2017年南京市秦淮区中考数学一模试卷解析版

合集下载

2017年江苏省南京市中考数学试卷(含解析版)

2017年江苏省南京市中考数学试卷(含解析版)

2017年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是( )A .7B .8C .21D .362.(2分)计算106×(102)3÷104的结果是( )A .103B .107C .108D .1093.(2分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥4.(2分)若√3<a <√10,则下列结论中正确的是( )A .1<a <3B .1<a <4C .2<a <3D .2<a <45.(2分)若方程(x ﹣5)2=19的两根为a 和b ,且a >b ,则下列结论中正确的是( )A .a 是19的算术平方根B .b 是19的平方根C .a ﹣5是19的算术平方根D .b+5是19的平方根 6.(2分)过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( )A .(4,176) B .(4,3) C .(5,176) D .(5,3)二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)计算:|﹣3|= ;√(−3)2= .8.(2分)2016年南京实现GDP 约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 .9.(2分)分式2x−1在实数范围内有意义,则x 的取值范围是 . 10.(2分)计算:√12+√8×√6= . 11.(2分)方程2x+2﹣1x=0的解是 . 12.(2分)已知关于x 的方程x 2+px+q=0的两根为﹣3和﹣1,则p= ,q= .13.(2分)如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年.14.(2分)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D= °.15.(2分)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC= °.16.(2分)函数y1=x与y2=4x的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分)17.(7分)计算(a+2+1a )÷(a ﹣1a).18.(7分)解不等式组{−2x ≤6①x >−2②3(x −1)<x +1③请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是: .(2)解不等式③,得 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .19.(7分)如图,在▱ABCD 中,点E ,F 分别在AD ,BC 上,且AE=CF ,EF ,BD 相交于点O ,求证:OE=OF .20.(8分)某公司共25名员工,下表是他们月收入的资料.月收入/元45000 18000 10000 5500 4800 3400 3000 2200 人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.(8分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.(8分)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).23.(8分)张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x个甲种文具时,需购买y个乙种文具.(1)①当减少购买1个甲种文具时,x= ,y= ;②求y与x之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元,甲、乙两种文具各购买了多少个?24.(8分)如图,PA,PB是⊙O的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥AC.25.(8分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.(8分)已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.27.(11分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB>BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB,PC,得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC,他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.2017年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)(2017•南京)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.36【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=12+3+6=21,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(2分)(2017•南京)计算106×(102)3÷104的结果是()A.103B.107C.108D.109【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】先算幂的乘方,再根据同底数幂的乘除法运算法则计算即可求解.【解答】解:106×(102)3÷104=106×106÷104=106+6﹣4=108.故选:C.【点评】考查了幂的乘方,同底数幂的乘除法,关键是熟练掌握计算法则正确进行计算.3.(2分)(2017•南京)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【考点】I1:认识立体图形.【分析】根据四棱锥的特点,可得答案.【解答】解:四棱锥的底面是四边形,侧面是四个三角形,底面有四条棱,侧面有4条棱,故选:D.【点评】本题考查了认识立体图形,熟记常见几何体的特征是解题关键.4.(2分)(2017•南京)若√3<a<√10,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4【考点】2B:估算无理数的大小.【分析】首先估算√3和√10的大小,再做选择.【解答】解:∵1<√3<2,3<√10<4,又∵√3<a<√10,∴1<a<4,【点评】本题主要考查了估算无理数的大小,首先估算√3和√10的大小是解答此题的关键.5.(2分)(2017•南京)若方程(x ﹣5)2=19的两根为a 和b ,且a >b ,则下列结论中正确的是( )A .a 是19的算术平方根B .b 是19的平方根C .a ﹣5是19的算术平方根D .b+5是19的平方根【考点】22:算术平方根;21:平方根.【分析】结合平方根和算术平方根的定义可做选择.【解答】解:∵方程(x ﹣5)2=19的两根为a 和b ,∴a ﹣5和b ﹣5是19的两个平方根,且互为相反数,∵a >b ,∴a ﹣5是19的算术平方根,故选C .【点评】本题主要考查了平方根和算术平方根的定义,熟记定义是解答此题的关键.一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.记为根号a .6.(2分)(2017•南京)过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( )A .(4,176)B .(4,3)C .(5,176)D .(5,3)【考点】D5:坐标与图形性质.【分析】已知A (2,2),B (6,2),C (4,5),则过A 、B 、C 三点的圆的圆心,就是弦的垂直平分线的交点,故求得AB 的垂直平分线和BC 的垂直平分线的交点即可.【解答】解:已知A (2,2),B (6,2),C (4,5),∴AB 的垂直平分线是x=2+62=4,设直线BC 的解析式为y=kx+b ,把B (6,2),C (4,5)代入上式得{6k +b =24k +b =5, 解得{k =−32b =11, ∴y=﹣32x+11,设BC 的垂直平分线为y=23x+m , 把线段BC 的中点坐标(5,72)代入得m=16, ∴BC 的垂直平分线是y=23x+16,当x=4时,y=176,∴过A 、B 、C 三点的圆的圆心坐标为(4,176).【点评】本题主要考查了待定系数法求一次函数的解析式,求两直线的交点,圆心是弦的垂直平分线的交点,理解圆心的作法是解决本题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)(2017•南京)计算:|﹣3|= 3 ;√(−3)2= 3 .【考点】73:二次根式的性质与化简;15:绝对值.【分析】根据绝对值的性质,二次根式的性质,可得答案.【解答】解:|﹣3|=3,√(−3)2=√32=3,故答案为:3,3.【点评】本题考查了二次根式的性质与化简,利用二次根式的性质是解题关键.8.(2分)(2017•南京)2016年南京实现GDP约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 1.05×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于10500有5位,所以可以确定n=5﹣1=4.【解答】解:10500=1.05×104.故答案为:1.05×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.在实数范围内有意义,则x的取值范围是x≠1 .9.(2分)(2017•南京)分式2x−1【考点】62:分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(2分)(2017•南京)计算:√12+√8×√6= 6√3.【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】先根据二次根式的乘法法则得到原式=2√3+√8×6,然后化简后合并即可.【解答】解:原式=2√3+√8×6=2√3+4√3=6√3.故答案为6√3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.(2分)(2017•南京)方程2x+2﹣1x=0的解是 x=2 .【考点】B3:解分式方程.【分析】先把分式方程转化成整式方程,求出方程的解,最后进行检验即可. 【解答】解:2x+2﹣1x =0,方程两边都乘以x (x+2)得:2x ﹣(x+2)=0, 解得:x=2,检验:当x=2时,x (x+2)≠0, 所以x=2是原方程的解, 故答案为:x=2.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键,注意:解分式方程一定要进行检验.12.(2分)(2017•南京)已知关于x 的方程x 2+px+q=0的两根为﹣3和﹣1,则p= 4 ,q= 3 .【考点】AB :根与系数的关系.【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【解答】解:∵关于x 的方程x 2+px+q=0的两根为﹣3和﹣1, ∴﹣3+(﹣1)=﹣p ,(﹣3)×(﹣1)=q , ∴p=4,q=3. 故答案为:4;3.【点评】本题考查了根与系数的关系,根据根与系数的关系找出﹣3+(﹣1)=﹣p 、(﹣3)×(﹣1)=q 是解题的关键. 13.(2分)(2017•南京)如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 2016 年,私人汽车拥有量年增长率最大的是 2015 年.【考点】VD :折线统计图;VC :条形统计图. 【分析】直接利用条形统计图以及折线统计图分别分析得出答案.【解答】解:由条形统计图可得:该市私人汽车拥有量年净增量最多的是2016年,净增183﹣150=33(万辆),由折线统计图可得,私人汽车拥有量年增长率最大的是:2015年. 故答案为:2016,2015.【点评】此题主要考查了折线统计图以及条形统计图的应用,正确利用图形获取信息是解题关键. 14.(2分)(2017•南京)如图,∠1是五边形ABCDE 的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D= 425 °.【考点】L3:多边形内角与外角.【分析】根据补角 的定义得到∠AED=115°,根据五边形的内角和即可得到结论. 【解答】解:∵∠1=65°, ∴∠AED=115°,∴∠A+∠B+∠C+∠D=540°﹣∠AED=425°, 故答案为:425.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键. 15.(2分)(2017•南京)如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE .若∠D=78°,则∠EAC= 27 °.【考点】M5:圆周角定理;L8:菱形的性质.【分析】根据菱形的性质得到∠ACB=12∠DCB=12(180°﹣∠D )=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论. 【解答】解:∵四边形ABCD 是菱形,∠D=78°, ∴∠ACB=12∠DCB=12(180°﹣∠D )=51°,∵四边形AECD 是圆内接四边形, ∴∠AEB=∠D=78°,∴∠EAC=∠AEB ﹣∠ACE=27°, 故答案为:27.【点评】本题考查了菱形的性质,三角形的外角的性质,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.16.