【全国Ⅱ卷】(精校版)2019年高等学校招生全国统一考试文数试题(含答案)

合集下载

2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

 2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2019年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学一、选择题1.已知集合A={x|x>-1},B={x|x<2},则A∩B等于()A.(-1,+∞) B.(-∞,2)C.(-1,2) D.∅答案 C解析A∩B={x|x>-1}∩{x|x<2}={x|-1<x<2}.2.设z=i(2+i),则等于()A.1+2i B.-1+2iC.1-2i D.-1-2i答案 D解析∵z=i(2+i)=-1+2i,∴=-1-2i.3.已知向量a=(2,3),b=(3,2),则|a-b|等于()A. B.2 C.5 D.50答案 A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|==.4.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.6.设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)等于()A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1答案 D解析当x<0时,-x>0,∵当x≥0时,f(x)=e x-1,∴f(-x)=e-x-1.又∵f(x)为奇函数,∴f(x)=-f(-x)=-e-x+1.7.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案 B解析对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确,对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确,综上可知选B.8.若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω等于()A.2 B. C.1 D.答案 A解析由题意及函数y=sin ωx的图象与性质可知,T=-,∴T=π,∴=π,∴ω=2.9.若抛物线y2=2px(p>0)的焦点是椭圆 4+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.10.曲线y=2sin x+cos x在点(π,-1)处的切线方程为()A.x-y-π-1=0 B.2x-y-2π-1=0C.2x+y-2π+1=0 D.x+y-π+1=0答案 C解析设y=f(x)=2sin x+cos x,则f′(x)=2cos x-sin x,∴f′(π)=-2,∴曲线在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.11.已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故选B.12.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q 两点.若|PQ|=|OF|,则C的离心率为()A. B. C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x=,所以|PQ|=2. 由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.二、填空题13.若变量x,y满足约束条件则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由解得即C点坐标为(3,0),故z max=3×3-0=9.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98.15.△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案解析∵b sin A+a cos B=0,∴=,由正弦定理,得-cos B=sin B,∴tan B=-1,又B∈(0,π),∴B=.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26-1解析依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则x+x+x=1,解得x=-1,故题中的半正多面体的棱长为-1.三、解答题17.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以四棱锥E-BB1C1C的体积V=×3×6×3=18.18.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).21.已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.证明(1)f(x)的定义域为(0,+∞).f′(x)=+ln x-1=ln x-(x>0).因为y=ln x在(0,+∞)上单调递增,y=在(0,+∞)上单调递减,所以f′(x)在(0,+∞)上单调递增.又f′(1)=-1<0,f′(2)=ln 2-=>0,故存在唯一x0∈(1,2),使得f′(x0)=0.又当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.由1<x0<α得0<<1<x0.又f=ln--1===0,故是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.22.[选修4-4:坐标系与参数方程]在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.解(1)因为M(ρ0,θ0)在C上,当θ0=时,ρ0=4sin =2.由已知得|OP|=|OA|cos =2.设Q(ρ,θ)为l上除P的任意一点,连接OQ,在Rt△OPQ中,ρcos=|OP|=2. 经检验,点P在曲线ρcos=2上.所以,l的极坐标方程为ρcos=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是.所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈.23.[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a的取值范围是[1,+∞).祝福语祝你考试成功!。

【推荐】(精校版)2019年全国卷Ⅱ文数高考试题文档版(含答案)

【推荐】(精校版)2019年全国卷Ⅱ文数高考试题文档版(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅2.设=i(2+i),则z = A .1+2i B .–1+2iC .1–2iD .–1–2i3.已知向量a =(2,3),b =(3,2),则|a –b |= AB .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f ()为奇函数,且当≥0时,f ()=e 1x -,则当<0时,f ()= A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若1=4π,2=43π是函数f ()=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32 C .1D .129.若抛物线y 2=2p (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .810.曲线y =2sin+cos 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD12.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为ABC .2D二、填空题:本题共4小题,每小题5分,共20分.13.若变量,y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则=3–y 的最大值是___________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

【推荐】(精校版)2019年全国卷Ⅱ文数高考试题文档版(有答案)

【推荐】(精校版)2019年全国卷Ⅱ文数高考试题文档版(有答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅2.设=i(2+i),则z = A .1+2i B .–1+2iC .1–2iD .–1–2i3.已知向量a =(2,3),b =(3,2),则|a –b |= AB .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f ()为奇函数,且当≥0时,f ()=e 1x -,则当<0时,f ()= A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若1=4π,2=43π是函数f ()=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32 C .1D .129.若抛物线y 2=2p (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .810.曲线y =2sin+cos 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD 12.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为ABC.2 D二、填空题:本题共4小题,每小题5分,共20分.13.若变量,y满足约束条件23603020x yx yy⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则=3–y的最大值是___________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.ABC△的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=___________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

