新人教版八年级数学下册第十六章《二次根式(1)》学案
(完整版)新人教版八年级数学下册第16章二次根式教案

课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。
(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
八年级数学下册第十六章《二次根式》教案

做二次根式,“”称为二次根号。
例题:当x 是怎样的实数时,2+x在实数范围内有意义?解:要使2+x在实数范围有意义,必须x+2≥0,∴x≥-2.∴当x≥-2时,2+x在实数范围内有意义。
当x 是怎样的实数时,2x在实数范围内有意义?3x呢?三、课堂练习及巩固练习1 指出下列哪些是二次根式?(1)5;(2)3-;(3)321;(4)21+x;(5))2(2≥-aa;(6)ba-(a<b)。
练习2 二次根式和算术平方根有什么关系?(二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式)练习3 a 取何值时,下列根式有意义?(1)1+a;(2)112-a;(3)21-a().解:(1)由a+1≥0,得a≥-1;(2)由1-2a>0,得a<1 2;(3)由21-a()≥0,得a为任何实数.师活动、学生活动、设计意图、技术应用等)一、复习导入(1)什么是二次根式,它有哪些性质?(2)二次根式52x有意义,则x 。
当a>0 时,a表示a 的算术平方根,因此a>0;当a =0 时,a表示0的算术平方根,因此a=0;这就是说,a(a≥0)是一个非负数。
二、探究新知探究:根据算术平方根的意义填空,并说出得到结论的依据。
把上述计算结论推广到一般,并用字母表示:2=a a()(a≥0)思考:你能说说依据吗?例题:计算下列各式:215.();(2)225()探究:填空把得到的结论推广到一般,并用含字母的22224213= == =()()()()________二次根式表示:2=a a (a ≥0)思考:你能说说依据吗? 计算下列各式:(1)16 ;(2)25-()回顾我们学过的式子,如5,a,a+b,-ab,这些式子有哪些共同特征?(1)含有表示数的字母; (2)用基本运算符号连接数或表示数的字母。
用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来得到的式子叫代数式。
三、课堂练习及巩固练习1 计算(1)218() ;(2) 20();(3)2748();(4)235();(5)9;(6)24-();练习2 对于性质 ,逆向思考可得: , 请根据这一结论完成填空:(1)22=();(2)23=( ) 练习3 根据性质2=a a (a ≥0),可得255-=()你认为当a <0时,2=a ___,并说明理由:练习4 性质 和 有什么区别和联系?师活动、学生活动、设计意图、技术应用等)一、创设情境,导入新课现有一块长7.5 dm、宽5 dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8 dm2和18 dm2的正方形木板?能截出两块正方形木板的条件是什么?能用数学式子表示吗?818+能否进一步计算?这是一种什么运算?能,两个二次根式的加法运算。
新人教版八年级数学下册导学案(全册136页)

第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 是多少时,31x -在实数范围内有意义? 解:由 得: 。
当 时,31x -在实数范围内有意义.(3)注意:1、形如a (a ≥0)的式子叫做二次根式的概念;2、利用“a (a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x 是多少时,23x ++11x +在实数范围内有意义? 例4(1)已知y=2x -+2x -+5,求xy的值.(答案:2)(2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:25)三、巩固练习 教材练习. 四、课堂检测 (1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式? -7 37x x 4 16 8 1x(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________. (3)、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.若3x -+3x -有意义,则2x -=_______.3.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数4.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0). 学习目标:1、理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a<0时,a 有意义吗? (二)学生学习课本知识 (三)、探究新知1、a (a ≥0)是一个 数。
人教版八年级下册数学16.1二次根式(教案)

-二次根式的化简:学会化简二次根式,包括将复杂二次根式化简为最简二次根式,以及合并同类二次根式。
-二次根式的应用:了解二次根式在实际问题中的应用,如求解平面几何中的面积、长度等。
举例:重点强调√a(a≥0)的定义,以及如何将√(ab)和√(a/b)等复杂形式化简为最简二次根式。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对二次根式的概念和性质掌握得还算不错。通过引入日常生活中的例子,他们能够更好地理解二次根式的实际意义。在讲授过程中,我注意到有些学生对于二次根式的化简和混合运算感到有些困惑,这让我意识到这部分内容是教学的难点。
3.二次根式的化简:学会化简二次根式,掌握将复杂二次根式化简为最简二次根式的方法。
4.二次根式的乘除法运算:掌握二次根式的乘除法运算规则,能正确进行相关运算。
5.二次根式的加减法运算:学会二次根式的加减法运算,并能熟练运用运算规则进行混合运算。
6.二次根式的应用:了解二次根式在实际问题中的应用,如求解平面几何中的面积、长度等问题。
4.培养学生的数学建模素养:通过解决实际问题时运用二次根式,培养学生建立数学模型、运用数学知识解决现实问题的能力。
5.培养学生的几何直观素养:在学习二次根式的应用过程中,使学生能运用几何直观发现、理解并解决相关问题。
三、教学难点与重点
1.教学重点
-二次根式的概念:理解二次根式的定义,掌握其一般形式,这是学习后续内容的基础。
人教版八年级下册数学第十六章二次根式导学案

教师评价___
(4)x2-2 7 x +7
0 )2=_______.
2
(3) 若-3≤x≤2 时,试化简│x-2│+ (x 3)2 + x2 10x 25 9、先化简再求值:当 a=9 时,求 a+ 1 2a a2 的值
10、若│1995-a│+ a 2000 =a,求 a-19952 的值.
25
三、小结:1、二次根式的乘法法则。2、乘法的运算步骤。3、二次根式化简方法。
四、检测 1、下列各等式成立的是( ).A.4 5 ×2 5 =8 5 B.5 3 ×4 2 =20
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
最新人教版八年级数学下册 第十六章《二次根式》导学案(第1课时)

21.1 二次根式第1课时二次根式学前温故如果一个数的平方等于a(a≥0),那么这个数叫做a的平方根.一般地,正数有两个互为相反数的平方根,即a的平方根记作±a,其中正的平方根就是它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根.新课早知1.把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.2.下列判断正确的是().A.带根号的式子一定是二次根式B.式子8a+1一定是二次根式C.式子m2+1一定是二次根式D.二次根式的值必定是无理数答案:C3.在实数范围内,x有意义,则x的取值范围是().A.x≥0 B.x≤0C.x>0 D.x<0答案:A会判断一个根式是二次根式【例】判断下列各式中哪些是二次根式.(1)4;(2)-3;(3)6-x(x≤6);(4)312;(5)m2-2m+1;(6)-x2-8.分析:(2)中被开方数小于0,不是二次根式;(4)中根指数不是2,所以不是二次根式;(6)中-x2-8<0,被开方数小于0,所以不是二次根式;(3)中因为x≤6,所以6-x≥0,即被开方数非负,所以是二次根式;(5)中m2-2m+1=(m-1)2≥0,所以是二次根式.解:二次根式是:(1)(3)(5).点拨:判断一个式子是否是二次根式,从下面几个方面判断:(1)从表达形式上看,二次根式必须含有二次根号“”,且被开方数大于等于0.例如本题中的“4”符合这个形式,所以就是二次根式,不要认为4=2,那么4就不是二次根式了,2是4的计算结果.(2)二次根式的被开方数a既可以表示一个数,也可以表示一个代数式,因此只要保证被开方数是非负数,那么就是二次根式.像本题中的(3)(5).1.下列式子中,不是二次根式的是().A B C D答案:D2x的取值范围是().A.x≥-2 B.x≠-2 C.x≥2 D.x≠2答案:C3.已知一个正方形的面积是5,那么它的边长是().A.5 BC.15D.以上都不对答案:B4.下列函数中,自变量x的取值范围是x>2的函数是().A.y B.yC.y D.y答案:B5x的取值范围是__________.答案:x<56.已知y x+y的值.解:则需满足30, 30, xx-≥⎧⎨-≥⎩解得x=3.=0,即y=0. 故x+y=3.。
【人教版】初中数学八下数学第16章《二次根式》全章教学案(含解析)