(2分)(2017•南京)函数y 1=x 与y 2=4x 的图象如图所示,下列关于函数y=y 1+y 2的结论:①函数的图象关于原点中心对称;②当x <2时,y 随x 的增大而减小;③当x >0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 ①③ .【考点】G4:反比例函数的性质;F6:正比例函数的性质;R7:坐标与图形变化﹣旋转.【分析】结合图形判断各个选项是否正确即可.【解答】解:①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误; ③结合图象的2个分支可以看出,在第一象限内,最低点的坐标为(2,4),故正确; ∴正确的有①③. 故答案为:①③.【点评】考查根据函数图象判断相应取值;理解图意是解决本题的关键.三、解答题(本大题共11小题,共88分)17.(7分)(2017•南京)计算(a+2+1a )÷(a ﹣1a ). 【考点】6C :分式的混合运算. 【分析】根据分式的加减法和除法可以解答本题. 【解答】解:(a+2+1a )÷(a ﹣1a ) =a 2+2a+1a ÷a 2−1a=(a+1)2a ⋅a(a+1)(a−1)=a+1a−1.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.18.(7分)(2017•南京)解不等式组{−2x ≤6①x >−2②3(x −1)<x +1③请结合题意,完成本题的解答.(1)解不等式①,得 x ≥﹣3 ,依据是: 不等式的性质3 . (2)解不等式③,得 x <2 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集﹣2<x<2 .【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,确定不等式组的解集.【解答】解:(1)解不等式①,得x≥﹣3,依据是:不等式的性质3.(2)解不等式③,得x<2.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为:﹣2<x<2,故答案为:(1)x≥﹣3、不等式的性质3;(2)x<2;(3)﹣2<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(7分)(2017•南京)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD 相交于点O,求证:OE=OF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】连接BE、DF,由已知证出四边形BEDF是平行四边形,即可得出结论.【解答】证明:连接BE、DF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OF=OE.【点评】本题考查了平行四边形的判定与性质;通过作辅助线证明四边形BEDF是平行四边形是解决问题的关键.20.(8分)(2017•南京)某公司共25名员工,下表是他们月收入的资料.月收入/元45000 18000 10000 5500 4800 3400 3000 2200人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是3400 元,众数是3000 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【考点】W5:众数;W2:加权平均数;W4:中位数.【分析】(1)根据中位数的定义把这组数据从小到大排列起来,找出最中间一个数即可;根据众数的定义找出现次数最多的数据即可;(2)根据平均数、中位数和众数的意义回答.【解答】解:(1)共有25个员工,中位数是第13个数,则中位数是3400元;3000出现了11次,出现的次数最多,则众数是3000.故答案为3400;3000;(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资达到了6276元,不恰当;【点评】此题考查了中位数、众数、平均数,掌握中位数、众数、平均数的定义是解题的关键,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,平均数=总数÷个数,众数是出现次数最多的数据.21.(8分)(2017•南京)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:;(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是12(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【考点】X6:列表法与树状图法;X4:概率公式.【专题】11 :计算题.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.【解答】解:(1)第二个孩子是女孩的概率=1;2;故答案为12(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,.所以至少有一个孩子是女孩的概率=34【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.(8分)(2017•南京)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.【点评】本题考查了作图,利用勾股定理的逆定理、圆周角是解题关键.23.(8分)(2017•南京)张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x个甲种文具时,需购买y个乙种文具.(1)①当减少购买1个甲种文具时,x= 99 ,y= 2 ;②求y与x之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元,甲、乙两种文具各购买了多少个?【考点】FH :一次函数的应用. 【分析】(1)①由题意可知x=99,y=2. ②由题意y=2(100﹣x )=﹣2x+200.(2)列出方程组,解方程组即可解决问题. 【解答】解:(1)①∵100﹣1=99, ∴x=99,y=2, 故答案为99,2.②由题意y=2(100﹣x )=﹣2x+200,∴y 与x 之间的函数表达式为y=﹣2x+200.(2)由题意{y =−2x +2005x +3y =540,解得{x =60y =80,答:甲、乙两种文具各购买了60个和80个.【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是理解题意,学会构建一次函数以及方程组解决问题,属于中考常考题型. 24.(8分)(2017•南京)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D . (1)求证:PO 平分∠APC ;(2)连接DB ,若∠C=30°,求证:DB ∥AC .【考点】MC :切线的性质. 【分析】(1)连接OB ,根据角平分线性质定理的逆定理,即可解答;(2)先证明△ODB 是等边三角形,得到∠OBD=60°,再由∠DBP=∠C ,即可得到DB ∥AC . 【解答】解:(1)如图,连接OB ,∵PA ,PB 是⊙O 的切线, ∴OA ⊥AP ,OB ⊥BP , 又OA=OB ,∴PO 平分∠APC ;(2)∵OA ⊥AP ,OB ⊥BP , ∴∠CAP=∠OBP=90°, ∵∠C=30°,∴∠APC=90°﹣∠C=90°﹣30°=60°, ∵PO 平分∠APC ,∴∠OPC=12∠APC=12×60°=30°,∴∠POB=90°﹣∠OPC=90°﹣30°=60°, 又OD=OB ,∴△ODB 是等边三角形, ∴∠OBD=60°,∴∠DBP=∠OBP ﹣∠OBD=90°﹣60°=30°, ∴∠DBP=∠C , ∴DB ∥AC .【点评】本题考查了切线的性质,角平分线的判定,等边三角形的判定和性质,解本题的关键是判断出△ODB 是等边三角形. 25.(8分)(2017•南京)如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】TB :解直角三角形的应用﹣方向角问题. 【分析】如图作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,可得AH=CHtan37°=xtan37°,在Rt △CEH 中,可得CH=EH=x ,由CH ∥BD ,推出AH HD =ACCB,由AC=CB ,推出AH=HD ,可得xtan37°=x+5,求出x 即可解决问题.【解答】解:如图作CH ⊥AD 于H .设CH=xkm , 在Rt △ACH 中,∠A=37°,∵tan37°=CHAH , ∴AH=CHtan37°=xtan37°,在Rt △CEH 中,∵∠CEH=45°, ∴CH=EH=x ,∵CH ⊥AD ,BD ⊥AD , ∴CH ∥BD , ∴AH HD =AC CB,∵AC=CB , ∴AH=HD , ∴x tan37°=x+5,∴x=5⋅tan37°1−tan37°≈15,∴AE=AH+HE=15tan37°+15≈35km ,∴E 处距离港口A 有35km .【点评】本题考查了解直角三角形的应用﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.26.(8分)(2017•南京)已知函数y=﹣x 2+(m ﹣1)x+m (m 为常数). (1)该函数的图象与x 轴公共点的个数是 D . A.0 B.1 C.2 D.1或2(2)求证:不论m 为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上. (3)当﹣2≤m ≤3时,求该函数的图象的顶点纵坐标的取值范围.【考点】HA :抛物线与x 轴的交点;H3:二次函数的性质. 【专题】11 :计算题;535:二次函数图象及其性质. 【分析】(1)表示出根的判别式,判断其正负即可得到结果;(2)将二次函数解析式配方变形后,判断其顶点坐标是否在已知函数图象即可; (3)根据m 的范围确定出顶点纵坐标范围即可.【解答】解:(1)∵函数y=﹣x 2+(m ﹣1)x+m (m 为常数),∴△=(m ﹣1)2+4m=(m+1)2≥0,则该函数图象与x 轴的公共点的个数是1或2, 故选D ;(2)y=﹣x 2+(m ﹣1)x+m=﹣(x ﹣m−12)2+(m+1)24, 把x=m−12代入y=(x+1)2得:y=(m−12+1)2=(m+1)24,则不论m 为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)设函数z=(m+1)24,当m=﹣1时,z 有最小值为0;当m <﹣1时,z 随m 的增大而减小; 当m >﹣1时,z 随m 的增大而增大, 当m=﹣2时,z=14;当m=3时,z=4,则当﹣2≤m ≤3时,该函数图象的顶点坐标的取值范围是0≤z ≤4.【点评】此题考查了抛物线与x 轴的交点,以及二次函数的性质,熟练掌握二次函数的图象与性质是解本题的关键. 27.(11分)(2017•南京)折纸的思考. 【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD (AB >BC )(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出PB ,PC ,得到△PBC . (1)说明△PBC 是等边三角形. 【数学思考】(2)如图④,小明画出了图③的矩形ABCD 和等边三角形PBC ,他发现,在矩形ABCD 中把△PBC 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程. (3)已知矩形一边长为3cm ,另一边长为a cm ,对于每一个确定的a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a 的取值范围. 【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为165cm .【考点】RB :几何变换综合题. 【分析】(1)由折叠的性质和垂直平分线的性质得出PB=PC ,PB=CB ,得出PB=PC=CB 即可; (2)由旋转的性质和位似的性质即可得出答案;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可; (4)证明△AEF ∽△DCE ,得出AEDC =EF CE =14,设AE=x ,则AD=CD=4x ,DE=AD ﹣AE=3x ,在Rt △CDE 中,由勾股定理得出方程,解方程即可. 【解答】(1)证明:由折叠的性质得:EF 是BC 的垂直平分线,BG 是PC 的垂直平分线,∴PB=PC ,PB=CB ,∴PB=PC=CB ,∴△PBC 是等边三角形.(2)解:以3√32点B 为中心,在矩形ABCD 中把△PBC 逆时针方向旋转适当的角度,得到△P 1BC 1; 再以点B 为位似中心,将△△P 1BC 1放大,使点C 1的对称点C 2落在CD 上,得到△P 2BC 2; 如图⑤所示;(3)解:本题答案不唯一,举例如图⑥所示;(4)解:如图⑦所示:△CEF 是直角三角形,∠CEF=90°,CE=4,EF=1,∴∠AEF+∠CED=90°,∵四边形ABCD 是正方形,∴∠A=∠D=90°,AD=CD ,∴∠DCE+∠CED=90°,∴∠AEF=∠DCE ,∴△AEF ∽△DCE ,∴AE DC =EF CE =14,设AE=x ,则AD=CD=4x ,∴DE=AD ﹣AE=3x ,在Rt △CDE 中,由勾股定理得:(3x )2+(4x )2=42,解得:x=45,∴AD=4×45=165; 故答案为:165.【点评】本题是几何变换综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、相似三角形的判定与性质、位似的性质等知识;本题综合性强,难度较大.祝福语祝你考试成功!。