2019年全国新课标2卷高考文科数学试题及答案

2019年全国新课标2卷高考文科数学试题及答案

2019普通高等学校招生全国统一考试II卷文科数学第_卷选择题:本大题共124、题,每4、题5分,在每4、题给出的四个选项中,只有一项是符合题目要求的。

⑴已知集合a=M t<x<2},B=H0<x<3},则AU3=A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)2+ai日.顽----—=3+z,贝!J q=(2)若a实数,且1+,A.-4B.-3C.3D.4(3)根据下面给出的2019年至2019年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是C.2019年以来我国二氧化碳排放量呈减少趋势;D.2019年以来我国二氧化碳年排放量与年份正相关。

(4)已知向量"=(O,T)E=(-1,2),则(2a+i)・a=A.-1B.0C.1D.2/[-\、S〃是等差数列}的前〃项和,—%+%+%=3,则S5=A.5B.7C.9D.11(6)—个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为J.£££A.8b.7 c.6 D.5⑺已知三点A(1,O),B(O,g),C(2,73),则AABC夕卜接圆的圆,《到原点的距>离为5恒2^54A.3b.3 C.3 D.3(8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术,执行该程序框图,若输入的a,b分别为14,18,则输出的a为开始输入a,b{a“}丫两——=4(。

4—1),则。

2=(9)已知等比数列4C2_1A.2B.1C.2D.8(10)已知A,B是球0的球面上两点,ZAO3=90°,C为该球面上动点,若三棱锥0_ABC 体积的最大值为36,则球0的表面积为A.367tB.647tC.144冗D. 256兀(11)如图,长方形的边AB=2,BC=1,0是AB的中点,点P沿着边BC,CD,与DA运动,记ZBOP=x,将动点P到两点距离之和表示为函数/■"),贝昕⑴的图像大致为/(x)=ln(l+|x|)-—二,则使得f3)>y(2x-1)成立的x的范围是(12)设函数1+尤("I)(-8,;)U(l,+8)(—;,!)(—8,—:)U(:,+8) A.3 B.3 C.33d.33第二卷填室题:本大题共4个小题,每小题5分己知国数八工)=心'―2工的图像过点(-1,4),贝此=%+y-5<0,<2x-y-l>0,贝!Jz=2尤+y的最大值为(14)若x,y满足约束条件—2'+1'°‘。

2019年普通高等学校招生全国统一考试(全国卷Ⅱ)附答案

2019年普通高等学校招生全国统一考试(全国卷Ⅱ)附答案

2019年普通高等学校招生全国统一考试(全国卷Ⅱ)英语注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。

1. Where does the conversation probably take place?A. In a library.B. In a bookstore.C. In a classroom.2. How does the woman feel now?A. Relaxed.B. Excited.C. Tired.3. How much will the man pay?A. $520.B. $80.C. $100.4. What does the man tell Jane to do?A. Postpone his appointment.B. Meet Mr. Douglas.C. Return at3 o’clock.5. Why would David quit his job?A. To go back to school.B. To start his own firm.C. To work for his friend.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

2019年全国卷Ⅱ文数高考真题及答案解析(word精编)

2019年全国卷Ⅱ文数高考真题及答案解析(word精编)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅2.设z =i(2+i),则z = A .1+2i B .–1+2iC .1–2iD .–1–2i3.已知向量a =(2,3),b =(3,2),则|a –b |= A .2B .2C .52D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2B .32 C .1 D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .810.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα= A .15B .55 C .33D .25512.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A .2B .3C .2D .5二、填空题:本题共4小题,每小题5分,共20分.13.若变量x ,y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z =3x –y 的最大值是___________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