第十六章二次根式1.理解二次根式的概念.2.理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).3.掌握·=(a≥0,b≥0),=·(a≥0,b≥0),=(a≥0,b>0),=(a≥0,b>0).4.了解最简二次根式的概念,并能灵活运用其对二次根式进行加减.1.通过先提出问题,让学生探讨、分析问题,师生共同归纳得出概念,再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.2.让学生用具体数据探究规律,采用不完全归纳法得出二次根式的乘(除)法法则,并运用法则进行计算.3.让学生利用逆向思维,得出二次根式的乘(除)法法则的逆向等式,并运用它们进行化简.4.通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,让学生对被开方数相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.1.培养学生利用二次根式的性质和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.2.经过探索二次根式的重要结论和二次根式的乘除法法则,发展学生观察、分析、发现问题的能力.二次根式是新课标中数与代数领域的重要内容,它是在前面平方根、立方根的基础上进行学习的,是对代数式及实数等内容的延伸与补充.同时,也是后继学习勾股定理、一元二次方程的求根公式及三角形的边角关系等内容的学习基础.因此,本章的相关知识对于整个初中阶段学习数与代数有着承前启后的重要意义.本章内容分为三节,第一节主要学习二次根式的概念和性质;第二节是二次根式的乘法和除法运算,主要研究二次根式的乘除法运算法则和二次根式的化简;第三节是二次根式的加法和减法运算,主要研究二次根式的加减法运算法则和二次根式的化简.【重点】1.对(a≥0)是一个非负数的理解和对()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式乘除法的法则及其运用.3.最简二次根式的概念.4.二次根式的加减运算.【难点】1.对(a≥0)是一个非负数的理解和对等式()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.1.通过前面的学习,我们已经知道了平方根、立方根的概念和求法,实数的有关概念和运算,对数的认识已经由有理数的范围扩大到实数范围,并对实数的运算性质和运算法则有了初步的感受.因此,本章应充分注意与已有经验的联系.同时,本章内容与整式也有着密切的联系.由于数式通性,当将二次根式中的实数看成字母时,二次根式的运算实际上就是整式的运算,所以整式的运算法则和公式在二次根式的运算中仍然适用.因此本章强调了与整式相关内容的联系.2.对于一些重要结论,要注意经历观察、思考、讨论等探究活动归纳得出结论的过程.例如,对于二次根式的乘法法则,首先利用二次根式的概念和性质进行具体的计算,并观察所得结果发现二次根式相乘与积的算术平方根之间的关系,并利用发现的规律进行计算,再归纳得出二次根式的乘法运算法则.这个过程实际上就是反映了一个由特殊到一般的认识过程.要通过这样的探究活动来发展我们的思维能力,有效改变学生的学习方式.3.熟练掌握二次根式的概念和运算需要一定的训练,可以适当增加练习,以便较好地理解二次根式的意义,较好地掌握二次根式的性质和运算,为后续学习打下良好的基础.16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时单元概括整合1课时16.1二次根式1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.第课时使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】了解二次根式的概念,理解二次根式有意义的条件.【难点】会求二次根式中字母的取值范围.【教师准备】教学所需的习题资料.【学生准备】复习平方根和立方根的有关知识.导入一:唐僧师徒在万寿山五庄观做客.猪八戒来到后花园,看见人参果树上结满了人参果,嘴馋得直流口水.正准备伸手摘时,突然一道金光,在同一个枝头上一大一小的两个果子同时掉了下来,噗的一声同时着地.有爱好数学的电视迷算了人参果下落的时间t与h之间的关系式为t=,你觉得他算的正确吗?要解决这个问题,我们得从二次根式说起.[设计意图]将数学问题融入到学生喜爱的神话故事中,激发学生学习的兴趣,拉近了数学与学生的距离,为探究本节课奠定了基础.导入二:1.教师出示复习题:(1)4的平方根是;0的平方根是;-16的平方根是.(2)5的平方根是;5的算术平方根是.学生口答:(1)4的平方根是±2;0的平方根是0;-16没有平方根.(2)5的平方根是±;5的算术平方根是.2.教师出示教材第2页“思考”题:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为.学生思考后回答,教师补充得出答案:(1),;(2);(3).[设计意图]以回顾练习和思考的形式引导学生回忆,巩固所学知识,并引入新课.1.二次根式的概念思路一[过渡语](针对导入二)让我们一起来看下面的问题:上面得到的式子,,,分别表示什么意义?它们有什么共同特征?教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.讨论:你能用一个式子表示一个非负数的算术平方根吗?学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.追问:在二次根式的概念中,为什么要强调“a≥0”?教师引导学生举出例子说明,经过讨论知道二次根式被开方数必须是非负数.[设计意图]让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性,再让学生体会由特殊到一般的过程,培养学生的概括能力,最后通过讨论二次根式中被开方数a≥0,进一步加深学生对二次根式被开方数必须是非负数的理解.思路二像,,,这样的式子有什么共同特点呢?学生观察,交流发现:一是从形式上看,都含有二次根号;二是被开方数的取值范围有限制:被开方数必须是非负数.教师进一步明确:形如(a≥0)的式子叫做二次根式.引导学生说一说对二次根式的认识:(1)表示a的算术平方根;(2)a可以是数,也可以是代数式;(3)从形式上看,含有二次根号;(4)a≥0,≥0. [设计意图]加深对二次根式的理解,进一步明确二次根式的非负性.2.例题讲解[过渡语]二次根式的定义怎样理解?让我们一起来学习几个例题.下列各式中,哪些是二次根式?并指出二次根式中的被开方数.,,,(x≥3),(y>-1),,,(xy>0).引导学生观察根指数和被开方数分析发现:显然不是二次根式(因为它的根指数是4,含有四次根号),其余式子都含有二次根号,关键看根号下的被开方数是否为非负数.若根号下是负数,则二次根式没有意义.解:,(x≥3),,(xy>0)是二次根式.其中被开方数依次是7,x-3,(x+1)2,.[解题策略]①当被开方数形式是含有字母的代数式时,可以把这个代数式看成一个整体.如的被开方数是x2+2015.②当被开方数形式比较复杂时,可以将这个被开方数适当化简.如,因为(-3)2-7=9-7=2,所以它的被开方数其实就是2.【变式训练】下列各式中,一定是二次根式的是()A. B.C. D.(其中a<0)〔解析〕的被开方数-9<0,的被开方数m-1可能是负数,的根指数是3,所以选项A,B,C中的式子都不是二次根式.含有二次根号,并且无论a取什么负数,被开方数a2+8都是正数,所以一定是二次根式.故选D.(教材例1)当x是怎样的实数时,在实数范围内有意义?引导学生从概念出发进行思考:二次根式的被开方数为非负数,则x-2≥0.解:由x-2≥0,得x≥2.当x≥2时,在实数范围内有意义.【变式训练】若式子1+有意义,则x的取值范围是.〔解析〕根据二次根式的性质可知:x+1≥0,即x≥-1;又因为分式的分母不能为0,所以x的取值范围是x≥-1且x≠0.故填x≥-1且x≠0.[易错分析]容易产生只考虑到x+1≥0,而忽略了x≠0的错误.[设计意图]通过变式训练,加深学生对二次根式被开方数为非负数的理解,提高学生对所学知识的迁移能力和应用意识.[知识拓展](1)二次根式的定义是从代数式的结果和形式上界定的,必须含有二次根号“”,如,都是二次根式,而就不是二次根式了.(2)在二次根式中,被开方数可以是具体的数,也可以是含有字母的单项式、多项式、分式等代数式.(3)形如b(a≥0)的式子也是二次根式,其表示的是b与的乘积,如3表示3×,-表示-×,但是不能写成3的形式.(4)当a≥0时,表示a的算术平方根.也就是说,有意义的条件是a≥0.(5)当a是非负数时,(其中a≥0)本身也是一个非负数.师生共同回顾本节课所学主要内容:知识要点关键点注意事项二次根式的概念形如≥0(a≥0)的式子叫做二次根式,其中被开方数是a被开方数也可以是含有字母的单项式、多项式、分式等二次根式有意义的条件被开方数必须是非负数求解二次根式中字母的取值范围,要注意根号下的式子整体不小于零1.已知下列各式:,(a≥2),,,其中二次根式的个数是()A.1个B.2个C.3个D.4个解析:的被开方数不是非负数,所以不是二次根式,其余3个都是二次根式.故选C.2.(2014·南通中考)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥-C.x>D.x≠解析:是二次根式,因此2x-1≥0,在分母上,因此≠0.则解得x>.故选C.3.当x=时,二次根式有最小值,其最小值是.解析:∵二次根式有意义,∴x+3≥0,即x+3的最小值是0,∴x+3=0,解得x=-3.答案:-304.求下列各式中字母a的取值范围:(1);(2);(3);(4).解:(1)由a+1≥0,得a≥-1.∴字母a的取值范围是大于或等于-1的实数.(2)由>0,得1-2a>0,即a<.∴字母a的取值范围是小于的实数.(3)因为无论a取何值,都有(a-3)2≥0,所以字母a的取值范围是全体实数.(4)因为无论a取何值,都有|a|+1>0,所以字母a的取值范围是全体实数.第1课时1.二次根式的概念2.例题讲解例1例2一、教材作业【必做题】教材第3页练习第1,2题;教材第5页习题16.1第1题.【选做题】教材第5页习题16.1第7题.二、课后作业【基础巩固】1.若是二次根式,则下列结论正确的是()A.x≥0,y≥0B.x>0,y>0C.x,y同号D.≥02.已知实数x,y,m满足+=0,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>-6D.m<-63.如果式子+有意义,那么在直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2015·遵义中考)使二次根式有意义的x的取值范围是.【能力提升】5.当x时,+在实数范围内有意义.6.(2015·攀枝花中考)若y=++2,则x y=.7.已知x,y为实数,且满足-(y-1)=0,求x2016-y2016的值.8.已知实数a满足+=a,求a-20142的值.【拓展探究】9.若x,y,n满足关系式+=·,试确定m的值.【答案与解析】1.D(解析:依题意得≥0,即≥0.故选D.)2.A(解析:根据题意,结合非负数的性质,得=0,=0,所以解得因为y是负数,所以6-m<0.解得m>6.故选A.)3.A(解析:根据二次根式有意义的条件,易得a>0,b>0.故选A.)4.x≥(解析:要使二次根式有意义,则需满足5x-2≥0,∴x≥.)5.≥-且x≠-1(解析:要使+在实数范围内有意义,必须同时满足的被开方数2x+3≥0和的分母x+1≠0,即由①得x≥-,由②得x≠-1.∴当x≥-且x≠-1时,+在实数范围内有意义.)6.9(解析:由题意得x-3≥0,3-x≥0,得x=3,故y=2,∴x y=9.)7.解:∵-(y-1)=0,∴+(1-y)=0.∴x+1=0,1-y=0.解得x=-1,y=1.∴x2016-y2016=(-1)2016-12016=1-1=0.8.解:由a-2015≥0,得a≥2015,故已知式子可化为a-2014+=a.∴=2014.两边平方并整理,得a-20142=2015.9.解:由等式的右边,根据二次根式有意义的条件得x-2013+y≥0且2013-x-y≥0,得x+y≥2013且x+y≤2013,所以x+y=2013.所以+=0.所以①-②,得x+2y=2.又x+y=2013,两式相加,得2x+3y=2015.所以m=2015.我们经常说过程比结果更重要.我对整节课的设计力求符合学生的认知特点,想方设法创设生动活泼的教学情境,使学生始终处在好奇、好学的高亢的学习情绪当中,同时,整节课努力做到先有框架,中有深化,后有突破.学生学有情趣,学有所获,并由衷感到:学习是快乐的事,学会了更是幸福的事.在教学中,我适当增加了有拓展性的练习,层层递进,想使不同的学生得到不同程度的发展和提高,但受到教材中练习题的局限,就当a是非负数时,本身也是一个非负数的练习没有落实到位.根据教学时间多少调整例题教学,适当增加对二次根式非负性的例题的讲解,注重变式练习,以加深对二次根式具有双重非负性的理解.练习(教材第3页)1.解:设长方形的长和宽分别为3a cm,2a cm.由题意,得3a·2a=18,∴a2=3,a=(舍去a=-),∴3a=3,2a=2.故长方形的长取3 cm,宽取2 cm.2.解:(1)当a-1≥0,即a≥1时,有意义.(2)当2a+3≥0,即a≥-时,有意义. (3)当-a≥0,即a≤0时,有意义.(4)当5-a≥0时,即a≤5时,有意义.若x,y为实数,且满足y=+-3,求x+2y的值.〔解析〕根据二次根式的被开方数不小于0,求得x,y的值,然后将其代入所求的代数式并计算.解:由二次根式有意义的条件得即x2-4=0,所以x=±2.当x=±2时,y=-3.①当x=2,y=-3时,x+2y=2+2×(-3)=-4;②当x=-2,y=-3时,x+2y=-2+2×(-3)=-8.所以x+2y的值是-4或-8.[解题策略]根据已知得出并得到x=±2是解决本题的关键.已知(3a-6)2+=0,求b a的值.〔解析〕根据非负数的性质:若两个非负数的和为0,则这两个非负数的值都为0,解出a,b的值,再代入原式中计算.解:因为(3a-6)2与都是非负数,且它们的和为0,所以3a-6=0,b-3=0,即a=2,b=3.此时b a=32=9.[解题策略]本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类问题.第课时1.理解()2=a(a≥0)和=a(a≥0),并利用它们进行计算和化简.2.用具体数据结合算术平方根的意义推出()2=a(a≥0)和探究=a(a≥0),会用这个结论解决具体问题.3.了解代数式的概念.在明确()2=a(a≥0)和=a(a≥0)的算理的过程中,感受数学的实用性.通过运用二次根式的性质化简的相关计算,解决一些实际问题,培养学生解决问题的能力.【重点】掌握二次根式的性质,并能将二次根式的性质运用于化简.【难点】能运用二次根式的性质化简.【教师准备】教学所需的习题资料.【学生准备】自学教材第3~4页的内容.导入一:教师出示问题:先化简再求值:当a=9时,求a+值,甲、乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=a+1-a=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,谁的解答是错误的呢?本节课,我们一起来学习二次根式的性质,然后就可以解决上面的问题了.[设计意图]以问题设疑,发挥问题导向作用,激发学生的求知欲,为本节课学习打下基础.导入二:1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?学生口答,老师点评.通过前面的学习,我们知道了二次根式具有双重非负性.今天我们主要学习一些二次根式的其他性质. [设计意图]复习旧知导入新知,让本节课自然过渡,为本节课学习奠定了基础.思路一1.二次根式的性质1:()2=a(a≥0)[过渡语]我们先来探究性质1:()2=a(a≥0).提问:你能解释下列式子的含义吗?()2,()2,,()2.学生口述,教师根据情况评价.()2表示4的算术平方根的平方;()2表示2的算术平方根的平方;表示的算术平方根的平方;()2表示0的算术平方根的平方.追问:根据算术平方根的意义填空,并说出得到结论的依据.()2=;()2=;=;()2=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.教师引导学生说出每一个式子的含义.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.是2的算术平方根,根据算术平方根的意义,是一个平方等于2的非负数,因此有()2=2.是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有=.表示0的算术平方根,因此有()2=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出二次根式的性质:一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).(教材例2)计算:(1)()2;(2)(2)2.学生独立完成,两名学生板演,再集体订正.〔解析〕(1)直接运用()2=a(a≥0)化简即可.(2)运用幂的性质(ab)2=a2b2.解:(1)()2=1.5.(2)(2)2=22×()2=4×5=20.[解题策略]把底数看成根号外因数与二次根式的积,按照积的乘方计算即可.【变式训练】计算:(-2)2.〔解析〕把原式的底数看成是-2与的积,先利用(mn)2=m2n2,再根据()2=a(a≥0)化简.解:(-2)2=(-2)2()2=4×3=12.[知识拓展]形如(x)2的关于二次根式的运算可结合(ab)2=a2b2得到(x)2=x2a.[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力,并通过例题和变式训练及时巩固二次根式的性质1,学会灵活运用.2.二次根式的性质2:=a(a≥0)[过渡语]我们再来探究一下性质2:=a(a≥0).提问:你能解释下列式子的含义吗?,,,.教师引导学生说出每一个式子的含义.表示2的平方的算术平方根;表示0.1的平方的算术平方根;表示的平方的算术平方根;表示0的平方的算术平方根.追问:根据算术平方根的意义填空,并说出得到结论的依据.=;=;=;=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.∵4=22,∴=2,因此=2;∵0.01=0.12,∴=0.1,因此=0.1;∵=,∴=,因此=;∵0=02,∴=0,因此=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出:一个非负数的平方的算术平方根等于这个数.即=a(a≥0).(教材例3)化简:(1);(2).引导学生根据=a(a≥0)进行分析:(1)因为16=42,所以=,再计算即可得出结果.(2)因为(-5)2=52,所以=.学生独立完成,集体订正.解:(1)==4.(2)==5.[知识拓展](1)中的a的取值范围可以是任意实数,即不论a取何值,一定有意义.(2)化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即=a(a≥0);若a是负数,则等于a的相反数-a,即=-a(a<0).小组讨论:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力,并通过例题练习及时巩固二次根式的性质2.思路二请同学们阅读和自学课本第3~4页的内容,并思考下面的问题:1.(1)填空:()2=;()2=;=;()2=;=;()2=.(2)猜想当a≥0时,()2=.2.(1)观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律.==;==;==;==;….通过观察,你得到的结论是什么?试着说一说.(2)发现:当a≥0时,=,当a<0时,=.学生用充足的时间学习后,交流学习情况,教师分析并讲解.1.(1)根据算术平方根与乘方运算的关系,得=2,所以()2=22=4;=4,所以()2=42=16;=,所以==.根据以上规律,可以得出()2=2;=;()2=0.(2)从第(1)问可以发现,一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).2.先计算==2;==2;==3;==3;….可以看出:一个正数的平方的算术平方根等于这个数,一个负数的平方的算术平方根等于这个数的相反数.于是当a≥0时,=a,当a<0时,=-a.归纳并板书:二次根式的性质:1.()2=a(a≥0);2.=a(a≥0).提问:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]在计算的基础上,引导学生观察、猜想、归纳得出二次根式的两个性质,并从式子的意义和结果进行比较,得出二者之间的关系.3.代数式提问:回顾我们学过的式子,如a+b,-ab,,-x3,,(a≥0),这些式子有哪些共同特征?学生概括式子的共同特征,得出代数式的概念.这些式子都是用基本运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.学生举出一些例子,并书写,教师针对学生书写出现问题的地方进行指导.[设计意图]学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.例题讲解(补充)计算:(-5)2,,-.〔解析〕利用()2=a(a≥0)和=a(a≥0)化简,注意被开方数的符号.解:(-5)2=(-5)2×()2=25×2=50.==.-=-=-.(补充)比较2与3的大小.〔解析〕直接比较这两个二次根式的大小不太容易,由于这两个二次根式平方后得到两个有理数,因此可以通过比较这两个二次根式平方的大小来比较它们的大小.解:∵(2)2=22×()2=44,(3)2=32×()2=45,又∵44<45,且2>0,3>0,∴2<3.师生共同回顾本节课所学主要内容:知识要点关键点注意事项()2=a(a≥0)任何非负数的算术平方根的平方,其结果仍然是它本身被开方数a是非负数=|a|= 任何实数的平方的算术平方根是它的绝对值底数a可以是任何实数代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式1.计算的结果是()A.-3B.3C.-9D.9解析:==3.故选B.2.下列各式:①m2-3;②(a>0);③a-1=6;④3x-5>0;⑤;⑥66.其中代数式的个数是()A.2个B.3个C.4个D.5个解析:③a-1=6是方程,不是代数式;④3x-5>0是一元一次不等式,也不是代数式;其余都是代数式.故选C.3.+的值是.解析:+=2+2=4.故填4.4.(1)当x时,=2-x成立;(2)计算=.解析:(1)当x-2≤0时,=2-x,所以x≤2;(2)因为3<π,所以3-π<0,因此=π-3.答案:(1)≤2(2)π-35.计算:(1);(2)(2)2;(3);(4)(-)2.解:(1)=0.9.(2)(2)2=22×()2=12.(3)=(-2)2×=2.(4)(-)2=(-1)2×()2=15.第2课时1.二次根式的性质1:()2=a(a≥0)例12.二次根式的性质2:=a(a≥0)例23.代数式4.例题讲解例3例4一、教材作业【必做题】教材第4页练习第1,2题;教材第5页习题16.1第2,3,4,5,6题.【选做题】教材第5页习题16.1第7,8,9,10题.二、课后作业【基础巩固】1.已知二次根式的值为3,那么x的值是()A.3B.9C.-3D.3或-32.若=1-2a,则()A.a<B.a≤C.a>D.a≥3.(2015·杭州中考)若k<<k+1(k是整数),则k等于()A.6B.7C.8D.94.实数a,b在数轴上的位置如图所示,则化简-|a+b|的结果为()A.2a+bB.-2a+bC.bD.2a-b【能力提升】5.若是一个正整数,则正整数m的最小值是.6.在实数范围内分解因式:(1)x2-3=;(2)n5-6n3+9n=.7.列出下列代数式:(1)面积为3的圆的半径;(2)面积为S且两条邻边之比为3∶5的长方形的长、宽.8.计算:(1);(2)(3)2;(3);(4)-;(5).9.先化简,再求值:-,其中x=6.【拓展探究】10.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解答是:+=+=+a-=a=.谁的解答是错误的?为什么?【答案与解析】1.D(解析:根据题意得x2=9,解得x=±3.故选D.)2.B(解析:由已知得2a-1≤0,解得a≤.故选B.)3.D(解析:本题主要考查了算术平方根的化简及算术平方根的估算,而<<,即9<<10,所以k=9.)4.C(解析:观察图可知a<0,b>0,且|a|>|b|,那么可知a+b<0,再结合二次根式、绝对值的性质进行化简计算.原式=-a-[-(a+b)]=-a+a+b=b.故选C.)5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数m的最小值为5.)6.(1)(x+)(x-)(2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)7.解:(1).(2)宽:3;长:5.8.解:(1)=.(2)(3)2=32×()2=18.(3)=(-2)2×=.(4)-=-=-3π.(5)==.9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.解:乙的解答是错误的.因为当a=时,=5,a-<0,所以≠a-,而应是=-a.本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.练习(教材第4页)1.解:(1)()2=3.(2)(3)2=32×()2=9×2=18.2.解:(1)=0.3.(2)=.(3)-=-π.(4)=10-1=.。
人教版八下数学16.1 课时1二次根式的概念教案+学案