南京2017中考数学试卷(含答案)

南京2017中考数学试卷(含答案)

南京2017中考数学试卷(含答案)南京市2017年初中毕业生学业考试第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.计算12÷(-18)÷(-6)-(-3)×2的结果是()A.7 B.8 C.21 D.362.计算106×(102)÷104的结果是()A.103 B.107 C.104 D.1093.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征。

甲同学:它有4个面是三角形;乙同学:它有8条棱。

该模型的形状对应的立体图形可能是()A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥4.若3<a<10,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<45.若方程(x-5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根 B.b是19的算术平方根 C.a-5是19的算术平方根 D.b+5是19的算术平方根6.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为()A.(4,17/6)B.(4,3)C.(5,6/5)D.(5,3)第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7.计算:-3 ÷ -1/3 = 9;(-3)2=9.8.2016年南京实现GDP约亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示是1.05×104.9.若式子(x-1)2/(x+2)在实数范围内有意义,则x的取值范围是x≠-2.10.计算12+8×6的结果是60.11.方程21/(x+2)=1的解是x=19.12.已知关于x的方程x2+px+q=0的两根为-3和-1,则p=4;q=3.13.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是2015年,私人汽车拥有量年增长率最大的是2013年。

江苏省南京市2017年中考数学真题试题(含答案)

江苏省南京市2017年中考数学真题试题(含答案)

南京市2017年初中毕业生学业考试第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算()()()1218632÷−÷−−−⨯的结果是( ) A . 7 B . 8 C . 21 D .362.计算()3624101010⨯÷的结果是( )A . 310 B . 710 C . 410 D .9103.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( ) A .三棱柱 B .四棱柱 C . 三棱锥 D .四棱锥4.a << ( )A .13a <<B .14a << C. 23a << D .24a << 5.若方程()2519x −=的两根为a 和b ,且a b >,则下列结论中正确的是 ( )A .a 是19的算术平方根B .b 是19的平方根 C.5a −是19的算术平方根 D .5b +是19的平方根 6.过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( ) A .(4,176) B .(4,3) C.(5,176) D .(5,3) 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7.计算:3−= ;= .8.2016年南京实现GDP 约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 . 9.若式子21x −在实数范围内有意义,则x 的取值范围是 .10.计算1286+⨯的结果是 . 11.方程2102x x−=+的解是 . 12.已知关于x 的方程20x px q ++=的两根为-3和-1,则p = ;q = .13.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年.14.如图,1∠是五边形ABCDE 的一个外角,若165∠=︒,则A B C D ∠+∠+∠+∠= .15.如图,四边形ABCD 是菱形,⊙O 经过点,,A C D ,与BC 相交于点E ,连接,AC AE ,若78D ∠=︒,则EAC ∠= .16.函数1y x =与24y x=的图像如图所示,下列关于函数12y y y =+的结论:①函数的图像关于原点中心对称;②当2x <时,随的增大而减小;③当0x >时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17. 计算112a a a a ⎛⎫⎛⎫++÷− ⎪ ⎪⎝⎭⎝⎭. 18. 解不等式组()26,2,31 1.x x x x −≤>−−<+⎧⎪⎨⎪⎩①②③请结合题意,完成本题的解答. (1)解不等式①,得 . (2)解不等式③,得 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .19. 如图,在ABCD 中,点,E F 分别在,AD BC 上,且,,AE CF EF BD =相交于点O .求证OE OF =.20. 某公司共25名员工,下标是他们月收入的资料.月收入/元 45000 18000 10000 5500 4800 3400 5000 2200 人数111361111(1)该公司员工月收入的中位数是 元,众数是 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21. 全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题: (1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ; (2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率. 22.“直角”在初中几何学习中无处不在.如图,已知AOB ∠,请仿照小丽的方式,再用两种不同的方法判断AOB ∠是否为直角(仅限用直尺和圆规).小丽的方法如图,在,OA OB 上分别取点,C D ,以C 为圆心,CD 长为半径画弧,交OB 的反向延长线于点E ,若OE OD =,则90AOB ∠=︒.23.张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具. (1)①当减少购买一个甲种文具时,x =▲,y =▲;②求y 与x 之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?24.如图,,PA PB 是⊙O 的切线,,A B 为切点.连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D .(1)求证:PO 平分APC ∠.(2)连结DB ,若30C ∠=︒,求证//DB AC .25.如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin 370.60,cos370.80,tan 370.75︒≈︒≈︒≈)26.已知函数()21y x m x m =−+−+(m 为常数)(1)该函数的图像与x 轴公共点的个数是( ) A.0 B.1 C.2 D.1或2(2)求证:不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上. (3)当23m −≤≤时,求该函数的图像的顶点纵坐标的取值范围. 27. 折纸的思考. 【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片()ABCD AB BC >(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出,PB PC ,得到PBC ∆.(1)说明PBC ∆是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD 中把PBC ∆经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm ,另一边长为acm .对于每一个确定的a 的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a 的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.试卷答案一、选择题1-5:CCDBC 6:A 二、填空题7.3,3. 8.41.0510⨯. 9.1x ≠. 10.6. 11.2x =. 12.4,3 13.2016,2015. 14.425. 15.27. 16.①③. 三、解答题 17.解:112a a a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝++÷⎭− 22211a a a a a ++−=÷22211a a aa a ++=⋅− ()()()2111a aaa a +=⋅+−11a a +=−. 18.(1)3x ≥−.不等式两边乘(或除以)同一个负数,不等号的方向改变. (2)2x <. (3)(4)22x −<<.19.证明:∵四边形ABCD 是平行四边形, ∴//,AD BC AD BC =.∴,EDO FBO DEO BFO ∠=∠∠=∠. ∵AE CF =,∴AD AE CB CF −=−,即DE BF =. ∴DOE BOF ∆∆≌. ∴OE OF =.20.解(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势. 21.解:(1)12. (2)乙家庭没有孩子,准备生两个孩子,所有可能出现的结果有:(男,男)、(男,女)、(女,男)、(女,女),共有4种,它们出现的可能性相同.所有的结果中,满足“至少有一个是女孩”(记为事件A )的结果有三种,所以()34P A =. 22.本题答案不惟一,下列解法供参考,例如,方法1:如图①,在,OA OB 上分别截取4,3OC OD ==.若5CD =,则90AOB ∠=︒.方法2:如图②,在,OA OB 上分别取点,C D ,以CD 为直径画圆.若点O 在圆上,则90AOB ∠=︒. 23.解:(1)①99,2.②根据题意,得()21002200y x x =−=−+. 所以y 与x 之间的函数表达式为2200y x =−+.(2)根据题意,得2200,53540.y x x y =−+⎧⎨+=⎩解得60,80.x y =⎧⎨=⎩答:甲、乙两种文具各购买了60个和80个. 24.证明:(1)如图,连接OB .∵,PA PB 是⊙O 的切线, ∴,OA AP OB BP ⊥⊥, 又OA OB =, ∴PO 平分APC ∠.(2)∵,AO AP OB BP ⊥⊥,∴90CAP OBP ∠=∠=︒.∵30C ∠=︒,∴90903060APC C ∠=︒−∠=︒−︒=︒.∵PO 平分APC ∠, ∴11603022OPC APC ∠=∠=⨯︒=︒, ∴90903060POB OPC ∠=︒−∠=︒−︒=︒.又OD OB =,∴ODB ∆是等边三角形.∴60OBD ∠=︒.∴906030DBP OPB OBD ∠=∠−∠=︒−︒=︒.∴DBP C ∠=∠.∴//DB AC .25.解:如图,过点C 作CH AD ⊥,垂足为H .设CH xkm =.在Rt ACH ∆中,37A ∠=︒ , ∵tan 37CH AH︒=, ∴tan 37tan 37CH x AH ==︒︒. 在Rt CEH ∆中,45CEH ∠=︒ , ∵tan 45CH EH︒=, ∴tan 45CH EH x ==︒. ∵,CH AD BD AD ⊥⊥,∴90AHC ADB ∠=∠=︒.∴//HC DB . ∴BAH HD AC C =. 又C 为AB 的中点,∴AC CB =.∴AH HD =. ∴tan 375x x ︒=+. ∴5tan 3750.75151tan 3710.75x ⨯︒⨯=≈=−︒−. ∴()151535tan 37AE AH HE km =+=+≈︒. 因此,E 处距离港口A 大约为35km .26.解:(1)D .(2)()()22211124m m y x m x m x ⎛⎫ ⎪⎝+−=−+−+=−−+⎭, 所以该函数的图像的顶点坐标为()211,24m m ⎛⎫ ⎝+ −⎪⎪⎭. 把x =12m −代入()21y x =+,得()2211124m m y ⎛⎫ ⎪⎭=⎝+−=+. 因此,不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上. (3)设函数z =()214m +.当1m =−时,z 有最小值0.当1m <−时,z 随m 的增大而减小;当1m >−时,z 随m 的增大而增大.又当2m =−时,()221144z −+==;当3m =时,()23144z +==. 因此,当23m −≤≤时,该函数的的图像的顶点纵坐标的取值范围是04z ≤≤.27.解:(1)由折叠,,PB PC BP BC == ,因此,PBC ∆是等边三角形.(2)本题答案不惟一,下列解法供参考.例如,如图,以点B 为中心,在矩形ABCD 中把PBC ∆逆时针方向旋转适当的角度,得到11PBC ∆;再以点B 为位似中心,将11PBC ∆放大,使点1C 的对应点2C 落在CD 上,得到22PBC ∆. (3)本题答案不惟一,下列解法供参考,例如,3302a <≤ 33223a <<23a ≥(4)165.。

