四川省雅安市2024年数学(高考)统编版真题(自测卷)模拟试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省雅安市2024年数学(高考)统编版真题(自测卷)模拟试卷
一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)
第(1)题
某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
A.623B.328C.072D.457
第(2)题
已知,设,则所在的区间为()
A.B.C.D.
第(3)题
已知函数无最小值,则的取值范围是()
A.B.C.D.
第(4)题
已知函数是定义在上的偶函数,对任意实数.当时,.则的值为
()
A.0B.1C.D.
第(5)题
命题:“,”的否定是()
A.,B.,C.,D.,
第(6)题
设集合,则()
A.B.C.D.
第(7)题
二项式的展开式中,含项的系数是()
A.B.462C.792D.
第(8)题
有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为
A
.B.C.D.
二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)
第(1)题
已知中,角A,B,C所对的边分别为a,b,c,其中,,,,则()
A
.
B.的外接圆面积为
C .若,,则
D .若,,则
第(2)题
已知函数、定义域均为,且,为偶函数,若,则下面一定成立的是
()
A.B.
C.D.
第(3)题
已知圆C:,则()
A
.圆C与圆D:相交
B.直线与圆C可能相切
C.直线与圆C必相交
D.直线,各自被圆C所截得的弦长恰好相等
三、填空(本题包含3个小题,每小题5分,共15分。
请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题
如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数
为______________
第(2)题
为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为__________.
第(3)题
若函数的图象在内有且只有两条对称轴,则的取值范围是___________.
四、解答题(本题包含5小题,共77分。
解答下列各题时,应写出必要的文字说明、表达式和重要步骤。
只写出最后答案的不得分。
有数值计算的题,答案中必须明确写出数值和单位。
请将解答过程书写在答题纸相应位置) (共5题)
第(1)题
已知函数.
(1)求的单调增区间;
(2)中,角,,所对的边分别为,,,且为锐角,若,,,求的面积.
第(2)题
已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.
甲每天生产的次品数/
01234
件
对应的天数/天4020201010
乙每天生产的次品数/
0123
件
对应的天数/天30252520
(1)将甲每天生产的次品数记为(单位:件),日利润记为(单位:元),写出与的函数关系式;
(2)按这100天统计的数据,分别求甲、乙两名工人的平均日利润.
第(3)题
已知为数列的前项和,.
(1)求数列的通项公式.
(2)若,,求数列的前项和.
第(4)题
某网站计划4月份订购草莓在网络销售,每天的进货量相同,成本价为每盒15元.假设当天进货能全部售完,决定每晚七点前(含七点)售价为每盒20元,每晚七点后售价为每盒10元.根据销售经验,每天晚七点前的购买量与网站每天的浏览量(单位:万次)有关.为确定草莓的进货量,相关人员统计了前两年4月份(共60天)网站每天的浏览量(单位:万次)、晚七点前购买草莓的数量(单位:盒)以及达到该流量的天数,如下表所示:
每天的浏览量
每天晚七点前的
300900
购买量
天数3624
以每天的浏览量位于各区间的频率代替浏览量位于该区间的概率.
(1)求4月份草莓一天晚七点前的购买量(单位:盒)的分布;
(2)设4月份销售草莓一天的利润为(单位:元),一天的进货量为(单位:盒),为正整数且,当为多少
时,的期望达到最大值,并求此最大值.
第(5)题
如图,在三棱柱中,底面是边长为2的等边三角形,在菱形中,,,平面平面,,分别是线段、的中点.
(1)求证:平面;
(2)若点为线段上的动点(不包括端点),求锐二面角的余弦值的取值范围.。