2019年高考全国2卷文科数学试题含答案解析

2019年高考全国2卷文科数学试题含答案解析

2019年高考全国2卷文科数学试题解析1.设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =,故选A.2.(1i)(2i)++=A .1i -B .13i +C .3i +D .33i + 【答案】B3.函数π()sin(2)3f x x =+最小正周期为 A .4π B .2π C . π D .π2【答案】C【解析】由题意2ππ2T ==,故选C. 4.设非零向量a ,b 满足+=-a b a b ,则A .a ⊥bB .=a bC .a ∥bD .>a b 【答案】A【解析】由+=-a b a b 平方得222222+⋅+=-⋅+a a b b a a b b ,即0⋅=a b ,则⊥a b ,故选A.5.若1a >,则双曲线2221x y a-=的离心率取值范围是A .)+∞B .2)C .D .(1,2) 【答案】C6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为221π36π3463π2V =⋅⋅⋅+⋅⋅=,故选B. 7.设,x y 满足约束条件2+330,2330,30,x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩则2z x y =+的最小值是A .15-B .9-C .1D .9 【答案】A【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值,最小值为min 12315z =--=-.故选A.8.函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B . (,1)-∞C . (1,)+∞D . (4,)+∞ 【答案】D9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙结果则知道自己的结果,丁看到甲的结果则知道自己结果,故选D.10.执行下面的程序框图,如果输入的1a=-,则输出的S=A.2 B.3 C.4 D.5【答案】B11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:总计有25种情况,满足条件的有10种. 所以所求概率为102255=. 12.过抛物线2:4C y x =的焦点F ,3的直线交C 于点M (M 在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A 5B .2C . 23D . 33【答案】C二、填空题,本题共4小题,每小题5分,共20分. 13.函数()2cos sin f x x x =+的最大值为 . 5【解析】2()215f x ≤+=14.已知函数()f x 是定义在R 上函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = .【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.15.长方体的长,宽,高分别为3,2,1,其顶点都在球O 球面上,则球O 的表面积为 . 【答案】14π【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===16.ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = .【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2AB BC AD BAD ABC ==∠=∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积. 19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各箱水产品产量(单位:kg ), 其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附:22()()()()()n ad bc K a b c d a c b d -=++++.K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法. 20.(12分)设O 为坐标原点,动点M 在椭圆C 错误!未找到引用源。

2019年全国统一高考文科数学全国II卷(含答案)

2019年全国统一高考文科数学全国II卷(含答案)
9.若抛物线y2=2px(p>0)的焦点是椭圆 的一个焦点,则p=
A.2B.3
C.4D.8
【答案】D
【解析】
【分析】
利用抛物线与椭圆有共同的焦点即可列出关于 的方程,即可解出 ,或者利用检验排除的方法,如 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.
【详解】因为抛物线 的焦点 是椭圆 的一个焦点,所以 ,解得 ,故选D.
3.已知向量a=(2,3),b=(3,2),则|a–b|=
A. B.2
C.5 D.50
【答案】A
【解析】
【分析】
本题先计算 ,再根据模的概念求出 .
【详解】由已知, ,
所以 ,
故选A
【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.
乙:丙的成绩比我和甲的都高.
丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为
A.甲、乙、丙B.乙、甲、丙
C.丙、乙、甲D.甲、丙、乙
【答案】A
【解析】
【分析】
利用逐一验证的方法进行求解.
【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.
1.已知集合 , ,则A∩B=
A.(–1,+∞)B.(–∞,2)
C.(–1,2)D.

【全国Ⅱ卷】(精校版)2019年高等学校招生全国统一考试语文试题(含答案)

【全国Ⅱ卷】(精校版)2019年高等学校招生全国统一考试语文试题(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试语文本试卷共22题,共150分,共10页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

杜甫之所以能有集大成之成就,是因为他有可以集大成之容量。

而其所以能有集大成之容量,最重要的因素,乃在于他生而禀有一种极为难得的健全才性——那就是他的博大、均衡与正常。

杜甫是一位感性与理性兼长并美的诗人,他一方面具有极大极强的感性,可以深入到他接触的任何事物,把握住他所欲攫取的事物之精华;另一方面又有着极清明周至的理性,足以脱出于一切事物的蒙蔽与局限,做到博观兼美而无所偏失。

这种优越的禀赋表现于他的诗中,第一点最可注意的成就,便是其汲取之博与途径之正。

就诗歌体式风格方面而言,古今长短各种诗歌他都能深入撷取尽得其长,而且不为一体所限,更能融会运用,开创变化,千汇万状而无所不工。

我们看他《戏为六绝句》之论诗,以及与当时诸大诗人,如李白、高适、岑参、王维、孟浩然等,酬赠怀念的诗篇中论诗的话,都可看到杜甫采择与欣赏的方面之广;而自其《饮中八仙歌》《曲江三章》《同谷七歌》等作中,则可见到他对各种诗体运用变化之神奇工妙;又如从《自京赴奉先县咏怀五百字》《北征》及“三吏”“三别”等五古之作中,可看到杜甫自汉魏五言古诗变化而出的一种新面貌。

