+++= 即53
k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+=
符合题意
③当12k <<时, 当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减
当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()322min 313132
f x f k k k k k ==-+++= 化简得:32340k k -+=
即()()2
120k k +-= 所以1k =-或2k =(舍)
注:也可令()3
234g k k k =-+ 则()()23632g k k k k k =='--
对()()1,2,0k g k ∀∈'≤
()3234g k k k =-+在()1,2k ∈单调递减
所以()02g k <<不符合题意 综上所述:实数k 取值范围为2k ≥
方法二:()()()()2331331f x x k x k x x k =-++=--'
①当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分
②当1k ≤时,[]
()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()min 23f x f <=不符合题意
③当12k <<时, 当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减
当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增
所以()()()min 23f x f k f =<=不符合题意 综上所述:实数k 取值范围为2k ≥
19.【答案】(1)3,2,1;(2)
710
. 【解析】111]
试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1
(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B
B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为
710
. 考点:1、分层抽样的应用;2、古典概型概率公式.
20.【答案】
【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax ≤2
∵不等式f (x )≤3的解集为{x|﹣2≤x ≤1}.
∴当a ≤0时,不合题意;
当a >0时,
, ∴a=2;
(Ⅱ)记,
∴h (x )=
∴|h (x )|≤1

恒成立,
∴k ≥1.
【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.
21.【答案】
【解析】解:
(1)证明:∵D 是BC 的中点,
∴BD =DC =a 2. 法一:在△ABD 与△ACD 中分别由余弦定理得c 2=AD 2
+a 24
-2AD · a 2cos ∠ADB ,① b 2=AD 2+a 24-2AD ·a 2·cos ∠ADC ,② ①+②得c 2+b 2=2AD 2+a 22, 即4AD 2=2b 2+2c 2-a 2,
∴AD =12
2b 2+2c 2-a 2. 法二:在△ABD 中,由余弦定理得
AD 2=c 2+a 24-2c ·a 2
cos B =c 2
+a 24-ac ·a 2+c 2-b 22ac =2b 2+2c 2-a 2
4
, ∴AD =12
2b 2+2c 2-a 2. (2)∵A =120°,AD =1219,sin B sin C =35

由余弦定理和正弦定理与(1)可得
a 2=
b 2+
c 2+bc ,①
2b 2+2c 2-a 2=19,②
b c =35
,③ 联立①②③解得b =3,c =5,a =7,
∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=1534
. 即△ABC 的面积为154
3. 22.【答案】
【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.。

相关文档
最新文档