2017学年南京市区一模数学模拟练习卷与答案

2017学年南京市区一模数学模拟练习卷与答案

B
. (a2)3 a5
C
. a2 a3 a5
D . a6 a2 a4
4.下列说法属于不可能事件的是( A.存在实数 x 满足 x2+1=0
▲) B
.内错角相等
C.对角线相等的菱形是正方形
D
.四边形的内角和为 360°
5.如图,△ ABC中,∠ A=78°, AB=4,AC=6.将△ ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角
10 小题,每小题 2 分,共计 20 分.不需写出解答过程,请把答案直接填写在答题 ..
7. 20 = ▲ ; 2 2 = ▲ .
8.使式子 x 1有意义的 x 的取值范围是
▲.
9.计算 1 2
3
2
的结果是
2
▲.
. ..
.
10.分解因式: x 1 x 3 4 = ▲ .
11.分式方程 2
1 的根是

次与△ ABC三边所在的直线相切;
( 2)求⊙ O在运动的过程中与线段. .AB只有一个公共点时 t 的值或取值范围. (O)
. ..
(第 25 题)
.
26.( 8 分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为
两车之间的距离为 y km,图中的折线表示 y 与 x 之间的函数关系.根据图像解决下列问题:
( 1)慢车的速度为
▲ km/h ,快车的速度为
▲ km/h ;
( 2)求线段 CD所表示的 y 与 之间的距离为 200 km?
x h,
(第 26 题)
27.( 11 分)
【问题提出】
探索图形问题一般需要经历操作、观察、猜想、验证等活动过程

【南京】2017年南京联合体数学一模(有解析)+(答案)

【南京】2017年南京联合体数学一模(有解析)+(答案)

2017年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算41-+的结果是 的结果是 的结果是( ). A .5- B .3-C .3D .5【答案】C【解析】14111313-+=-=.2.计算23()xy -的结果是 的结果是( ). A .36x y B .36x y -C .45x y -D .45x y【答案】B【解析】2333233()(1)6xy x y x y ⨯-=-⋅⋅=-.3 ). A .2 B .3C .4D .5【答案】C【解析】22=345=44.如图,直线123l l l ∥∥,直线AC 分别交1l ,2l ,3l 于点A ,B ,C ;直线DF ;分别交1l ,2l ,3l 于点D ,E ,F .AC 与DF 相交于点H ,且 2AH =, 1HB =, 5BC =,则DEEF的值为( ).A .23B .25C .13D .35【答案】D【解析】∵123l l l ∥∥. ∴DAH ABE ∠=∠. ∴ADH DEB ∠=∠. ∴ADH BEH ∽△△. ∴12EH HB DH AH ==. ∴2DH EH =.同理可证得ADH CFH ∽△△. ∴2163DH AH AH HF HC HB BC ====+. ∴36HF DH EH ==. ∴3355DEDH EH EH EF HF EH EH +===-.5.若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差,则x 的值可以为( ). A .12 B .10C .2D .0【答案】A【解析】5、7、9、11、13,方差2222242024=5++++.当10x =时,第一组数据方差2222242024=5++++,与第二组数据方差相等.当0x =时,第一组数据方差2222242024=5++++,与第二组数据方差相等.当2x =时,第一组数据方差22222(2.2)(2.2)(0.4)(1.6)(3.6)=5++++,小于第二组数据方差.当12x =时,第一组数据方差22222(4.4)(2.4)(0.4)(1.6)(3.6)=5++++,大于第二组数据方差.6.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC △的角平分线,若4CD =,12AC =,则ABC △的面积l 3l 2l 1H FE ABCD为( ).A .48B .50C .54D .60【答案】C 【解析】∵AD 为A ∠的平分交CB 于D 点. ∴过点D 向AB 作垂线交AB 于M . ∴4CD DM ==.又∵CAD DAM ∠=∠,90C AMD ∠=∠=︒. ∴ADC △≌ADM △. ∴12AM AC ==. 设MB 长为x .则DB又∵B B ∠=∠,90DMB C ∠=∠=︒. ∴DMB ACB ∽△△. ∴DM MBAC CB=.13=,解得3x =. ∴5DB =. ∴9CB =. ∴1=129=542ABC S ⨯⨯△. ABCD441212ABCDM二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是__________;9的立方根__________.【答案】3±【解析】∵2(3)9±=. ∴9的平方根为3±.求一个数的立方根的运算,则开立方a8x 的取值范围是__________. 【答案】1x -≥ 【解析】∵10x +≥. ∴1x -≥.9.2016年南京全市完成社会固定资产投约55000000万元,将55000000用科学记数法表示为__________. 【答案】75.510⨯【解析】把一个数字记为10n a ⨯的形式(1<10a ≤,n 为整数),这种记数法叫做科学计数法.10.分解因式3269x x x ++的结果是__________. 【答案】2(3)x x + 【解析】3269x x x ++.2=(69)x x x ++. 2=(3)x x +.11的结果是__________....12.已知关于x 的方程230x x m -+=的一个根是2,则它的另一个根是__________,m 的值是__________. 【答案】1,2【解析】230x x m -+=,一个根是2. ∴23m x x =-+.=2.∴m 值为2. ∴2320x x -+=.(2)(1)0x x --=.1221x x =⎧⎨=⎩ ∴另一个x 值为1.13.如图,A C ∠=∠,只需补充一个条件__________,就可得ABD △≌CDB △.【答案】答案不唯一【解析】只要可以得到ABD CDB ∽△△即可,如DD AB ∥或AD BC ∥或CDB DBA ∠=∠等条件.14.如图,在ABC △中,AB 、AC 的垂直平分线1l 、2l 相交于点O ,若BAC ∠等于82︒,则 OBC ∠=__________︒.【答案】8 【解析】DCBA2B连接AO .∵1l 、2l 分别为AB 、AC 的中垂线. ∴OB OA =,OA OC =. ∴OB OC =. ∴OAB ABO ∠=∠. O A C A C O ∠=. O B C O C B ∠=∠.∴=180OBC BAC ABO ACO OCB ∠︒-∠-∠-∠-∠.=180()BAC ABO ACO OBC ︒-∠-∠+∠-∠.180BAC BAC OBC =︒-∠-∠-∠.∴2180OBC BAC BAC ∠=︒-∠-∠. 1808888=︒-︒-︒. 16=︒.∴8OBC ∠=︒.15.已知点(1,2)A --在反比例函数ky x=的图像上,则当1x >时,y 的取值范围是__________. 【答案】0<<2y【解析】∵(1,2)A --,在ky x=上. ∴(1)(2)2k =-⨯-=. ∴2y x=. 当1x =时,2y =. ∴0<<2y .16.如图,在半径为2的⊙O 中,弦2AB =,⊙O 上存在点C ,使得弦AC =,则B O C =∠________︒.l 2l 1ABC【答案】30︒或150︒ 【解析】连接OB .∵半径2OA =,2AB =,2OB =. ∴60AOB ∠=︒.过O 点向AC 做垂线,交AC 于M 点.又AC =∵.∴MC =∴OM = ∴45MOC ∠=︒. ∴90COA ∠=︒.∴906030BOC ∠=︒-︒=︒.同理可求得=90AOC ∠︒. BOC BOA AOC ∠=∠+∠. =6090︒+︒. =150︒.BMOABC 60°O ABC三、解答题(本大共11小题,共88分。

南京市秦淮区2017-2018学年第二学期九年级数学一模试卷(word版)

南京市秦淮区2017-2018学年第二学期九年级数学一模试卷(word版)