就诗歌内容方面而言,杜甫更是无论妍媸巨细,悲欢忧喜,宇宙的一切人物情态,都能随物赋形,淋漓尽致地收罗笔下而无所不包,如写青莲居士之“飘然思不群”,写空谷佳人之“日暮倚修竹”;写丑拙则“袖露两肘”,写工丽则“燕子风斜”;写玉华宫之荒寂,予人以一片沉哀悲响;写洗兵马之欢忭,写出一片欣奋祝愿之情、其涵蕴之博与变化之多,都足以为其禀赋之博大、均衡与正常的证明。

2019年高考文数全国卷2含答案解析

2019年高考文数全国卷2含答案解析

徐老师2019年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合={|1}A x x >-,{|2}B x x =<,则A B =()A .()1-+∞,B .()2-∞,C .()12-,D .∅2.设()2z i i =+,则=z ()A .12i +B .12i -+C .12i-D .12i--3.已知向量()23a =,,()32b =,,则a b -=()A B .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A .23B .35C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设()f x 为奇函数,且当0x ≥时,()e 1x f x =-,则当0x <时,()f x =()A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+7.设α,β为两个平面,则αβ∥的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若14x π=,24x 3π=是函数()sin f x x ω=()0ω>两个相邻的极值点,则ω=()A .2B .32C .1D .129.若抛物线()220y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p =()A .2B .3C .4D .810.曲线2sin cos y x x =+在点()1π-,处的切线方程为()A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知π20a ⎛⎫∈ ⎪⎝⎭,),2sin2cos2+1αα=,则sin α=()A .15BC D 12.设F 为双曲线C :()2222001x y a ba b -=>>,的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P 、Q 两点.若PQ OF =,则C 的离心率为()徐老师ABC .2D第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2019年高考文科数学全国2卷含答案

