总结红外光谱频率与官能团特征吸收峰剖析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外波谱
分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。

相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。

常见官能团的红外吸收频率
整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:- C≡C-,- C≡N, -C=C=C-, -C=C=O, -N=C=O等的伸缩振动吸收带。

在1900以下的波数端有-C=C-, -C=O, -C=N-, -C=O等的伸缩振动以及芳环的骨架振动。

1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。

该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重
要。

有机化学有机化合物红外吸收光谱
σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动
一、烷烃
饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动
2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1
叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃
烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢
C=CH2
在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取
代情况和构型。

RHC=CH 2 995~985cm -1(=CH ,S ) 915~905 cm -1(=CH 2,S ) R 1R 2C=CH 2 895~885 cm -1(S )
(顺)-R 1CH=CHR 2 ~690 cm -1 (反)-R 1CH=CHR 2 980~965 cm -1(S ) R 1R 2C=CHR 3 840~790cm -1 (m ) 三、炔烃
在IR 光谱中,炔烃基团很容易识别,它主要有三种特征吸收。

1、σ 该振动吸收非常特征,吸收峰位置在3300—3310 cm -1,中等强度。

σ
N-H 值与σC-H
值相同,但前者为宽峰、后者为尖峰,易于识别。

2、σ 一般 键的伸缩振动吸收都较弱。

一元取代炔烃 σ 出现在2140—2100 cm -1,二元取代炔烃在2260—2190 cm -1,当两个取代基的性质相差太大时,炔化物极性增强,吸收峰的强度增大。

当 处于分子的对称中心时,σ 为红外非活性。

3、σ 炔烃变形振动发生在680—610 cm -1。

四、芳烃
芳烃的红外吸收主要为苯环上的C-H 键及环骨架中的C=C 键振动所引起。

芳族化合物主要有三种特征吸收。

1、σ
Ar-H 芳环上
C-H 吸收频率在3100~3000 cm -1附近,有较弱的三个峰,特征
性不强,与烯烃的σC=C-H 频率相近,但烯烃的吸收峰只有一个。

2、σ
C=C
芳环的骨架伸缩振动正常情况下有四条谱带,约为1600,1585,1500,
1450 cm -1,这是鉴定有无苯环的重要标志之一。

3、δ
Ar-H
芳烃的C-H 变形振动吸收出现在两处。

1275—960 cm -1为δ
Ar-H ,由于
吸收较弱,易受干扰,用处较小。

另一处是900—650 cm -1的δ
Ar-H 吸收较强,是识别苯环上取代基位置和数目的极重要的特征峰。

取代基越多,δ
Ar-H 频率越高,
见表3-10。

若在1600—2000 cm -1之间有锯齿壮倍频吸收(C-H 面外和C=C 面内弯曲振动的倍频或组频吸收),是进一步确定取代苯的重要旁证。

苯 670cm -1(S ) 单取代苯 770~730 cm -1(VS ),710~690 cm -1(S ) 1,2-二取代苯 770~735 cm -1(VS )
1,3-二取代苯 810~750 cm -1(VS ),725~680 cm -1(m~S )
C C H C C C C RC CH C C C C C C H
1,4-二取代苯860~800 cm-1(VS)
五、卤化物
随着卤素原子的增加,σC-X降低。

如C-F(1100~1000 cm-1);C-Cl(750~700 cm-1);C-Br(600~500 cm-1);C-I(500~200 cm-1)。

此外,C-X吸收峰的频率容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合物变化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸缩吸收带。

因此IR光谱对含卤素有机化合物的鉴定受到一定限制。

六、醇和酚
醇和酚类化合物有相同的羟基,其特征吸收是O-H和C-O键的振动频率。

1、σO-H一般在3670~3200 cm-1区域。

游离羟基吸收出现在3640~3610 cm-1,峰形尖锐,无干扰,极易识别(溶剂中微量游离水吸收位于3710 cm-1)。

OH是个强极性基团,因此羟基化合物的缔合现象非常显著,羟基形成氢键的缔合峰一般出现在3550~3200 cm-1。

1,2-环戊二醇顺式异构体P47
0.005mol/L (CCl4) 3633 cm-1(游离),3572 cm-1(分子内氢键)。

0.04 mol/L (CCl4) 3633 cm-1(游离),3572 cm-1(分子内氢键)~3500cm-1(分子间氢键)。

2、σC-O和δO-H C-O键伸缩振动和O-H面内弯曲振动在1410—1100 cm-1处有强吸收,当无其它基团干扰时,可利用σC-O的频率来了解羟基的碳链取代情况(伯醇在1050cm-1,仲醇在1125cm-1,叔醇在1200cm-1,酚在1250cm-1)。