2017~2018学年度第二学期第一阶段学业质量监测试卷一、选择题(本大题共6小题,每小题2分,共12分) 1)A .3B .-3C .9D .-92.据某数据库统计,仅2018年第一个月,区块链行业融资额就达到680 000 000元.将680 000 000用科学记数法表示为( ) A .0.68×109B .6.8×107C .6.8×108D .6.8×1093.下列计算正确的是( )A .a 3+a 2=a 5 B .a 10÷a 2=a 5C .(a 2)3=a 5D .a 2⋅a 3=a 54.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是( ) A .平均数、中位数 B .众数、中位数 C .平均数、方差D .中位数、方差5.将二次函数y x =-2的图像向右平移2个单位长度,再向上平移3个单位长度,所得图像的函数表达式为( ) A .()y x =--+223 B .()y x =---223 C .()y x =-++223D .()y x =-+-2236.如图,在平面直角坐标系中,□ABCD 的顶点坐标分别为A (3.6,a ),B (2,2), C (b ,3.4),D (8,6),则a b +的值为( ) A .8 B .9 C .10D .11二、填空题(本大题共10小题,每小题2分,共20分) 7.-3的相反数是 ;-3的倒数是 .8在实数范围内有意义,则x 的取值范围是 .9.计算的结果是 .10.方程 x x=-2 的解是 .11.若关于x 的一元二次方程的两个根x 1,x 2满足x x +=123,x x =122,则这个方程是 .(写出 一个..符合要求的方程) 12.将函数y x =的图像绕坐标原点O 顺时针旋转13.已知⊙O 的半径为10cm ,弦AB ∥CD ,AB =12cm ,CD =16cm ,则AB 和CD 的距离为 cm . 14.在照明系统模拟控制电路实验中,研究人员发现光敏电阻值R (单位:Ω)与光照度E (单位:lx )之的函数表达式为.16.如图,在正方形ABCD 中,E 是BC 上一点,BE =13BC ,连接AE ,作BF ⊥AE ,分别与AE 、CD 交于点K 、F ,G 、H 分别在AD 、AE 上,且四边形KFGH 是矩形,则HGAB = .三、解答题(本大题共11小题,共88分)17.(6分)计算()b aa b a b a b -÷--+221.18.(8分)解一元二次不等式x ->240.请按照下面的步骤,完成本题的解答. 解:x ->240可化为()()x x +->220.(1)依据“两数相乘,同号得正”,可得不等式组①x x +>⎧⎨->⎩2020或不等式组② .(2)解不等式组①,得 .(3)解不等式组②,得 .(4)一元二次不等式x ->240的解集为 .19.(8分)已知关于x 的一元二次方程()()x m x m ---=220(m 为常数). (1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m 的值. (第15题)(第16题)20.(8分)如图,在□ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,连接EF .求证:四边形ABEF 是菱形.21.(8分)中国的茶文化源远流长,根据制作方法和茶多酚氧化(发酵)程度的不同,可分为六大类:绿茶(不发酵)、白茶(轻微发酵)、黄茶(轻发酵)、青茶(半发酵)、黑茶(后发酵)、红茶(全发酵).春节将至,为款待亲朋好友,小叶去茶庄选购茶叶.茶庄有碧螺春、龙井两种绿茶,一种青茶——武夷岩茶及一种黄茶——银针出售.(1)随机购买一种茶叶,是绿茶的概率为 ; (2)随机购买两种茶叶,求一种是绿茶、一种是银针的概率.22.(8分)如图,甲、乙两人在一次射击比赛中击中靶的情况(击中靶中心“×”所在的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数),每人射击了6次. (1)请选择适当的统计图描述甲、乙两人成绩;(2)请你运用所学的统计知识做出分析,从两个不同角度评价甲、乙两人的打靶成绩. ABCDEF(第20题)甲射击的靶乙射击的靶(第22题)23.(8分)某商场在“双十一”促销活动中决定对购买空调的顾客实行现金返利.规定每购买一台空调,商场返利若干元.经调查,销售空调数量y 1(单位:台)与返利x (单位:元)之间的函数表达式为y x =+1800.每台空调的利润y 2(单位:元)与返利x 的函数图像如图所示.(1)求y 2与x 之间的函数表达式;(224.(8分)一铁棒欲通过一个直角走廊.如图,是该铁棒紧挨着墙角E 通过时的两个特殊位置:当铁棒位于AB 位置时,它与墙面OG 所成的角∠ABO =51°18′;当铁棒底端B 向上滑动1m(即BD =1m)到达CD 位置时,它与墙面OG 所成的角∠CDO =60°,求铁棒的长. (参考数据:sin 51°18′≈0.780,cos 51°18′≈0.625,tan 51°18′≈1.248)25.(8分)如图,在Rt △ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,以D 为圆心,DC 为半径作⊙D ,交AD 于点E .(1)判断直线AB 与⊙D 的位置关系并证明. (2)若AC =1,求CE 的长.y 2/(第23题)AB D(第25题) E(第24题)A OB CDEG26.(9分)书籍开本有数学开本指书刊幅面的规格大小.如图①,将一张矩形印刷用纸对折后可以得到2开纸,再对折得到4开纸,以此类推可以得到8开纸、16开纸…… 若这张矩形印刷用纸的短边长为a .(1)如图②,若将这张矩形印刷用纸ABCD (AB BC )进行折叠,使得BC 与AB 重合,点C 落在点F 处,得到折痕BE ;展开后,再次折叠该纸,使点A 落在E 处,此时折痕恰好经过点B ,得到折痕BG ,求ABBC的值.(2)如图③,2开纸BCIH 和4开纸AMNH 的对角线分别是HC 、HM .说明HC ⊥HM .(3)将图①中的2开纸、4开纸、8开纸和16开纸按如图④所示的方式摆放,依次连接点A 、B 、M 、I ,则四边形ABMI 的面积是 .(用含a 的代数式表示)2开 4开8开16开 ①②A BCD FEG③… ④MIAB2开4开8开16开27.(9分)【数学概念】若四边形ABCD的四条边满足AB⋅CD=AD⋅BC,则称四边形ABCD是和谐四边形.【特例辨别】(1)下列四边形:①平行四边形,②矩形,③菱形,④正方形.其中一定是和谐四边形的是.【概念判定】(2)如图①,过⊙O外一点P引圆的两条切线PS、PT,切点分别为A、C,过点P作一条射线PM,分别交⊙O于点B、D,连接AB、BC、CD、DA.求证:四边形ABCD是和谐四边形.①【知识应用】(3)如图②,CD是⊙O的直径,和谐四边形ABCD内接于⊙O,且BC=AD.请直接写出AB与CD 的关系.②2017~2018学年度第二学期第一阶段学业质量监测试卷九年级数学参考答案及评分标准一、选择题二、填空题(每小题2分,共20分)7.3;-138.x ≥1 9..x =3 11.答案不唯一,如x x -+=232012.y x =- 13.2或14 14.R E=3015.40 16三、解答题(本大题共11小题,共计88分) 17.(本题6分)解:()b aa b a b a b-÷--+221 ()()()()()a b b a a b a b a b a b a b+=-÷+-+-+ ······································································ 2分 ()()a a ba b a b a +=⋅+- ··························································································· 4分a b=-1. ··········································································································· 6分18.(本题8分)解:(1)x x +<⎧⎨-<⎩2020; ·································································································· 2分(2)x >2; ········································································································ 4分(3)x <-2;······································································································· 6分 (4)x >2或x <-2. ···························································································· 8分19.(本题8分)解:(1)原方程可化为()x m x m m -+++=222220. ························································· 1分因为a =1,()b m =-+22,c m m =+22, ···························································· 2分 所以[()]()b ac m m m -=-+-+=>2224224240. ··················································· 3分 所以不论m 为何值,该方程总有两个不相等的实数根. ········································· 4分 (2)因为一个根为3,将x =3代入()()x m x m ---=220,得()()m m ---=23230.解这个方程,得m =13,m =21.所以m 的值为3或1. ···················································································· 8分20.(本题8分)证明:∵∠BAD 的平分线交BC 于点E ,∴∠BAE =∠EAF . ·························································································· 1分∵四边形ABCD 是平行四边形,∴AD ∥BC , ··································································································· 2分∴∠BAE =∠AEB ,∴AB =BE . ··································································································· 4分 同理,AB =AF . ····························································································· 5分 ∴BE =AF . ·································································································· 6分 ∵AD ∥BC ,∴四边形ABEF 是平行四边形. ·········································································· 7分 ∵AB =BE ,∴□ABEF 是菱形. ························································································· 8分21.(本题8分) 解:(1)12. ············································································································ 2分(2)随机购买两种茶叶,所有可能出现的结果有:(碧螺春,龙井)、(碧螺春,武夷岩茶)、(碧螺春,银针)、(龙井,武夷岩茶)、(龙井,银针)、(武夷岩茶,银针),共有6种,它们出 现的可能性相同.所有的结果中,满足“一种是绿茶、一种是银针”(记为事件A )的结果有2种,所以()P A ==2163. ················································································ 8分22.(本题8分)解:(1)图略.(注:统计图的标题不写不扣分) ····························································· 2分 (2)答案不唯一,如从数据的集中程度——平均数看,x +++++==甲1010998896(环); ·································································· 3分 x +++++==乙1010999796(环). ·································································· 4分 因为x x =甲乙,所以两人成绩相当. ··································································· 5分从数据的离散程度——方差看,S 2甲()()()()()()-+-+-+-+-+-==22222210910999998989263(环2); ··················· 6分 S 2乙=()()()()()()-+-+-+-+-+-==2222221091099999997916(环2); ················· 7分 因为S 2甲<S 2乙,所以乙比甲成绩稳定,乙的成绩较好. ············································ 8分23.(本题8分)解:(1)设y kx b =+2.根据题意,得k b b +=⎧⎨=⎩200160200.解得k b ⎧=-⎪⎨⎪=⎩15200.······························································································ 3分 所以y x =-+212005. ····················································································· 4分(2)设该商场销售空调的总利润为w 元.根据题意,得()()()w x x x =+-+=--+21180020010016200055.······························· 7分当x =100时,w 的值最大,最大值是162000.所以商场每台空调返利100元时,总利润最大,最大总利润为162000元. ················ 8分24.(本题8分)解:设铁棒的长为x m .在Rt △AOB 中,cos ∠ABO OB AB=, ········································································· 1分 ∴OB =AB ·cos ∠ABO =x ·cos 60°x =12. ····································································· 3分 在Rt △COD 中,cos ∠CDO ODCD =, ········································································· 4分∴OD =CD ·cos ∠CDO =x ·cos 51°18′.x ≈0625. ··························································· 6分 ∵BD =OD -OB ,∴.x x -=1062512. ······························································································ 7分解这个方程,得x =8.答:该铁棒的长为8m . ······························································································ 8分 25.(本题8分)解:(1)AB 与⊙D 相切. ·········································· 1分证明:过点D 作DF ⊥AB ,垂足为F . ·············· 2分 ∵AD 是Rt △ABC 的角平分线,∠C =90°,∴DF =DC ,················································ 3分 即d =r ,∴AB 与⊙D 相切. ······································· 4分(2)∵∠C =90°,AC =BC =1,∴∠BAC =∠B =45°,AB = ∵DF ⊥AB ,∴∠BDF =∠B =45°,∴BF =DF . ∵AB 、AC 分别与⊙D 相切,∴AF =AC =1. 设⊙D 的半径为r .易得BF =1,BD r =-1,)r =-11,∴r 1. ·································································· 6分 ∵AD 是Rt △ABC 的角平分线,∠BAC =45°,∴∠DAC =12∠BAC =22.5°.又∵∠C =90°,∴∠CDE =67.5°. ··································································· 7分∴CE l =. ······························································· 8分26.(本题9分)解:(1)∵四边形ABCD 是矩形,∴∠ABC =∠C =90°.∵第一次折叠使点C 落在AB 上的F 处,并使折痕经过点B , ∴∠CBE =∠FBE =45°,∴∠CBE =∠CEB =45°,∴BC =CE =a ,BE =. ·············································································· 2分 ∵第二次折叠纸片,使点A 落在E 处,得到折痕BG ,∴AB =BE,∴ABBC= ······································································· 3分 (2)根据题意和(1)中的结论,有AH =BH =,AM a =12.AM AH ABDEF∵四边形ABCD是矩形,∴∠A=∠B=90°,∴△MAH∽△HBC, ···························5分∴∠AHM=∠BCH.·······················································································6分∵∠BCH+∠BHC=90°,∴∠AHM+∠BHC=90°,∴∠MHC=90°,∴HC⊥HM. ································································································7分(32. ····································································································9分27.(本题9分)解:(1)③④. ·········································································································2分(说明:只答对1个得1分,答错一个不给分)(2)证明:连接CO并延长,交⊙O于点E,连接BE.∵PT是⊙O的切线,切点为C,∴∠PCE=90°.∴∠PCB+∠ECB=90°.∵CE是⊙O的直径,∴∠CBE=90°,∴∠BEC+∠ECB=90°,∴∠BEC=∠PCB.又∵∠BEC=∠BDC,∴∠PCB=∠BDC.又∵∠BPC=∠CPD,∴△PBC∽△PCD,∴CB PCCD PD=.······················································································3分同理,AB PAAD PD=. ···············································································4分∵P A、PC为⊙O的切线,∴P A=PC, ·························································································5分∴CB AB CD AD=.∴AB⋅CD=AD⋅BC.∴四边形ABCD是和谐四边形. ······························································6分(3)AB∥CD,CD=3AB. ···················································································9分(说明:结论“AB∥CD”1分,“CD=3AB”2分)。