(完整版)2019年高考文科数学全国2卷含答案

2019年普通高等学校招生全国统一考试(全国II 卷) 文科数学1.设集合{}1-|>=x x A ,{}2|<=x x B ,则=⋂B A ( ) A. ),1(+∞- B. )2,(-∞ C. )2,1(- D. φ2. 设(2)z i i =+,则z = ( ) A. 12i + B. 12i -+ C. 12i - D. 12i --3. 已知向量(2,3)=a , (3,2)=b ,则-=a b ( )B. 2C. D. 504. 生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B. 35C. 25D. 155. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6. 设()f x 为奇函数,且当0≥x 时,()1=-xf x e ,则当0<x 时,()=f x ( ) A. 1--x e B. 1-+x e C. 1---x e D . 1--+x e7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面8. 若123,44x x ππ==是函数()sin (0)f x x ωω=>两个相邻的极值点,则ω=A .2B. 32C. 1D.129.若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.810. 曲线2sin cos y x x =+在点(,1)π-处的切线方程为( ) A. 10x y π---= B. 2210x y π---= C. 2210x y π+-+= D. 10x y π+-+=11. 已知(0,)2πα∈,2sin 2cos21αα=+,则sin α=( )A.15D.512.设F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,0为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点,若PQ OF =,则C 的离心率为:A.2B.3C.2D.5 二、填空题13. 若变量,x y 满足约束条件23603020x y x y y +-≥⎧⎪+-≤⎨⎪-≤⎩则3z x y =-的最大值是 .14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 .15. ABC ∆的内角,,A B C 的对边分别为,,a b c .已知sin cos 0b A a B +=,则B = . 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)三、解答题17.如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥. (1)证明:BE ⊥平面11EB C(2)若1AE AE =,3AB =,求四棱锥11E BB C C -的体积.18.已知{}n a 是各项均为正数的等比数列,162,2231+==a a a . (1)求{}n a 的通项公式:(2)设n n a b 2log =,求数列{}n b 的前n 项和.19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[)0.20,0-[)0,0.20[)0.20,0.40 [)0.40,0.60 [)0.60,0.80企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 748.602≈.20. 已知12,F F 是椭圆C :22221(0,0)x y a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF ∆的面积等于16,求b 的值和a 的取值范围.21. 已知函数()(1)ln 1=---f x x x x .证明: (1)()f x 存在唯一的极值点;(2)()0=f x 有且仅有两个实根,且两个实根互为倒数.四、选做题(2选1)22.在极坐标系中,O 为极点,点00(,)M ρθ0(0)ρ>在曲线:=4sin C ρθ上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当03πθ=时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲]已知 ()|||2|()f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集: (2)若(,1)x ∈-∞时,()0f x <,求a 得取值范围.2019年普通高等学校招生全国统一考试(全国II 卷 )文科数学答 案1. 答案:C 解析:{}1-|>=x x A ,{}2|<=x x B ,∴)(2,1-=⋂B A .2. 答案:D 解析:因为(2)12z i i i =+=-+,所以12z i =--. 3. 答案:A 解答:由题意知(1,1)-=-a b ,所以2-=a b .4. 答案:B 解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B ,则恰好有两只测量过的有6种,所以其概率为35.5.答案:A 解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果. 6. 答案:D 解答:当0<x 时,0->x ,()1--=-xf x e ,又()f x 为奇函数,有()()1-=--=-+xf x f x e .7. 答案:B解析:根据面面平行的判定定理易得答案. 8.答案:A 解答:由题意可知32442T πππ=-=即T=π,所以=2ω. 9.答案:D 解析:抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±, ∴p p22=,∴8=p . 10. 答案:C 解析:因为2cos sin y x x '=-,所以曲线2sin cos y x x =+在点(,1)π-处的切线斜率为2-, 故曲线2sin cos y x x =+在点(,1)π-处的切线方程为2210x y π+-+=. 11. 答案:B 解答:(0,)2πα∈,22sin 2cos 214sin cos 2cos ααααα=+⇒=,则12sin cos tan 2ααα=⇒=,所以cos α==,所以sin α==. 12. 答案:A解析:设F 点坐标为)0,2c (,则以OF 为直径的圆的方程为2222)2⎪⎭⎫⎝⎛=+-c y c x (-----①,圆的方程222a y x =+-----②,则①-②,化简得到c a x 2=,代入②式,求得caby ±=,则设P 点坐标为),2c ab c a (,Q 点坐标为),2c ab c a -(,故cab PQ 2=,又OF PQ =,则,2c cab=化简得到2222b a c ab +==,b a =∴,故2222==+==aaa b a a c e .故选A. 二、填空题 13. 答案:9 解答:根据不等式组约束条件可知目标函数3z x y =-在()3,0处取得最大值为9. 14.答案:0.98 解答:平均正点率的估计值0.97100.98200.99100.9840⨯+⨯+⨯==.15.答案:34π 解析:根据正弦定理可得sin sin sin cos 0B A A B +=,即()sin sin cos 0A B B +=,显然sin 0A ≠,所以sin cos 0B B +=,故34B π=.16.答案:1 解析:由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解. 三、解答题 17.答案: (1)看解析 (2)看解析 解答:(1)证明:因为11B C C ⊥面11A B BA ,BE ⊥面11A B BA∴11B C BE ⊥ 又1111C E B C C ⋂=,∴BE ⊥平面11EB C ;(2)设12AA a =则 229BE a =+,22118+a C E =,22194C B a =+ 因为22211=C B BE C E + ∴3a =,∴11111h 3E BB C C BB C C V S -=1363=183=⨯⨯⨯ 18.答案: (1)122-=n n a ; (2)2n解答:(1)已知162,2231+==a a a ,故162121+=q a q a ,求得4=q 或2-=q ,又0>q ,故4=q ,则12111242---=⋅==n n n n q a a .(2)把n a 代入n b ,求得12-=n b n ,故数列{}n b 的前n 项和为22)]12(1[n nn =-+.19. 答案: 详见解析 解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100+=, 这类企业中产值负增长的企业比例是2100. (2)这类企业产值增长率的平均数是()0.1020.10240.30530.50140.7071000.30-⨯+⨯+⨯+⨯+⨯÷=⎡⎤⎣⎦这类企业产值增长率的方差是()()()()()222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296⎡⎤--⨯+-⨯+-⨯+-⨯+-⨯÷=⎣⎦所以这类企业产值增长率的标准差是28.6020.172040.17100==⨯=≈. 20. 答案: 详见解析 解答:(1)若2POF ∆为等边三角形,则P 的坐标为,22c ⎛⎫± ⎪ ⎪⎝⎭,代入方程22221x y a b +=,可得22223144c c a b+=,解得24e =±1e =. (2)由题意可得122PF PF a +=,因为12PF PF ⊥,所以222124PF PF c +=, 所以()22121224PF PF PF PF c +-⋅=,所以222122444PF PF a c b ⋅=-=,所以2122PF PF b ⋅=,所以122121162PF F S PF PF b ∆=⋅==,解得4b =. 因为()212124PF PF PF PF +≥⋅,即()21224a PF PF ≥⋅,即212a PF PF ≥⋅,所以232a ≥,所以a ≥21. 答案:见解析解答:(1)1()ln (0)'=->f x x x x ,设1()ln =-g x x x ,211()0'=+>g x x x则()g x 在(0,)+∞上递增,(1)10=-<g ,11(2)ln 2ln 022=->=g , 所以存在唯一0(1,2)∈x ,使得00()()0'==f x g x ,当00<<x x 时,0()()0<=g x g x ,当0>x x 时,0()()0>=g x g x ,所以()f x 在0(0,)x 上递减,在0(,)+∞x 上递增,所以()f x 存在唯一的极值点.(2)由(1)知存在唯一0(1,2)∈x ,使得0()0'=f x ,即001ln =x x , 00000000011()(1)ln 1(1)1()0=---=---=-+<f x x x x x x x x x , 22221113()(1)(2)110=----=->f e e e e,2222()2(1)130=---=->f e e e e , 所以函数()f x 在0(0,)x 上,0(,)+∞x 上分别有一个零点.设12()()0==f x f x ,(1)20=-<f ,则1021<<<x x x ,有1111111(1)ln 10ln 1+---=⇒=-x x x x x x , 2222221(1)ln 10ln 1+---=⇒=-x x x x x x , 设1()ln 1+=--x h x x x ,当0,1<≠x x 时,恒有1()()0+=h x h x, 则12()()0+=h x h x 时,有121=x x .22.答案:(1)0ρ=l 的极坐标方程:sin()26πρθ+=;(2)P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 解析:(1)当03πθ=时,00=4sin 4sin 3πρθ==以O 为原点,极轴为x轴建立直角坐标系,在直角坐标系中有M ,(4,0)A,OM k =,则直线l的斜率3k =-,由点斜式可得直线l:(4)3y x =--,化成极坐标方程为sin()26πρθ+=;(2)∵l OM ⊥∴2OPA π∠=,则P 点的轨迹为以OA 为直径的圆,此时圆的直角坐标方程为22(2)4x y -+=,化成极坐标方程为=4cos ρθ,又P 在线段OM 上,由4sin 4cos ρθρθ=⎧⎨=⎩可得4πθ=,∴P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 23.答案(1)看解析(2)看解析解答:(1)当1a =时,22242(2),()12(1)22(12),242(1).x x x f x x x x x x x x x x ⎧-+≥⎪=-+--=-<<⎨⎪-+-≤⎩所以不等式()0f x <等价于224202x x x ⎧-+<⎨≥⎩或22012x x -<⎧⎨<<⎩或224201x x x ⎧-+-<⎨≤⎩解得不等式的解集为{}2x x <。