七、醚和其它化合物
醚的特征吸收带是C-O-C不对称伸缩振动,出现在1150~1060cm-1处,强度大,C-C骨架振动吸收也出现在此区域,但强度弱,易于识别。

醇、酸、酯、内酯的σC-O吸收在此区域,故很难归属。

八、醛和酮
醛和酮的共同特点是分子结构中都含有(C=O),σC=O在1750~1680cm-1范围内,吸收强度很大,这是鉴别羰基的最明显的依据。

临近基团的性质不同,吸收峰的位置也有所不同。

羰基化合物存在下列共振结构:
A B
C=O 键有着双键性 强的A 结构和单键性强的B 结构两种结构。

共轭效应将使σ
C=O 吸收峰向低波数一端移动,
吸电子的诱导效应使σC=O 的吸收峰向高波数方向移动。

α,β不饱和的羰基化合物,由于不饱和键与C=O 的共轭,因此C=O 键的吸收峰向低波数移动
σ
C=O
1685~1665cm -1 1745~1725cm -1
苯乙酮 对氨基苯乙酮 对硝基苯乙酮 σC=O
1691cm -1 1677cm -1 1700cm -1
σ
一般在
2700~2900cm -1 区域内,通常在~2820 cm -1、~2720 cm -1附近各有
一个中等强度的吸收峰,可以用来区别醛和酮。

九、羧酸 1、σ
O-H
游离的O-H 在~3550 cm -1,缔合的O-H 在3300~2500 cm -1,峰形宽而
散,强度很大。

2、σ
C=O
游离的C=O 一般在~1760 cm -1附近,吸收强度比酮羰基的吸收强度大,
但由于羧酸分子中的双分子缔合,使得C=O 的吸收峰向低波数方向移动,一般在1725~1700 cm -1,如果发生共轭,则C=O 的吸收峰移到1690~1680 cm -1。

3、σC-O 一般在1440~1395 cm -1,吸收强度较弱。

4、δ
O-H
一般在1250 cm -1附近,是一强吸收峰,有时会和σ
C-O 重合。

十、酯和内酯 1、σ
C=O
1750~1735 cm -1处出现(饱和酯σ
C=O
位于1740cm -1处),受相邻基团
的影响,吸收峰的位置会发生变化。

2、σ
C-O
一般有两个吸收峰,1300~1150 cm -1,1140~1030 cm -1
十一、酰卤
σ
C=O
由于卤素的吸电子作用,使C=O 双键性增强,从而出现在较高波数
处,一般在~1800cm -1处,如果有乙烯基或苯环与C=O 共轭,,会使σC=O 变小,
一般在1780~1740cm -1处。

十二、酸酐
C O
X Y C O
X Y +
-
RCH=CHCOR'
RCHClCOR'
C O
H
1、σC=O由于羰基的振动偶合,导致σC=O有两个吸收,分别处在1860~1800 cm-1和1800~1750 cm-1区域,两个峰相距60 cm-1。

2、σC-O为一强吸收峰,开链酸酐的σC-O在1175~1045 cm-1处,环状酸酐1310~1210 cm-1处。

十三、酰胺
1、σC=O酰胺的第ⅠⅡⅢ谱带,由于氨基的影响,使得σC=O向低波数位移,伯酰胺1690~1650 cm-1,仲酰胺1680~1655 cm-1,叔酰胺1670~1630 cm-1。

2、σN-H一般位于3500~3100 cm-1,伯酰胺游离位于~3520 cm-1和~3400 cm-1,形成氢键而缔合的位于~3350 cm-1和~3180 cm-1,均呈双峰;仲酰胺游离位于~3440 cm-1,形成氢键而缔合的位于~3100 cm-1,均呈单峰;叔酰胺无此吸收峰。

3、δN-H酰胺的第Ⅱ谱带,伯酰胺δN-H位于1640~1600 cm-1;仲酰胺1500~1530 cm-1,强度大,非常特征;叔酰胺无此吸收峰。

4、σC-N酰胺的第Ⅲ谱带,伯酰胺1420~1400 cm-1,仲酰胺1300~1260 cm-1,叔酰胺无此吸收峰。

十四、胺
1、σN-H游离位于3500~3300 cm-1处,缔合的位于3500~3100 cm-1处。

含有氨基的化合物无论是游离的氨基或缔合的氨基,其峰强都比缔合的OH峰弱,且谱带稍尖锐一些,由于氨基形成的氢键没有羟基的氢键强,因此当氨基缔合时,吸收峰的位置的变化不如OH那样显著,引起向低波数方向位移一般不大于100cm-1。

伯胺3500~3300 cm-1有两个中等强度的吸收峰(对称与不对称的伸缩振动吸收),仲胺在此区域只有一个吸收峰,叔胺在此区域内无吸收。

2、σC-N脂肪胺位于1230~1030 cm-1处,芳香胺位于1380~1250 cm-1处。

3、δN-H位于1650~1500 cm-1处,伯胺的δN-H吸收强度中等,仲胺的吸收强度较弱。

4、γN-H位于900~650 cm-1处,峰形较宽,强度中等(只有伯胺有此吸收峰)。

主要基团的红外特征吸收峰
15.03
9.90
2.95
9.09
7.14。

相关文档
最新文档