南京2017初中中考数学试卷习题包括答案.docx

南京2017初中中考数学试卷习题包括答案.docx

精品文档南京市 2017 年初中毕业生学业考试第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 .1.计算 12 18 63 2 的结果是() A . 7B . 8C . 21D .362.计算 106 10 2 3104 的结果是( )A . 103B . 107C . 104D . 1093.不透明袋子中装有一个几何体模型, 两位同学摸该模型并描述它的特征 .甲同学:它有 4 个面是三角形;乙间学:它有 8 条棱 .该模型的形状对应的立体图形可能是 ( )A .三棱柱B .四棱柱C . 三棱锥D .四棱锥4.若 3a10 ,则下列结论中正确的是()A . 1 a 3B . 1 a 4 C. 2 a 3D . 2 a 4 若方程 x 5219 的两根为 a 和 b ,且 a b ,则下列结论中正确的是 ( )5.A . a 是 19 的算术平方根B . b 是 19 的平方根C. a 5 是 19 的算术平方根D . b 5 是19 的平方根6.过三点 A (2,2), B (6,2), C (4,5)的圆的圆心坐标为( )A .(4,17)B .(4,3)C.(5,17)D .(5, 3)66第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)7.计算:332;.8.2016 年南京实现 GDP 约 10500 亿元,成为全国第 11 个经济总量超过万亿的城市,用科学记数法表示 10500 是 .9.若式子x 2 在实数范围内有意义,则 x 的取值范围是.110.计算 12 8 6 的结果是 .11.方程 21 0 的解是.2 xx12.已知关于x的方程x2px q 0 的两根为-3和-1,则 p;q.13.下面是某市 2013~2016 年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.14.如图, 1 是五边形ABCDE的一个外角,若 1 65 ,则A B C D.15.如图,四边形 ABCD 是菱形,⊙ O 经过点A,C , D,与 BC 相交于点 E ,连接AC , AE,若D 78 ,则EAC.16.函数y1x 与 y24的图像如图所示,下列关于函数y y1y2的结论:①函数的图像关于x原点中心对称;②当 x 2 时,随的增大而减小;③当 x 0 时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算 a 21a1.a a2x6, ①18. 解不等式组x2, ②3 x 1 x 1.③请结合题意,完成本题的解答.( 1)解不等式①,得.( 2)解不等式③,得.( 3)把不等式①,②和③的解集在数轴上表示出来.( 4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19. 如图,在ABCD 中,点E, F分别在AD, BC上,且AE CF , EF , BD 相交于点O .求证OE OF .20.某公司共 25 名员工,下标是他们月收入的资料 .月收入 /元45000180001000055004800340050002200人数111361111( 1)该公司员工月收入的中位数是元,众数是元.( 2)根据上表,可以算得该公司员工月收入的平均数为6276 元 .你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.全面两孩政策实施后,甲,乙两个家庭有了各自的规划 .假定生男生女的概率相同,回答下列问题:( 1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;( 2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.“直角”在初中几何学习中无处不在 .如图,已知 AOB ,请仿照小丽的方式,再用两种不同的方法判断 AOB 是否为直角(仅限用直尺和圆规) .小丽的方法如图,在 OA, OB 上分别取点 C , D ,以C为圆心,CD长为半径画弧,交OB 的反向延长线于点E ,若OE OD,则AOB 90 ..文具的购买品种,每减少购买 1 个甲种文具,需增加购买 2 个乙种文具 .设购买x个甲种文具时,需购买 y 个乙种文具 .( 1)①当减少购买一个甲种文具时,x▲,y▲;②求 y 与x之间的函数表达式 .(2)已知甲种文具每个 5 元,乙种文具每个 3 元,张老师购买这两种文具共用去 540 元 .甲,乙两种文具各购买了多少个?24.如图,PA, PB是⊙ O 的切线,A, B为切点 .连接 AO 并延长,交 PB 的延长线于点 C ,连接 PO ,交⊙ O 于点D .(1)求证: PO 平分 APC .()连结 DB ,若C30 ,求证 DB / / AC.225.如图,港口B位于港口A的南偏东 37 方向,灯塔 C 恰好在AB的中点处,一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行 5 km ,到达E处,测得灯塔 C 在北偏东 45 方向上 .这时,E处距离港口A有多远?(参考数据: sin370.60,cos370.80, tan370.75 )26.已知函数 y x2m 1 x m (m为常数)( 1)该函数的图像与x 轴公共点的个数是()A.0B.1 C.2 D.1 或 2( 2)求证:不论m为何值,该函数的图像的顶点都在函数y x12的图像上 .( 3)当 2 m 3 时,求该函数的图像的顶点纵坐标的取值范围 .27.折纸的思考 .用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD AB BC (图①),使 AB 与 DC 重合,得到折痕EF ,把纸片展平(图②) .第二步,如图③,再一次折叠纸片,使点 C 落在EF上的P处,并使折痕经过点 B ,得到折痕BG ,折出PB, PC,得到PBC .( 1)说明PBC 是等边三角形 .【数学思考】( 2)如图④ .小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD 中把PBC 经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程 .(3)已知矩形一边长为 3 cm,另一边长为acm .对于每一个确定的a的值,在矩形中都能画出最大的等边三角形 .请画出不同情形的示意图,并写出对应的a的取值范围 .【问题解决】(4)用一张正方形铁片剪一个直角边长分别为 4 cm和 1 cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm .精品文档试卷答案一、选择题1-5:CCDBC 6:A二、填空题7.3,3. 8.1.05 104 .9. x 1.10.6.11. x 2 .12.4,313.2016,2015.14.425.15.27.16.①③ .三、解答题17.解: a21 1aaaa 22a 1 a 2 1aaa 22a 1 aaa 2 1a2a1a a 1 a 1a 1 . a118.(1) x3 .不等式两边乘(或除以)同一个负数,不等号的方向改变 .( 2) x 2 . ( 3)( 4) 2 x 2 .19.证明:∵四边形 ABCD 是平行四边形,∴ AD / /BC , ADBC .∴ EDOFBO , DEO BFO .∵ AE CF ,精品文档∴DOE≌ BOF .∴OE OF .20.解( 1) 3400, 3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大 .该公司员工月收入的中位数是 3400 元,这说明除去收入为 3400 元的员工,一半员工收入高于 3400 元,另一半员工收入低于 3400 元 .因此,利用中位数可以更好地反映这组数据的集中趋势 .21.解:(1)1 . 2(2)乙家庭没有孩子,准备生两个孩子,所有可能出现的结果有:(男,男)、(男,女)、(女,男)、(女,女),共有 4 种,它们出现的可能性相同 .所有的结果中,满足“至少有一个是女孩”(记为事件 A )的结果有三种,所以P A 3 .422.本题答案不惟一,下列解法供参考,例如,方法 1:如图①,在OA, OB上分别截取OC4, OD 3 .若CD 5 ,则 AOB 90 .方法 2:如图②,在OA, OB上分别取点C , D,以 CD 为直径画圆 .若点 O 在圆上,则AOB 90 .23.解:(1)① 99,2.②根据题意,得 y 2 100 x 2 x200.所以 y 与x之间的函数表达式为y2x 200 .y2x200,( 2)根据题意,得解得5x 3y540.x 60,y80.答:甲、乙两种文具各购买了60 个和 80 个.24.证明:( 1)如图,连接 OB .∵ PA, PB 是⊙O的切线,∴OA AP,OB BP ,又OA OB ,∴PO 平分 APC .( 2)∵AO AP, OB BP ,∴CAPOBP 90 .∵ C 30 ,∴APC 90 C 90 30 60 .∵PO 平分 APC ,∴116030 ,OPC APC22∴POB 90OPC9030 60 .又OD OB ,∴ODB 是等边三角形 .∴OBD 60 .∴DBPOPB OBD 90 60 30 .∴ DBP C .∴ DB / / AC .25.解:如图,过点 C 作 CH AD ,垂足为 H .设 CH xkm . 在 Rt ACH 中, A 37,∵ tan 37CH ,AH∴ AHCH x .tan 37tan37在 Rt CEH 中, CEH45 ,∵ tan 45CH ,EH∴ EHCH x .tan 45∵ CHAD , BDAD ,∴ AHCADB 90 .∴ HC / / DB .∴AH AC .HD CB又 C 为 AB 的中点, ∴ AC CB .∴ AH HD .∴xx5.tan 37∴ x5 tan 375 0.751 tan 37 1 15 .0.75∴ AEAH HE15 35 km .15tan 37因此, E 处距离港口 A 大约为 35 km .26.解:(1) D .2 2( ) yx 2m 1 x mx m 1 m 1,224m 1 m 2所以该函数的图像的顶点坐标为1.,422m2把 xm 1代入 y2m 1 11x 1 ,得 y.因此,不论 m 为何值,该函数的图像的顶点都在函数y x 12的图像上 .m21( 3)设函数z.4当 m1时,z有最小值 0.当 m1时,z随m的增大而减小;当 m1时,z随m的增大而增大 .2232又当 m 2 时, z11;当 m 3 时, z144.44因此,当 2 m 3时,该函数的的图像的顶点纵坐标的取值范围是0 z 4 .27.解:(1)由折叠,PB PC, BP BC,因此,PBC 是等边三角形 .( 2)本题答案不惟一,下列解法供参考.例如,如图,以点 B 为中心,在矩形ABCD 中把PBC 逆时针方向旋转适当的角度,得到PBC ;11再以点 B 为位似中心,将1 1 放大,使点 1 的对应点C 2落在CD上,得到 2 2.PBC C P BC ( 3)本题答案不惟一,下列解法供参考,例如,3 33 3a 2 30 a2a 2 32( 4)16.5。