2019年高考全国2卷文科数学及答案

2019年高考全国2卷文科数学及答案

2019年高考全国2卷文科数学及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅2.设z =i(2+i ),则z = A .1+2iB .–1+2iC .1–2iD .–1–2i3.已知向量a =(2,3),b =(3,2),则|a –b |=AB .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3 C .4 D .810.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BCD12.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 ABC .2D二、填空题:本题共4小题,每小题5分,共20分。

2019年高考全国2卷试题(含语文,文科数学,英语)及答案

2019年高考全国2卷试题(含语文,文科数学,英语)及答案

绝密★启用前2019年普通高等学校招生全国统一考试语文本试卷共22题,共150分,共10页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

杜甫之所以能有集大成之成就,是因为他有可以集大成之容量。

而其所以能有集大成之容量,最重要的因素,乃在于他生而禀有一种极为难得的健全才性——那就是他的博大、均衡与正常。

杜甫是一位感性与理性兼长并美的诗人,他一方面具有极大极强的感性,可以深入到他接触的任何事物,把握住他所欲攫取的事物之精华;另一方面又有着极清明周至的理性,足以脱出于一切事物的蒙蔽与局限,做到博观兼美而无所偏失。

这种优越的禀赋表现于他的诗中,第一点最可注意的成就,便是其汲取之博与途径之正。

就诗歌体式风格方面而言,古今长短各种诗歌他都能深入撷取尽得其长,而且不为一体所限,更能融会运用,开创变化,千汇万状而无所不工。

我们看他《戏为六绝句》之论诗,以及与当时诸大诗人,如李白、高适、岑参、王维、孟浩然等,酬赠怀念的诗篇中论诗的话,都可看到杜甫采择与欣赏的方面之广;而自其《饮中八仙歌》《曲江三章》《同谷七歌》等作中,则可见到他对各种诗体运用变化之神奇工妙;又如从《自京赴奉先县咏怀五百字》《北征》及“三吏”“三别”等五古之作中,可看到杜甫自汉魏五言古诗变化而出的一种新面貌。

就诗歌内容方面而言,杜甫更是无论妍媸巨细,悲欢忧喜,宇宙的一切人物情态,都能随物赋形,淋漓尽致地收罗笔下而无所不包,如写青莲居士之“飘然思不群”,写空谷佳人之“日暮倚修竹”;写丑拙则“袖露两肘”,写工丽则“燕子风斜”;写玉华宫之荒寂,予人以一片沉哀悲响;写洗兵马之欢忭,写出一片欣奋祝愿之情、其涵蕴之博与变化之多,都足以为其禀赋之博大、均衡与正常的证明。