人教版八年级下册数学第16章二次根式16.1 二次根式课时1 二次根式的概念教案【教学目标】1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题【教学重点】能理解二次根式的概念及有意义的条件.【教学难点】会利用二次根式的有意义的条件及其非负性解题.。
【教学过程设计】一、情境导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为________,面积为S的正方形的边长为________.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为________m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=______.问题2:上面得到的式子3,S,65,h5分别表示什么意义?它们有什么共同特征?二、合作探究探究点一:二次根式的定义例 1 下列各式中,哪些是二次根式,哪些不是二次根式?(1)11;(2)-5;(3)(-7)2;(4)313;(5)15-16;(6)3-x(x≤3);(7)-x(x≥0);(8)(a-1)2;(9)-x2-5;(10)(a -b )2(ab ≥0).解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.解:因为11,(-7)2,15-16=130,3-x (x ≤3),(a -1)2,(a -b )2(ab ≥0)中的根指数都是2,且被开方数为非负数,所以都是二次根式.313的根指数不是2,-5,-x (x ≥0),-x 2-5的被开方数小于0,所以不是二次根式.方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号“ ”;(2)被开方数是非负数.探究点二:二次根式有意义的条件【类型一】 根据二次根式有意义求字母的取值范围 例 2 求使下列式子有意义的x 的取值范围. (1)14-3x;(2)3-x x -2;(3)x +5x .解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解.解:(1)由题意得4-3x >0,解得x <43.当x <43时,14-3x有意义; (2)由题意得⎩⎨⎧3-x ≥0,x -2≠0,解得x ≤3且x ≠2.当x ≤3且x ≠2时,3-xx -2有意义;(3)由题意得⎩⎨⎧x +5≥0,x ≠0,解得x ≥-5且x ≠0.当x ≥-5且x ≠0时,x +5x 有意义.方法总结:含二次根式的式子有意义的条件:(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零.【类型二】 利用二次根式的非负性求解例 3 (1)已知a 、b 满足2a +8+|b -3|=0,解关于x 的方程(a +2)x +b 2=a -1;(2)已知x 、y 都是实数,且y =x -3+3-x +4,求y x 的平方根. 解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x 的值,进而求得y 的值,进而可求出y x 的平方根.解:(1)根据题意得⎩⎨⎧2a +8=0,b -3=0,解得⎩⎨⎧a =-4,b = 3.则(a +2)x +b 2=a -1,即-2x +3=-5,解得x =4;(2)根据题意得⎩⎨⎧x -3≥0,3-x ≥0,解得x =3.则y =4,故y x =43=64,±64=±8,∴y x的平方根为±8.方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0.探究点三:和二次根式有关的规律探究性问题 例 4 先观察下列等式,再回答下列问题. ①1+112+122=1+11-11+1=112;②1+122+132=1+12-12+1=116;③1+132+142=1+13-13+1=1112.(1)请你根据上面三个等式提供的信息,写出1+142+152的结果;(2)请你按照上面各等式反映的规律,试写出用 含n 的式子表示的等式(n 为正整数).解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子.解:(1)1+142+152=1+14-14+1=1120;(2)1+1n2+1(n+1)2=1+1n-1n+1=11n(n+1)(n为正整数).方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来.【板书设计】16.1 二次根式课时1 二次根式的概念1.二次根式的定义一般地,我们把形如a(a≥0)的式子叫做二次根式.2.二次根式有意义的条件被开方数(式)为非负数;a有意义⇔a≥0.【教学反思】通过将新知识与旧知识进行联系与对比,随后由学生熟悉的实际问题出发,用已有的知识进行探究,由此引入二次根式.在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣.人教版八年级下册数学第16章二次根式16.1 二次根式课时1 二次根式的概念学案【学习目标】1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题【学习重点】能理解二次根式的概念及有意义的条件.【学习难点】会利用二次根式的有意义的条件及其非负性解题.。
人教版八年级数学下册第十六章 导学案 第1课时 二次根式的乘法