2017年南京中考数学模拟试题及答案解析

2017年南京中考数学模拟试题及答案解析

2017年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算的结果是 的结果是 的结果是( ).A .B .C .D .【答案】C【解析】.2.计算的结果是 的结果是( ). A .B .C .D .【答案】B 【解析】.3).A .B .C .D .【答案】C【解析】,,,4.如图,直线,直线分别交,,于点,,;直线;分别交,,于点,,.与相交于点,且,,,则的值为( ). 41-+5-3-3514111313-+=-=23()xy -36x y 36x y -45x y -45x y 2333233()(1)6xy x y x y ⨯-=-⋅⋅=-2345223=4=54123l l l ∥∥AC 1l 2l 3l A B C DF 1l 2l 3l D E F AC DF H 2AH = 1HB = 5BC =DE EFA .B .C .D . 【答案】D【解析】∵.∴.∴.∴. ∴. ∴.同理可证得. ∴. ∴.∴.5.若一组数据,,,,的方差比另一组数据,,,,的方差,则的值可以为( ).A .B .C .D .【答案】A 【解析】、、、、,方差. 当时,第一组数据方差,与第二组数据方差相等. 当时,第一组数据方差,与第二组数据方差相等. 当时,第一组数据方差,小于第二组数据方差. 当时,第一组数据方差,大于第二组数据方差.6.如图,在中,,是的角平分线,若,,则的面积l 3l 2l 1HF E A BC D23251335123l l l ∥∥DAH ABE ∠=∠ADH DEB ∠=∠ADH BEH ∽△△12EH HB DH AH ==2DH EH =ADH CFH ∽△△2163DH AH AH HF HC HB BC ====+36HF DH EH ==3355DE DH EH EH EF HF EH EH +===-2468x 5791113x 12102057911132222242024=5++++10x =2222242024=5++++0x =2222242024=5++++2x =22222(2.2)(2.2)(0.4)(1.6)(3.6)=5++++12x =22222(4.4)(2.4)(0.4)(1.6)(3.6)=5++++Rt ABC △90C ∠=︒AD ABC △4CD =12AC =ABC △为( ).A .B .C .D . 【答案】C【解析】∵为的平分交于点.∴过点向作垂线交于. ∴.又∵,. ∴≌.∴.设长为.则.又∵,. ∴.∴.,解得.∴.∴.∴. A BCD 48505460441212ABC D MAD A ∠CB D D AB AB M 4CD DM ==CAD DAM ∠=∠90C AMD ∠=∠=︒ADC △ADM △12AM AC ==MB x DB =B B ∠=∠90DMB C ∠=∠=︒DMB ACB ∽△△DMMBAC CB =13=3x =5DB =9CB =1=129=542ABC S ⨯⨯△。

