苏科版七年级上册数学 有理数检测题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学有理数解答题压轴题精选(难)
1.结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.
(2)如果|x+1|=3,那么x=________;
(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.
(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.
【答案】(1)3;5
(2)2或-4
(3)8
(4)6
【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:
或
或
故答案为:或(3)
或或
当时,则两点间的最大距离是,
当a=5,b=-1时,A、B两点间的距离是6,
当a=1,b=-3时,A、B两点间的距离是4,
当时,则两点间的最小距离是,
则两点间的最大距离是,最小距离是
故答案为:(4)数轴上表示a的点位于-4与2之间,则
故答案为:
【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;
(2)根据绝对值的意义去绝对值的符号,再解方程即可;
(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;
(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.
2.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
(1)点A表示的数为________,点B表示的数为________,线段AB的长为________。
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________。
(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?
【答案】(1)30;﹣6;36
(2)6或﹣42
(3)解:①当点Q未出发,P、Q两点相距4个单位长度,
此时t×1=4,所以t=4;
②点P用了6秒移动到O点时,点Q才从B点出发。
当点Q在点P后面,P、Q两点相距4个单位长度,此时3(t﹣6)= t﹣4,所以t=7;
③点P用了6秒移动到O点时,点Q才从B点出发。
当点Q在点P前面,P、Q两点相距4个单位长度,此时3(t﹣6)= t+4,所以t=11;
所以t=4或t=7或t=11。
【解析】【分析】(1)根据非负数的性质求出a、b表示的数,然后将点A和点B表示在数轴上,容易求出线段AB的长;
(2)分两种情况讨论:①若点C在线段AB上,则点C为线段AB的三等分点,此时
BC=AB=12,易得点C在数轴上表示的数为6;②若点C在线段AB的延长线上,则点B 为线段AC的中点,此时BC=AB=36,易得点C在数轴上表示的数为-42.
(3)先求出t秒后点P、Q所对应的数分别是t、3(t-3),然后分三种情况分别列出方程解出t的值即可:①当点Q未出发(0<t≤6)时,P、Q之间的距离即为点P移动的距离;②点p用了6秒移动到O点(t>6)时,点Q才开始从B点出发。
当点Q在点P的后面时,点Q表示的数比点P表示的数小4;③点P用了6秒移动到O点(t>6)时,点Q才开始从B点出发。
当点Q在点P的前面时,点Q表示的数比点P表示的数大4。
3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:
(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;
(2)若|x-2|=4,求x的值;
(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.
【答案】(1)解:|4-(-2)|=6
(2)解:x与2的距离是4,在数轴上可以找到x=-2或6
(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;
当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5
【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.
4.如图,数轴的单位长度为1.
(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;
(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;
(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?
【答案】(1)-4;2
(2)解:存在,如图:
当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)
解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10
(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.
②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.
答:点P表示的数为﹣18或﹣4.
【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,
故答案为:﹣4,2;
【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;
(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;
(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。
5.已知数轴上A,B两点对应数分别为-2和5,P为数轴上一点,对应数为x.
(1)若P为线段AB的三等分点(把一条线段平均分成相等的三部分的两个点),求P点对应的数.
(2)数轴上是否存在点P,使P点到A点,B点距离和为10?若存在,求出x值;若不存在,请说明理由.
(3)若点A,点B和点P(P点在原点)同时向左运动,它们的速度分别为1,6,3个长度单位/分,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?【答案】(1)解:因数轴上A、B两点对应的数分别是﹣2和5,所以AB=7,又因P为线
段AB的三等分点,所以 AP=7÷3= 或AP=7÷3×2= ,所以P点对应的数为或
(2)解:若P在A点左侧,则﹣2﹣x+5﹣x=10,解得:x=﹣;
若P在A点、B中间.
∵AB=7,∴不存在这样的点P;
若P在B点右侧,则x﹣5+x+2=10,解得:x=
(3)解:设第x分钟时,点A的位置为:﹣2﹣x,点B的位置为:5﹣6x,点P的位置为:﹣3x,①当P为AB的中点,则
5﹣6x+(﹣2﹣x)=2×(﹣3x),解得:x=3;
②当A为BP中点时,则
2×(﹣2﹣x)=5﹣6x﹣3x,解得:x= ;
③当B为AP中点时,则
2×(5﹣6x)=﹣2﹣x﹣3x,解得:x= .