第十六章 二次根式16.2 二次根式的乘除第1课时 二次根式的乘法学习目标:1.理解二次根式的乘法法则;2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算.重点:理解二次根式的乘法法则:()0,0≥≥=⋅b a ab b a .难点:会运用二次根式的乘法法则和积的算术平方根的性质解题.一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子2有意义的条件是_________.一、要点探究探究点1:二次根式的乘法算一算 计算下列各式,并观察三组式子的结果:_____;94____;_______94)1(=⨯=⨯=⨯ _____;2516____;_______2516)2(=⨯=⨯=⨯ ._____3625____;_______3625)3(=⨯=⨯=⨯思考 你发现了什么规律?你能用字母表示你所发现的规律吗?猜测)0,0______(≥≥=⋅b a b a ,你能证明这个猜测吗?要点归纳:二次根式的乘法法则:一般地,对于二次根式的乘法是)0,0(≥≥⋅=⋅b a b a b a一般地,二次根式相乘,_________不变,________相乘.语言表述:算术平方根的积等于各个被开方数积的算术平方根.例1计算:(1)(2)(3)0,k a b k a b ⋅⋅=⋅⋅⋅⋅≥≥(例2 计算: 37; 1(2)427-3.2⎛⎫⨯ ⎪⎝⎭n b =归纳总结:二次根式的乘法法则的推广:①多个二次根式相乘时此法则也适用,即000)k a b k a b k ⋅⋅=⋅⋅⋅⋅≥≥≥,,(②当二次根号外有因数(式)时,可以类比单项式乘单项式的法则计算,即根号外的因数(式)的积作为根号外的因数(式),被开方数(式)的积作为被开方数(式),即()00a n b mn a b =≥≥,例3 比较大小(一题多解):(2)--方法总结: 比较两个二次根式大小的方法:可转化为比较两个被开方数的大小,即将根号外的正数平方后移到根号内,计算出被开方数后,再比较被开方数的大小被开方数大的,其算术平方根也大.也可以采用平方法.1. ()A B .4C D .22.下面计算结果正确的是 ()A.=B. =C. =D.=3.=_________.探究点2:积的算术平方根的性质一般的()0,0≥≥=⋅b a ab b a ______0,0_a b 要点归纳:算术平方根的积等于各个被开方数积的算术平方根.例4 化简:(1(2()00a b ,≥≥ .1()()200x y ,()≥≥方法总结: 当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.例5 计算:1(⨯2()⨯ 3(⨯化简二次根式的步骤:1. 把被开方数分解因式(或因数) ;2. 把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3. 如果因式中有平方式(或平方数),应用关系式a2= | a | 把这个因式(或因数)开出来,将二次根式化简.1. 计算:2.,求出它的面积.a b a b0,0多个二次根式相乘时此法则也适用,即(0,⋅⋅⋅=⋅⋅⋅≥a b c n abc n a()=m a n b mn2.下列运算正确的是()A.=B532-=C(2)(4)8=-⨯-=D5315==⨯= 3.计算:(1)⨯______ ;(2)⨯_______ ;(3)_____.=4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):12()--8,12b,求250a,332b,求参考答案自主学习一、知识链接1.一般地,我们把形如)0a ≥的式子叫作二次根式.2. a ≥0 课堂探究一、要点探究证明:根据积的乘方法则,有222.ab =⋅= ∴b a ⋅就是 ab 的算术平方根.又∵ab 表示 ab 的算术平方根, )0,0(≥≥=⋅∴b a ab b a要点归纳:二次根式的乘法法则:一般地,二次根式相乘,根指数不变,被开方数相乘.例1: 解:(1)(2) 3.===探究点2:积的算术平方根的性质当堂检测。
最新人教版数学八年级下册第十六章---二次根式教案(全章)