2019年高考文数全国卷2-答案

2019年高考文数全国卷2-答案

2019年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】依题意得{|12}A B x x =-<<I ,选C 【考点】集合的表示方法,交集的概念 【考查能力】运算求解 2.【答案】D【解析】依题意得2212,12z i i i z i =+=-+=--,选D. 【考点】复数的四则运算,共扼复数的概念 【考查能力】运算求解 3.【答案】A【解析】依题意得(1,1),||a b a b -=--A . 【考点】向量的坐标运算,向量的模 【考查能力】运算求解 4.【答案】B【考点】古典型概率的求解【解析】设3只测量过某项指标的兔子为A ,B ,C ,另2只兔子为a ,b ,从这5只兔子中随机取出3只,则基本事件共有10种,分别为()()()()()()(,,),(,,,,,,,,,,,,,,,,,,,,,,),(,,)()A B C A Ba A B b A C a A C b A a b B C a B C b B a b C a b ,其中“恰有2只测量过该指标”的取法有6种,分别为(,,),(,,),(,,),(,,),(,,),(,,)A B a A B b A C a A C b B C a B C b ,因此所求的概率为63105=,选B. 5.【答案】A【解析】依题意、若甲预测正确,则乙、丙均预测错误,此时三人成绩由高到低的次序为甲、乙、丙;若乙预测正确,此时丙预测也正确,这与题意相矛盾;若丙预测正确,则甲预测错误,此时乙预测正确,这与题意相矛盾.综上所述,三人成绩由高到低的次序为甲、乙、丙,选A. 【考点】逻辑推理 【考查能力】逻辑推理 6.【答案】D【解析】通解 依题意得,当0x <时,()()()e 1e 1x x f x f x --=--=-=-+-,选D.优解 依题意得,()1(1)(1)e 11e f f -=-=--=-,结合选项知,选D. 【考点】函数的奇偶性 【考查能力】运算求解 7.【答案】B【解析】对于A ,C ,D 选项,α均有可能与B 相交,故排除A ,C ,D 选项,选B. 【考点】平面与平面平行的判定定理,充要条件 【考查能力】逻辑推理,空间想象 8.【答案】A【解析】依题意得函数()f x 的最小正周期23244T ππππω⎛⎫==⨯-= ⎪⎝⎭,解得2ω=,选A. 【考点】三角函数的图象与性质,函数的极值点 【考查能力】数形结合,运算求解 9.【答案】D【解析】依题意得2p8p =,故选D. 【考点】抛物线与椭圆的几何性质 【考查能力】运算求解 10.【答案】C【解析】依题意得'2cos sin ,'(2cos sin )2cos sin 2x x y x x y x x ππππ===-=-=-=-,因此所求的切线方程为12()y x π+=--,即2210x y π+-+=,故选:C . 【考点】导数的基本运算与几何意义,直线方程 【考查能力】运算求解 11.【答案】B【解析】通解 依题意得24sin cos 2cos ,ααα=,由0,2πα⎛⎫∈ ⎪⎝⎭,知cos 0α>,所以2sin cos αα=,又22sin cos 1αα+=,所以22sin 4sin 1αα+=,即21sin 5α=.又0,2πα⎛⎫∈ ⎪⎝⎭,所以sin α=B .优解 依题意得sin 211cos22αα=+,即Ell 1tan 2α=,所以sin α==,选B . 【考点】二倍角公式,同角三角函数的基本关系【考查能力】运算求解,灵活应用所学知识分析问题、解决问题 12.【答案】A【解析】通解依题意,记0F c (,),则以OF 为直径的圆的方程为22224c c x y ⎛⎫-+= ⎪⎝⎭,将圆22224c c x y ⎛⎫-+= ⎪⎝⎭与圆222x y a +=的方程相减得2ca x =,即2a x c =,所以点P ,Q 的横坐标均为2a c,由于PQ 是圆222+x y a =的一条弦,因此2222||2a PQ a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即22222a c a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即222222214c a a b a c c ⎛⎫=-= ⎪⎝⎭,所以22c ab =,即2222()0a b ab a b +-=-=,所以a b =,因此C 的离心率e A.优解一 记()0F c ,.连接OP ,PF ,则OP PF ⊥ ,所以1||2OPF S OP ∆=.11||||||22PF OF PQ =⋅,即11112222a c c ⋅,即22c a b =,即2222()0a b ab a b +-=-=所以a b =,因此C 的离心率e ,故选A.优解二 记()0F c ,.依题意,PQ 是以OF 为直径的圆的一条弦,因此OF 垂直平分PQ.又||||PQ OF =,因此PQ 是该圆的雨OF 垂直的直径,所以45EOP ∠=︒,点P 的横坐标为2c ,纵坐标的绝对值为2c,于是有2c a =,即ce a==C ,故选A. 【考点】双曲线的几何性质,圆与圆的位置关系 【考查能力】运算求解,化归与转化第Ⅱ卷二.填空题 13.【答案】9【解析】作出不等式组表示的平面区域如图中阴影部分所示,作出直线30x y -=,并平移,当直线经过点()30,时,直线在y 轴上的截距最小,此时3z x y =-取得最大值,且9max Z =..【考点】二元一次不等式组表示的平面区域和线性规划问题 【考查能力】数形结合思想 14.【答案】0.98【解析】依题意知,经停该站高铁列车所有车次的平均正点率的估计值为100.97200.98100.990.9840⨯+⨯+⨯=【考点】概率与统计【考查能力】运算求解,应用所学知识解决问题 15.【答案】34π【解析】解法一 依题意与正玄定理得sin sin sin cos 0B A A B +=,即s in co s B B =-,则tan 1B =-.又tan 1B =-.又0B π<<,所以34B π=. 解法二 由正玄定理得sin sin b A a B =,sin cos 0b A a B +=,所以sin cos 0a B a B +=,即sin cos 0a B a B +=,即sin cos B B =-,则tan 1B =-.又0B π<<,所以34B π=. 解法三 依题意sin cos 0b A a B =->,故cos 0B <,B 为钝角.如图,过点C 作CE AB ⊥交AB 的延长线于点E ,则sin CE b BAC =∠,cos BE a ABC =-∠,故BE CE =,又CE AB ⊥,所以4CBE π∠=,34ABC π∠=.【考点】正弦定理、同角三角函数的基本关系 【考查能力】运算求解,化归与转化 16.【答案】261【解析】依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体由18个正方形和8个正三角形围成,因此题中的半正多面体共有26个面。