答:第分钟时,A为BP的中点;第分钟时,B为AP的中点;第3分钟时,P为AB的中点.
【解析】【分析】(1)根据两点间的距离公式得出AB=7,又因P为线段AB的三等分
点,所以 AP 或,进而再根据数轴上两点间的距离公式即可求出点P所表示的数;(2)分类讨论:若P在A点左侧,根据两点间的距离公式由PA+PB=10列出方程,求解算出x的值;若P在A点、B中间,由于PA+PB=AB=7,故不存在这样的点P;若P在B点右侧,根据两点间的距离公式由PA+PB=10列出方程,求解算出x的值,综上所述即可得出答案;
(3)设第x分钟时,点A的位置为:﹣2﹣x,点B的位置为:5﹣6x,点P的位置为:﹣3x ,然后分类讨论:①当P为AB的中点,②当A为BP中点时,③当B为AP中点时三种情况根据线段的中点性质列出方程,求解即可。
6.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.
比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…
(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;
(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值________;
②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).
【答案】(1)50;5
(2)10或;-45.
【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,
∴AC=30-(-20)=50;
∵CD=AD
∴点D为AC的中点
∴D所表示的数为 =5,
故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,
AB=|-20+2t-(1+t)|=|-21+t|,
BC=|30-3t-(1+t)|=|29-4t|,
∵AB=BC
∴|-21+t|=|29-4t|,
-21+t=29-4t,
解得t=10,
-21+t=4t-29
解得t= .
∴当AB=BC时,t=10或.
②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,
AB=1+t-(-20-2t)=21+3t,
BC=30+3t-(1+t)=29+2t,
∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,
∵2AB-m×BC的值不随时间t的变化而改变,
∴6t-2mt=0,
∴m=3,
∴42+6t-29m-2mt=-45,
∴2AB-m×BC=-45.
故答案为-45.
【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.
7.如图,点A、B、C在数轴上表示的数分别是-3、1、5。
动点P、Q同时出发,动点P从点A出发,以每秒4个单位的速度沿A→B→A匀速运动回到点A停止运动.动点Q从点C 出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t(s)。
(1)当点P到达点B时,点Q表示的数为________。
(2)当t=1时,求点P、Q之间的距离。
(3)当点P在A→B上运动时,用含t的代数式表示点P、Q之间的距离。
(4)当点P、Q到点C的距离相等时,直接写出t的值。
【答案】(1)3
(2)解:当t=1时,AP=4,CQ=1,PQ=1
所以点P、Q之间的距离是1
(3)解:点P在A→B上运动,且相遇时,4t=4+t,t= ,
当0≤1≤ 时,PQ=4-3t
当<1≤2时,PQ=3t-4
(4)解:t= ,t= ,t= ,t=4
【解析】【分析】先表示出运动t(s)点P经过的路程为4t,点Q经过的路程为t;P到达点B和终点A所用的时间分别为2(s)、4(s),点Q到达点B所用的时间为4(s)。
(1)P到达点B用2(s),此时CQ=2,故可求;
(2)当t=1时,求出线段AP、CQ,故可求PQ;
(3)先由AP=AC+CQ求出点P、Q相遇时的时间,然后分0≤t≤和≤t≤2两种情况求解即可;
(4)利用PC=PQ列出方程求解即可。
8.观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB= .根据以上信息回答下列问题:已知多项式的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B表示数b.设点M在数轴上对应的数为 .
(1)A,B两点之间的距离是________.
(2)若满足AM = BM,则 ________.
(3)若A,M两点之间的距离为3,则B,M两点之间的距离是________.
(4)若满足AM + BM =12,则 ________.
(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数 ________.
【答案】(1)8
(2)2
(3)5或11
(4)-4或8
(5)-1012
【解析】【分析】(1)先根据多项式的次数的定义求出b,进而利用3a与b互为相反数的关系求出a,然后根据数轴上两点间的距离公式列式计算即可;
(2)利用两点之间的距离公式分别列出表示线段AM和BM的代数式,然后根据AM=BM 建立方程求解即可;
(3)根据两点间的距离公式,分点M在点A的左侧和右侧两种情况分别列出表示线段AM的代数式,然后由已知条件AM=3建立方程,从而求出m的值,进而根据两点间的距
离公式求出BM;
(4)根据两点间的距离公式,分点M在点A的左侧和B的右侧两种情况分别列出表示线段AM和BM的代数式,然后利用AM + BM =12列方程求解;
(5)可知点A连续运动两次实质上是向右移动1个单位长度,当运动了2018次时,实际上向右移动了1009个单位长度,则当运动第2019次时,则点M所对应的数为-2+1009-2019,得解。
9.已知:线段AB=20cm.