第十六章—二次根式一、二次根式1.概念:一般的,形如√a(a≥0)的式子叫做二次根式。
二次根式应满足两个条件,即含有二次根号且被开方数大于或等于0.注意:二次根式√a的被开方数a可以是数,也可以是式子,单笔与满足a≥0。
2.性质:性质:2|a|.例题:1.当x是怎样的实数时,√x−2在实数范围内有意义?2.当a是怎样的实数时,下列各式在实数范围内有意义?(1)√a−1(2)√2a+3;(3)√−a(4)√5−a3.计算(1)(√)2(2)(2√)2(3)(4)2(4)(2)2(5)22(6)21.0(7)26(8)23二、二次根式的乘除1.二次根式的乘法(1)法则:√ab =√a.√b(a≥0, b≥0)注意:a,b可以是一个具体的数,也可以是含字母的代数式。
(2)拓展:二次根式的乘法法则可以推广到多个二次根式相乘,即√a.√b.√c =√abc(a≥0, b≥0,c≥0)。
(3)误区警示:二次根式相乘的结果要化简成最简的二次根式或整式。
(4)最简二次根式:A.定义:一般的,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式叫最简二次根式。
B.识别一个二次根式是否是最简二次根式,主要依据两点:○1被开方数中的因数是整数,因式是整式;○2被开方数中不含能开的尽方的因数或因式。
例题:1.计算.(1)3×5(2)√1×√(3)√×√73(4)√16×81(5)√4a2b3(6)√×√(7)√3×√12(8)√4×√6(9)√5×√6(10)√288 ×√172 (11)√3 ×√6 (12)18×21(13)25×51 (14)16×41 (15)18×91 2.化简.(1)√8 (2)√12 (3)√18(4)√20 (5)√24 (6)√28(7)√32 (8)√36 (9)√40(10)√42 (11)√44 (12)√(13)√48 (14)√50 (15)√90(16)√108 (17)√112 (18)√120(19)√(20)√ (21)√(22)√160 (23)√225 (24)√180(25)√200 (26)√144 (27)√2.二次根式的除法 (1)法则:b aba(a ≥0, b ≥0),相反√a b =√a √b (a ≥0, b ≥0)也成立。
新人教版八年级数学下册第十六章《二次根式的概念1》学案