【2019高考全国卷数学真题】2019年全国卷Ⅱ文数高考试题(有答案)

【2019高考全国卷数学真题】2019年全国卷Ⅱ文数高考试题(有答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅2.设z =i(2+i),则z = A .1+2i B .-1+2iC .1-2iD .-1-2i3.已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3 C .4 D .8 10.曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD12.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 ABC .2D二、填空题:本题共4小题,每小题5分,共20分。

【数学】2019年高考真题——全国Ⅱ卷(文)(word版含答案)

【数学】2019年高考真题——全国Ⅱ卷(文)(word版含答案)

2019年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =( ) A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞) 2.设z =-3+2i ,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=( ) A .-3 B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事 业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的 通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为 M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方 程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始 评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │ 7.设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是( )A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=( )A .15B .5C 3D 511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )A BC .2D 12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-. 若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦ B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点 率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列 车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积 为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体 或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由 两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数 为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则 该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅2.设z =i(2+i),则z = A .1+2i B .–1+2iC .1–2iD .–1–2i3.已知向量a =(2,3),b =(3,2),则|a –b |=A .2B .2C .52D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e1x---D .e1x--+7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面 8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2B .32 C .1 D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .810.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α= A .15B .55 C .33D .25512.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A .2B .3C .2D .5二、填空题:本题共4小题,每小题5分,共20分.13.若变量x ,y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z =3x –y 的最大值是___________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分。

17.(12分)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 18.(12分)已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和. 19.(12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:748.602≈.20.(12分)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 21.(12分)已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.(二)选考题:共10分.请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.1.C 2.D 3.A 4.B 5.A 6.D 7.B 8.A9.D10.C11.B12.A13.914.0.9815.3π416.21-17.解:(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==.所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.18.解:(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-,因此数列{}n b 的前n 项和为1321n n +++-=.19.解:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.02960.02740.17s ==⨯≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.20.解:(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290FPF ∠=︒,2PF c =,13PF c =,于是122(31)a PF PF c =+=+,故C 的离心率是31ce a==-. (2)由题意可知,满足条件的点(,)P x y 存在当且仅当1||2162y c ⋅=,1y yx c x c⋅=-+-,22221x y a b +=,即||16c y =,①222x y c +=,②22221x y a b +=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故42a ≥.当4b =,42a ≥时,存在满足条件的点P . 所以4b =,a 的取值范围为[42,)+∞. 21.解:(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<, 1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=. 又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根.综上,()0f x =有且仅有两个实根,且两个实根互为倒数. 22.解:(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 233ρπ==. 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π . 23.解:(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.。

相关文档
最新文档