(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A 点以3厘米/秒运动,经过________秒,点P、Q两点能相遇.
(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?
(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60°/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.
【答案】(1)4
(2)解:设经过a秒后P、Q相距5cm,
由题意得,20-(2+3)a=5,
解得:,
或(2+3)a−20=5,
解得:a=5,
答:再经过3秒或5秒后P、Q相距5cm
(3)解:点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为 s或
s,
设点Q的速度为ycm/s,
当2s时相遇,依题意得,2y=20−2=18,解得y=9
当5s时相遇,依题意得,5y=20−6=14,解得y=2.8
答:点Q的速度为9cm/s或2.8cm/s.
【解析】【解答】解:(1)设经过x秒两点相遇,
由题意得,(2+3)x=20,
解得:x=4,
即经过4秒,点P、Q两点相遇;
故答案为:4.
【分析】(1)设经过x秒两点相遇,根据总路程为20cm,列方程求解;(2)设经过a秒后P、Q相距5cm,分两种情况:用AB的长度−点P和点Q走的路程;用点P和点Q走的路程−AB的长度,分别列方程求解;(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.
10.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .
(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.
(2)若点A到原点的距离为3,B为AC的中点.
①用b的代数式表示c;
②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.
【答案】(1)解:∵a=﹣2,b=4,c=8,
∴AB=6,BC=4,
∵D为AB中点,F为BC中点,
∴DB=3,BF=2,
∴DF=5
(2)解:①∵点A到原点的距离为3且a<0,
∴a=﹣3,
∵点B到点A,C的距离相等,
∴c-b=b-a,
∵c﹣b=b﹣a,a=﹣3,
∴c=2b+3,
答:b、c之间的数量关系为c=2b+3.
②依题意,得x﹣c<0,x-a>0,
∴|x﹣c|=c﹣x,|x-a|=x-a,
∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,
∵c=2b+3,
∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,
∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,
∴3b﹣3=0,
∴b=1.
答:b的值为1
【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由
B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;
②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值. 11.已知有理数a,b,c在数轴上的位置如图所示:
解答下列式子:
(1)比较a,,c的大小(用“<”连接);
(2)若,试化简等式的右边;
(3)在(2)的条件下,求的值.
【答案】(1)解:根据数轴上点的位置得:;
(2)解:根据题意得:a+b<0,b-1<0,a-c<0,
则;
(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,
∴原式 .
【解析】【分析】(1)根据数轴上点的位置判断即可;(2)由数轴可得a+b<0,b-1<0,a-c<0,然后利用绝对值的代数意义化简即可;(3)根据b<0,a<0,c>0,m=-1-c,进行计算即可.
12.小红和小明在研究绝对值的问题时,碰到了下面的问题:
“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.
小红说:“如果去掉绝对值问题就变得简单了.”
小明说:“利用数轴可以解决这个问题.”
他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,式子|x+1|+|x﹣2|的最小值为3.
请你根据他们的解题解决下面的问题:
(1)当式子|x﹣2|+|x﹣4|取最小值时,相应的x的取值范围是________,最小值是________.
(2)已知y=|x+8|﹣|x-2|,求相应的x的取值范围及y的最大值.写出解答过程.
【答案】(1);2
(2)解:当x>2时y=x+8﹣(x-2)=10,
当−8≤x≤2时,y=x+8+(x-2)=2x+6,当x=2时,y最大=10;
当x<−8,时y=-x-8+(x-2)=-10,
综上所以x≥2时,y有最大值y=10.
【解析】【解答】(1)当x<2时,原式=6−2x,此时6−2x>2;当2≤x≤4时,原式=2;当x>4时,原式=2x−6>2,
∴当2≤x≤4时,|x−2|+|x−4|取最小值时,最小值为2.
故答案为:2≤x≤4;2.
【分析】(1)根据线段上的点与线段的端点的距离最小,可得答案;(2)根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案.。