新人教版八年级数学下册第十六章《二次根式的概念1》学案学习目标:理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目重点:形如a (a ≥0)的式子叫做二次根式的概念;难点:利用“a (a ≥0)”解决具体问题.学习过程 一、知识准备平方根的性质:正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。
思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为5的正方形的边长为 ;(2)要修建一个面积为3的圆形喷水池,它的半径为 m ;(3)一个位图从高处自由落下,落到地面所用的时间t (单位:s )与开始落下时的高度h(单位:m)满足关系h=t 2 如果用含有h 的式子表示t,则t= 。
(4)6的算术平方根的相反数为 ;(5)0的算术平方根为 。
(用表示)二、探究在上面的问题中,结果分别是 ,它们都表示一些正数的算术平方根。
一般地,我们把形如 ( )的式子叫做二次根式,“”称为(二次)根号.注:开平方时,被开方数a 的取值范围 (为什么?) 例1.当x 是多少时,2-x 在实数范围内有意义?例2、当x 是多少时,23x ++11x +在实数范围内有意义?例3若1a ++1b -=0,求a 2004+b2004的值.三、练习(1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、-2、1x y +、x y +(x ≥0,y•≥0)是二次根式的有: 不是二次根式的有: (2)当a 是怎样的实数时,下列各式在实数范围内有意义?32+a a -3 a 5a - 2a 12+a四、课堂小结二次根式的概念需注意:五、课后作业1、形如________ 的式子叫做二次根式.2、若3x -+3x -有意义,则x =_______.3、下列式子中,是二次根式的是( )A .-7B .37C .xD .x 4、已知一个正方形的面积是5,那么它的边长是( ) A .5 B .5 C .15D .以上皆不对 5、当x 是多少时,23x x+在实数范围内有意义?6、已知a 、b 为实数,且满足021=-++b a ,求b a的值.六、课后反思二次根式的性质(第2课时) 学生姓名:教学目标1、理解a (a ≥0)是一个非负数2、理解二次根式的两个性质(a )2=a (a ≥0)和2a =a (a ≥0)。
人教版八年级下册数学第十六章二次根式导学案

《16.1二次根式》导学案小组名称____ 学生姓名:小组评价: ____ 教师评价—学习目标1 、理解和掌握二次根式的性质,正确区分(、a ) 123 4=a(a> 0)与.a2= a (a> 0)2、利用(a )2=a (a>0)与1 a2= a (a > 0)进行计算和化简.重点、难点:二次根式的性质。
一、自主学习1. 什么叫二次根式?2 .当a > 0时,,a叫什么,a叫什么?当a<0时,a有意义吗?3、计算;(、,4 )2= _____ ;(、9 )2= _____ ;, -9 = ______ C, 0 )2= ________.__ 22(后)= ___________ .( a > 0)3计算(1)教材第四页第一题、第五页二题(4计算(-.3 )2(3、.5 )2(」)24二、探究新知5、在实数范围内分解下列因式7、猜一猜:.a 2 = 8、计算:(1)教材4页第二题、5页第二题 (2)当x>2,化简 (x-2)2 - ..(1-2x)2(3) 若-3 w x w 2 时,试化简 I x-2 | +、.(x 3)2 +、x 2 -10x 254、猜一猜:) 2= ____________ ; ( J 3 ) 2= (3、5)2 -(5'、3)2 (2、、3 3 ..2)(2、、3 -3 辽)4、拓展(.厂7 ) 2(x >0)(.a 2 2a 1)(:4x 2 -12x 9 ) 22(1) x-34(2) x-46、计算:JF= ____ ; Jo.0122(4) x-27 x +71)至(4);、了 =9、先化简再求值:当 a=9时,求a+ “ _2a a 2的值10、若 11995-a | +、a -2000 =a ,求 a-19952的值.三、小结: (1)通过这节课的学习,你学到了哪些知识?(2) ( a )2与a 2相同吗?为什么?四、当堂检测:、选择题 1 •下列各式中,15、.. 3a 、乙 b 2-1、•一 a 2 b 2、二 m 2 20、. —144,3、当a >0时,.a 2、•,(-a)2、- -、a 2,比较它们的结果,下面四个选项中正确的是 ().、填空题1 .(-庇)2= ___________ .-寸0.0004 = ________2•若J20m 是一个正整数,则正整数m 的最小值是 ________3 .已知...x - y • 1 + ••. x - 3 =0,求 x y的值.C.a 2 v . (「a )2 <-、a 2 .a 2 > . (-a )2 >-、a 2-.a 2 > a 2 = .. (「a )2 次根式的个数是( )..1 ().《16.2二次根式的乘除》导学案(1)小组名称 _____ 学生姓名: 小组评价: _____ 教师评价 —理解 Ta • J b = >/ab (a > 0, b >0), T ab = Ja • J b (a >0, b > 0),并利用它们 进行计算和化简2、经历探索二次根式乘法法则的过程,发展观察、猜测、验证等能力。
人教版八年级数学下册第十六章二次根式教案全

人教版八年级数学下册教案16.1二次根式(第1课时)16.1 二次根式(第2课时)偿提高化简23x+x的结果是()A、-4xB、4xC、-2xD、2x3.已知实数x,y满足x y-++=540,求代数式的值.问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.小结本节课你学到了什么知识?你有什么认识?学生自己说出本节课的收获作业设计作业:教材P5习题21.1复习巩固2题 (3)、(4)3题 (1)、(2).教师布置作业,并提出要求.学生课下独立完成,延续课堂.16.2 二次根式的乘除(第1课时)教学目标知识技能1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算;2.会进行简单的二次根式的乘法运算.过程方法让学生进一步了解数学知识之间是相互联系的.情感态度培养学生用分类讨论的思想分析生活中出现的不同事物.重点abba=⋅(a≥0,b≥0),baab⋅=(a≥0,b≥0)及它们的运用.难点二次根式的乘法与积的算术平方根的关系及应用.环节教学问题设计教学活动设计情境引入计算下列各式,观察计算结果,你发现什么规律(1)259⨯=,259⨯=(2) 436⨯= , 436⨯=(3)16×25=____,1625⨯=___;教师出示问题,引导学生观察运算结果,发现和总结式子有什么规律?学生计算,观察,分小组讨论.全班交流,体会结果特点.自主探究【问题1】1.参考上面的结果,用“>、<或=”填空.4×9_____49⨯,100×36________10036⨯16×25__ 1625⨯学生通过计算,能对于公式有些感性上的认识,并且能举一些类似的式子.学生先完成填空,对于公式的推导有更深一步的认识,再通过观察,分析,合作交流,得出公式.二次根式的除法是建立在二次根式的基础上的,所以在学习中侧重于引导学生利用与乘法相类似的方法去学习,从而进一步降低学习的难度,提高学习的效率,但在教与学中,可以明显感受到学生对分母有理化概念在运用中的不灵活性,这也是应在今后的复习中给予加强的16.1 二次根式(第2课时)直角坐标系中A(3,2)、B(6,2)、C(3,5)是三角形的三个顶点,求:BC的长.成果展示引导学生对上面的问题进行展示交流引导学生自己出一组题,小组内做.学习小组内互相交流,讨论,展示.补偿提高1.计算:(18)2 (23)2(94)2(0)2(-478)222(35)(53)-2.若数轴上表示数x的点在原点的左边,则化简23x+x的结果是()A、-4xB、4xC、-2xD、2x3.已知实数x,y满足x y-++=540,求代数式的值.教师出示题目.第1题、第2题由学生独立完成. 教师巡视,个别辅导.请学生板练.师生共同评析.存在的共性问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.小结本节课你学到了什么知识?你有什么认识?学生自己说出本节课的收获作业设计作业:教材P5习题21.1复习巩固2题 (3)、(4)3题 (1)、(2).教师布置作业,并提出要求.学生课下独立完成,延续课堂.16.3 二次根式的加减(第1课时)教学目标知识技能能够正确进行简单的二次根式加减法的运算.过程方法1.通过整式加减法运算与二次根式加减法运算体会类比思想.2.通过二次根式加减法运算培养学生运算能力.情感态度通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.4.计算:(1)212+348 ; (2)(48+20)+(12-5)5.例题3.如图21.3.1-1要焊接如图所示的钢架,大约需要多少米钢材(结果保留小数点后两位)?图21.3.1-1 分析:先利用勾股定理求出AB 的长度,再求出BC 的长度,然后相加:AB =5216422=+,BC =51422=+ AB+BC+AC+BD =)(71.13753m ≈+教师巡视及时补教.小组讨论分析,养成良好的分析问题,解决问题的能力和习惯. 成果 展示通过今天的学习你有何收获?1二次根式加减法的运算方法和步骤是什么?2.二次根式加减法应注意先化简成最简二次根式,以及运算的准确性.3.在学习过程中运用了类比的学习方法.学习小组内互相交流,讨论,展示.补 偿 提 高1.以下二次根式:①12;②22;③23;④27中,与3是同类二次根式的是( ). A .①和② B .②和③ C .①和④ D .③和④2.计算5a -3b -7a +9b =________.3. 计算:(1)()279818-+(2)()⎪⎪⎭⎫⎝⎛--+6815.024.练习2:教材第16页练习教师出示题目. 第(1)题、第(2)题由学生独立完成. 教师巡视,个别辅导.请几位学生板练.师生共同评析.存在的共性问题共同讨论解决.第(3)题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内. 作 业 设 计 教材第12页.习题21.2复习巩固 2题,3题 (3)、(4) 综合运用 4题 (2),6题 (3)、(4)教师布置作业,分层要求. 学生按要求独立完成作业完成.16.3 二次根式的加减(第2课时)。
八年级数学下册第16章二次根式第1课时二次根式的定义学案新人教版

第1课时 二次根式的定义学习目标: 了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用学法指导:小组合作交流 一对一检查过关导: 看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式? ⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a ⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x -21⑶13-+-x x ⑷2x ⑸3x (6)()01-a (1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0.已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值 2.已知053232=--+--y x y x 则y x 8-的值为练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=y x4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-25.若式子ab a 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑评:1. 组内互助,解决质疑并进行小组评价。
人教版数学八年级下册16.1《二次根式(1)》导学案

16.1二次根式〔1〕 学案学习目标:1.了解二次根式的意义;2.会判断二次根式,能求简单的二次根式中字母的取值范围。
学习重点:二次根式的概念及意义。
学习难点:二次根式的判断与字母取值范围确实定。
学习过程:一、温故互查1.什么叫平方根?2.什么叫算数平方根?3.〔算数〕平方根的性质平方根式是二、设问导读 感受新知阅读课本,完成以下问题在课本思考框的问题中,结果分别是 ,结果都分别是表示65,S ,2,5h 的 . 我们知道:一个正数有两个平方根,它们 ;0的平方根是 ;在实数范围内, 数没有平方根。
因此,开平方时,被开方数只能是 .【归纳】一般地,我们把形如〔a≥0〕的式子叫做 ,“〞称为 .【注意】二次根式应满足两个条件:1.形式..上必须是a 的形式; .三、自我检测例1.当x 是怎样的实数时,2 x 在实数范围内有意义?例2.当a<0时,a 有意义吗?【归纳】a 的双重非负性:1. a≥0 ; 2.四、稳固训练1.、1x x>0〕、、、1x y+〔x≥0,y ≥0〕.2.当x 是多少时,x 35-在实数范围内有意义?【课本练习】 1、2五、拓展提升1.当x 是怎样的实数时,以下各式在实数范围内有意义?〔1〕48-+x x 〔2〕2x 〔3〕3x2.〔1〕,求x y的值.〔2=0,求a 2021+b 2021的值.六、小结评价1.请你说说对二次根式的认识?〔口述给组长〕2.小组对你这节课表现进展评价:〔较好;好;一般;差;较差〕组长:。
新人教版八年级下册数学第十六章二次根式导学案

第十六章二次根式学习目标:1、理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习重点:形如a(a≥0)的式子叫做二次根式的概念。
学习难点:利用“a(a≥0)”解决具体问题。
学习内容:一、创设情境独立思考(课前20分钟)1、阅读课本P 2~3 页,思考下列问题:(1)理解二次根式的概念(2)找出二次根式有意义的条件(3)二次根式的双重非负性是什么?2、独立思考后我还有以下疑惑:(课前写在小黑板上)二、答疑解惑我最棒(约8分钟)(同伴互助答疑解惑)甲:乙:丙:丁:三、合作学习探索新知(约15分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题(1)一个长方形长和宽分别为13cm和 5cm,则与它面积相等的正方形边长为_____cm。
(2)若正方形的面积3,则正方形的边长是______(3)圆形的面积为2 ,则半径为 _______.(4)h=5t 2,则t=_______(5)你认为所得的各式有哪些共同点?(6)什么叫做平方根?如何表示? 答:一般地,若一个数的平方等于a ,则这个数就叫做a 的平方根。
根据定义可知a 的平方根是 ±a ≥0 (7)什么叫做一个数的算术平方根?如何表示?答: 表示为: (a ≥0) (8)形如 (a ≥0) 的式子叫做二次根式. (9)定义包含三个内容:Ⅰ必需含有二次根号 “ ”. 四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:(1)二次根式的概念形如 的式子叫做二次根式.(2)二次根式有意义的条件(3)二次根式的性质:2、运用新知解决问题:(重点例习题的强化训练)例1.下列式子中,是二次根式的有 _______(填序号)(1)32 (2)6 (3)12- (4)m -(m >0)(5)xy (6)12+a (7) 35例2.当x 是怎样的实数时,下列式子在实数范围内有意义?※二次根式中字母的取值范围的基本依据:65235h aaa1)5(31)4(31)3(238)2(2)1(2+--+---x x x x x x x(1)开方数不小于零;(2)分母中有字母时,要保证分母不为零。
人教版八年级下册数学第十六章《二次根式》教案

16.1 二次根式(1)教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。
重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。
教学过程:例1.(1)当x 是怎样的实数时,2-x 在实数范围内有意义?(2)当x 是怎样的实数时,2x 在实数范围内有意义? (3)当x 是怎样的实数时,3x 在实数范围内有意义? 归纳总结:n x :当n 为奇数时,x ≥0时nx 有意义当n 为偶数时,x 为任意实数时n x 都有意义1. 求下列二次根式中字母k 的取值范围:(1 (2 (3 (42. 当x 分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围: (1)4-x (2)12+x (3)25+x (4)xx -42附加题:(5)22x x - (6)42-x (7)42+-x x 教学目的:1、理解二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)2a =a (a ≥0)2、会运用其进行相关计算。
重点:会运用a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)进行相关运算。
难点:理解a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)。
教学过程:阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。
公式1 : 公式2 : 例1计算:(1)(5.1)2 (2)(52)2练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2 例2化简:(1)16 (2)2)5(-16.1 二次根式(2)教学目的:复习二次根式的概念、二次根式的基本性质a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0),能熟练运用其进行相关计算。
新人教版八年级数学下册第16章二次根式教案

人教版《二次根式》第 1 课时《二次根式》第 2 课时《二次根式》第 3 课时(3)2a>a ,则a 可以是什么数?(1)分析;(2)板演例4当x>2,化简2(2)x --2(12)x -听讲理解课堂练习1、 教材P 7练习2.2、 当a 为实数时,下列各式中哪些是二次根式?3、当时,,当时,4. 例5. 化简().根据性质作答小 结 1、本节课有何收获?2、本节课要掌握:二次根式的两个性质 ①a (a ≥0)是一个非负数;②(a )2=a (a ≥0);反之:a=(a )2(a ≥0).理解记忆; 谈收获或疑惑。
作 业 习题1(1)(2)板书设计课题:二次根式1性质二次根式1性质 1、a (a ≥0)是一个非负数. 例1、2.…… 例3.……例4 .…… 2、a )2=a (a ≥0).3.2a =∣a ∣;公式逆用:a=(a )2(a ≥0).练习2 练习3《二次根式》第 4 课时3.利用计算器计算填空:(1)2×3___6,(2)2×5___10,⑶5×6___30,⑷4×5___20⑸7×10___70.探索归纳1、上面1、2的计算有上面规律?后老师点评:(1)被开方数都是正数;(2)两个二次根式的相乘等于一个二次根式并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.2、归纳得出:a ·b =ab (a ≥0,b ≥0)反过来:ab =a ·b1.上台总结规律. 2、讨论分析、归纳结论活动内容 教师活动学生活动 备注 分析应用例1.计算5×7;13×9;9×27;12×6;例2化简:916⨯;1681⨯;⑶81100⨯⑷229x y ;⑸54直接利用2a =a 的结论解题课堂练习1.计算①16×8②36×210③5a ·15ay 2.化简: 20; 18;24; 54; 2212a b3. 计算24812⨯⨯=___;224024-=_______.直接利用上面的结论应用拓展例3.判断下列各式是否正确,不正确的请予以改正: ⑴(4)(9)49-⨯-=-⨯-;⑵12425×25=4×1225×25=41225×25=412=83。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【 归纳规律知识提升】 1、 一般地,我们把形如 叫做二次根式 2、
(1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?
例 3 a 取何值时,下列根式有意义? 2 ( 2) 1 ; (3 ) a (a≥0)的式子 (1) a+1 ; (a-1 ) 1- 2a
h 分别表示3,S,65, 5
a 中的 a≥0; a ≥0,双重 非负性
四总结 回顾,评价反思(分钟) (评价)
我们以前学习过的整式、分式都能像数一样进行 运算,你认为对于二次根式应该进一步研究哪些问 题? 作业:教科书第 5 页第 1,3,5,6,7,10 题.
的算术平方根.
这些式子的共 同特征是: 【 类型题】 都表示一个非负数(包括字母或式子表示 的非负数)的算术平方根. 在 a , a 2 , 4 , x 2 ,3 2 , x 2 1 中, (3)根据你的理解,请写出二次根式的定义. 一定是二 次根式的有: 。
h S, 65 , 把形如 3 , 用来表示一个 5 非负数的算术平方根的式子,叫做二次根式.
3、 二次根式都是非负数的算术平方根,带有根 号的算术平方根是二次根式.
二次根式: 一般地,我们把形如 a (a≥0)的式子叫做二次 根式, ¡称为二次根号.
注 :按照健康课堂相应课型流程编写。
新人教版八年级数学下册第十六章《二次根式(1)》学案
教学流程 一创设情景,引入新课(分钟) (应用)
提问: (1) 、 3 的算术平方根是多少? (2) 、面积 为 a 的正方形的边长是多少? (3) 、直角三角形的两直角边是 1 和 2,则斜边 是多少? 大家很容易知道答案分别是 3 、 a 和 5 ,像 这样的式子就是我们本章要学习的二次根式。今天我 们先来认识一下什么是二次根式。 情感态度价值观:培养学生解决实际问题的能力 【重点】 1、从算术平方根的意义出发理解二次根式的概念
义?
【教学目标】 知识与能力: 根据算术平方根的意义了解二次根式的概念; 知 道被开方数必须是非负数的理由 过程与方法: 能用二次根式表示实际问题中的数量和数量关 系
【 易错题】 若 2 m 为二次根式,则 m 的取值为(
[来源 :]
教学流程
) 三巩固深化,拓展应用(分钟) (探究)
A.m≤2 C.m≥2
B.m<2 D.m>2
例 1 当 x 是怎样的实数时, 数范围内有意义?
[来源:学_科_网 Z_X_X_K]
x+ 2
在实
解:要使
x+ 2 在实数范围有意义, 必须 x+2≥0, ∴ x≥-2.
x+ 2
在实数范围内有意义.
[来源:学科网]
∴
当x≥-2时,
例2 x3
当x 是怎样的实数时, x 呢?
2
在实数范围内有意
二Байду номын сангаас主探究,合作交流(分钟) (理解)
上面问题中,得到的结果分别是: 3, S , 65 ,
[来源:学§科§网]
h . 5
【难点】 1、从算术平方根的意义出发理解二次根式的概念 【 知识点】 1、 二次根式 2、 二 次根式的意义 3、 二次根式的取值范围 4、 二次根式与算数平方根的关系