2017年江苏省南京市中考数学试卷-答案

2017年江苏省南京市中考数学试卷-答案

江苏省南京市 2017 年初中毕业生学业考试数学答案分析第Ⅰ 卷一、选择题1.【答案】 C【分析】解:原式12 3 6 21,应选 C【提示】原式先计算乘除运算,再计算加减运算即可获得结果.【考点】有理数综合运算.2.【答案】 C【分析】解: 106(102 )3104106106104106 6 4108,应选:C.【提示】先算幂的乘方,再依据同底数幂的乘除法运算法例计算即可求解.【考点】同底数幂的运算.3.【答案】 D【分析】解:四棱锥的底面是四边形,侧面是四个三角形,底面有四条棱,侧面有 4 条棱,应选: D .【提示】依据四棱锥的特色,可得答案.【考点】辨别几何体.4.【答案】 B【分析】解:∵ 1 3 2 , 3 10 4,又∵ 3 a 10 ,∴ 1 a 4 ,应选 B.【提示】第一估量 3 和10 的大小,再做选择.【考点】无理数的估量.5.【答案】 C【分析】解:∵方程( x 5)2 19 的两根为 a 和b,∴a 5 和 b 5 是 19 的两个平方根,且互为相反数,∵ a b ,∴ a 5 是 19 的算术平方根,应选 C.【提示】联合平方根和算术平方根的定义可做选择.【考点】算数平方根的定义.6.【答案】 A【分析】解:已知A(2,2 ), B(6, 2), C( 4,5) ,∴AB的垂直均分线是x 2 64 ,设直线BC 的分析式为26k b 2 k33 xy kxb ,把 B(6,2 ),C(4, 5) 代入上式得2 ,∴ y11 ,设 BC 的垂直平4k b,解得5b 11 2分线为 y2x m ,把线段 BC 的中点坐标 7 1 ,∴ BC 的垂直均分线是2 13 5,代入得 myx,当 x 42636时, y17,∴过 A , B , C 三点的圆的圆心坐标为4,17.66【提示】已知 A( 2,2), B(6, 2),C( 4, 5) ,则过 A , B , C 三点的圆的圆心,就是弦的垂直均分线的交点,故求得 AB 的垂直均分线和 BC 的垂直均分线的交点即可.【考点】三角形外接圆的性质,垂径定理,勾股定理.第 Ⅱ 卷二、填空题7.【答案】 3, 3【分析】解:3 3 ,( 3)232 3 ,故答案为: 3,3.【提示】依据绝对值的性质,二次根式的性质,可得答案.【考点】化简绝对值和二次根式.8.【答案】104【分析】解: 10500104 ,故答案为: 104 .【提示】科学记数法的表示形式为 a 10n 的形式,此中 1 a <10,n 为整数.确立 n 的值是易错点,因为10500 有 5 位,因此能够确立n 5 1 4 .【考点】科学计数法.9.【答案】 x1【分析】解:由题意得x 1 0 ,解得 x 1 ,故答案为: x 1 .【提示】依据分式存心义,分母不等于 0 列式计算即可得解.【考点】分式存心义的条件. 10.【答案】 6 3【分析】解:原式 2386 23 436 3 ,故答案为 6 3 . 【提示】先依据二次根式的乘法法例获得原式 2 38 6 ,而后化简后归并即可.【考点】二次根式的化简和运算. 11.【答案】 x 2【分析】 解:2 1 0 ,方程两边都乘以 x( x 2) 得: 2x ( x 2)0,解得: x 2 ,查验:当 x 2 时,x 2xx( x 2) 0 ,因此 x2 是原方程的解,故答案为: x 2 .【提示】先把分式方程转变成整式方程,求出方程的解,最后进行查验即可.【考点】分式方程. 12.【答案】 4, 3【分析】解:∵对于 x 的方程 x 2px q 0 的两根为 3 和1,∴ 3(1)p , ( 3) ( 1) q ,∴ p 4, q 3 .【提示】由根与系数的关系可得出对于p 或 q 的一元一次方程,解之即可得出结论.【考点】一元二次方程根与系数的关系.13.【答案】 2016 , 2015【分析】 解:由条形统计图可得: 该市个人汽车拥有量年净增量最多的是2016 年,净增 183-150=33( 万辆 ),由折线统计图可得,个人汽车拥有量年增加率最大的是:2015 年.【提示】直接利用条形统计图以及折线统计图分别提示得出答案.【考点】统计图的应用.14.【答案】 425【分析】解:∵165,∴AED 115 ,∴ A B C D 540 AED 425 .【提示】依据补角的定义获得AED 115 ,依据五边形的内角和即可获得结论.【考点】多边形的内角和定理,外角的定理. 15.【答案】 27【分析】解:∵四边形ABCD 是菱形,D78 ,∴ ACB1 1 D) 51,2DCB(1802∵四边形v是圆内接四边形,∴ AEBD78 ,∴ EAC AEB ACE 27 ,故答案为: 27.【提示】依据菱形的性质获得1DCB1D) 51 ,依据圆内接四边形的性质获得 ACB(1802 2AEBD 78 ,由三角形的外角的性质即可获得结论.【考点】菱形的性质,圆内接四边形的性质,三角形的内角和定理.16.【答案】①③【分析】解:①由图像能够看出函数图像上的每一个点都能够找到对于原点对称的点,故正确;②在每个象限内,不一样自变量的取值,函数值的变化是不一样的,故错误;4 2③ y x2 ,当且仅当 x 2 时取 “ ”.即在第一象限内,最低点的坐标为(2,4) ,故正x4 4xx确,∴正确的有①③.【提示】联合图形判断各个选项能否正确即可.【考点】反比率函数,一次函数的图像与性质.三、解答题17.【答案】答案看法析【分析】解: a1 12 aa aa2 2a 1 a 2 1a a(a 1)g a1)a ( a 1)(aa 1a 1【提示】依据分式的加减法和除法能够分析此题.【考点】分式计算.18.【答案】 (1) x 3 ,不等式的基天性质(2) x 2(3)把不等式①,②和③的解集在数轴上表示出来.(4) 2 x 2【分析】解:( 1)解不等式①,得x 3 ,依照是:不等式的基天性质.(2)解不等式③,得x 2 .(4)从图中能够找出三个不等式解集的公共部分,得不等式组的解集为:-2< x< 2.【提示】分别求出每一个不等式的解集,依据各不等式解集在数轴上的表示,确立不等式组的解集.【考点】一元一次不等式.19.【答案】证明:方法1,连结 BE, DF ,如下图:∵四边形ABCD 是平行四边形,∴AD∥ BC, AD BC ,∵ AE CF ,∴DE BF ,∴四边形 BEDF 是平行四边形,∴OF OE .方法 2,∵四边形ABCD 是平行四边形,∴AD∥ BC, AD BC ,∵ODE OBF , AE CF ,DOE BOF∴ DE BF ,在△DOE 和△BOF 中,ODE OBF ,∴△ DOE ≌△ BOF ( AAS) ,∴OF OE .DE BF【提示】方法1.连结 BE, DF ,由已知证出四边形BEDF是平行四边形,即可得出结论.方法 2.先判断出DE BF ,从而判断出△DOE≌△BOF 即可.【考点】平行四边形的性质,全等三角形的判断和性质.20.【答案】( 1) 3400, 3000(2)用中位数或众数来描绘更加适合.原因:均匀数受极端值45000 元的影响,只有 3 个人的薪资达到了6276 元,不适合.【分析】解:( 1)共有 25 个职工,中位数是第13 个数,则中位数是3400 元;3000 出现了 11 次,出现的次数最多,则众数是3000.【提示】( 1)依据中位数的定义把这组数据从小到大摆列起来,找出最中间一个数即可;依据众数的定义找出现次数最多的数据即可.(2)依据均匀数、中位数和众数的意义回答.【考点】统计的初步知识运用.121.【答案】( 1)2(2 )34【分析】解:( 1)第二个孩子是女孩的概率=1,故答案为1.2 2(2 )画树状图为:共有 4 种等可能的结果数,此中起码有一个孩子是女孩的结果数为3,因此起码有一个孩子是女孩的概率= 3 .4【提示】( 1)直接利用概率公式求解.(2)画树状图展现全部 4 种等可能的结果数,再找出起码有一个孩子是女孩的结果数,而后依据概率公式求解.【考点】随机事件的概率.22.【答案】答案看法析【分析】解:方法一:如图 1,在 OA, OB 上分别截取OC 4, OD 3 ,若 CD 的长为 5,则AOB 90 .方法二:如图2,在 OA, OB 上分别取点C, D ,以 CD 为直径画圆,若点O 在圆上,则AOB 90 .【提示】( 1)依据勾股定理的逆定理,可得答案;(2)依据圆周角定理,可得答案.【考点】判断直角的方法.23.【答案】( 1)① 99, 2②y 2x 200(2)答案看法析【分析】解:( 1)①∵100 1 99 ,∴x 99,y 2,故答案为99, 2.②由题意 y 2(100 x) 2x 200 ,∴ y 与x之间的函数表达式为y2x 200 .(2)由题意y 2x 200 x 6060 个和 80 个.5x 3y,解得y,答:甲、乙两种文具各购置了540 80【提示】( 1)①由题意可知x 99, y 2 .②由题意 y 2(100 x) 2x 200 , y 与 x之间的函数表达式即可列出.(2)列出方程组,解方程组即可解决问题.【考点】一次函数,二元一次方程组.24.【答案】( 1)答案看法析(2)答案看法析【分析】解:( 1)如图,连结OB ,∵ PA, PB 是O 的切线,∴PO 均分APC .(2)∵ OA AP , OB BP ,∴CAP OBP 90 ,∵ C 30 ,∴ APC 90 C 90 30 60 , ∵PO 均分APC ,∴OPC1130 ,∴ POB 90 OPC 90 30 60 ,APC 602 2又 OD OB ,∴ △ODB 是等边三角形,∴ OBD60 ,∴ DBPOBPOBD 90 60 =30 ,∴ DBPC ,∴ DB ∥AC .【提示】( 1)连结 OB ,依据切线长定理即可分析.(2)先证明 △ODB 是等边三角形,获得OBD 60 ,再由 DBP C ,即可获得 DB ∥ AC .【考点】切线的性质,角均分线的判断,平行线的判断.25.【答案】 35km【分析】解:如图作 CH AD 于H ,设CHxkm ,在 Rt △ACH 中, A 37,∵ tan37 CH ,AHCHx,在 Rt △ CEH 中,∵CEH 45 ,∴ CH EHx ,∵ CH AD , BD AD ,∴ AHtan37tan37∴ CH ∥ BD ,∴AH AC,∵ AC CB ,∴ AC CB ,∴x = x 5 ,∴ x 5 tan37 15 ,HDCBtan371 tan37∴AE AH HE15 15 35km ,∴ E 处距离港口 A 有 35km .tan37【提示】如图作 CHAD 于 H .设CHCHx,在 Rt △CEHxkm ,在 Rt △ACH 中,可得 AHtan37tan37中,可得 CH EHx ,由 CH ∥BD ,推出AH AC,由 AC CB ,推出 ACCB ,可得 x =x 5 ,HDCBtan37 求出 x 即可解决问题.【考点】解直角三角形,平行线分线段成比率定理.(2)答案看法析(3)0 z 4【分析】解:(1)∵函数 y2(m 1) x m ( m为常数 ),∴(m 1)2( m 1)2,x 4m 0则该函数图像与x 轴的公共点的个数是 1 或2,应选 D.2( m 1) ,把x m 1代入 y ( x 1)2(2)y x2 ( m 1)x m x m 12 4 2m 1 2(m 1)2得: y 1 ,则无论 m 为什么值,该函数的图像的极点都在函数y ( x 1) 2的图像上;2 4(3)设函数z (m 1)21时, z 有最小值为0.4 ,当m当 m 1 时, z 随 m 的增大而减小;当 m 1 时, z 随 m 的增大而增大,当m 2 时, z 1;当 m 3 时,z 4 ,则当 2 m 3 时,该函数4图像的极点坐标的取值范围是0 z 4 .【提示】( 1)表示出根的鉴别式,判断其正负即可获得结果.(2)将二次函数分析式配方变形后,判断其极点坐标能否在已知函数图像即可.(3)依据m的范围确立出极点纵坐标范围即可.【考点】一元二次方程组根的鉴别式,二次函数的图像和性质.27.【答案】( 1)答案看法析(2)答案看法析(3)答案看法析(4)165【分析】( 1)证明:由折叠的性质得:EF 是BC的垂直均分线,BG是PC的垂直均分线,∴ PB PC,PB CB ,∴ PB PC CB ,∴△PBC是等边三角形.(2)解:以点B 为中心,在矩形ABCD 中把△PBC逆时针方向旋转适合的角度,获得△PBC.11再以点B 为位似中心,将△PBC1 放大,使点C1 的对应点C2 落在CD上,获得△PBC2.1 2如图⑤所示.(3)解:此题答案不独一,举比如图6 所示,( 4)解:如图 7 所示: △CEF 是直角三角形, CEF 90 , CE 4,EF 1 ,∴ AEFCED 90 ,∵四边形 ABCD 是正方形,∴ A D 90 ,AD CD ,∴DCECED 90 ,∴AEFDCE ,∴ △AEF ∽△DCE ,∴AEEF 1,设 AEx ,则 AD CD4 x ,∴ DEAD AE 3x ,DCCE4在 Rt △CDE 中,由勾股定理得:( 3x)2 (4x)242 ,解得: x4 ,∴AD 4 4 16 ,故答案为: 16 .55 5 51PB PC ,PB CB ,得出 PB PC CB 即可.【提示】( )由折叠的性质和垂直均分线的性质得出( 2)由旋转的性质和位似的性质即可得出答案.( 3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(4)证明 △AEF ∽△DCE ,得出AEEF 1 ,设 AE x ,则 AD CD 4x ,DEAD AE 3x ,在DC CE 4Rt △CDE 中,由勾股定理得出方程,解方程即可.【考点】轴对称图形的性质,等边三角形的性质和判断,正方形的性质,直角三角形的性质.。

2017年南京市中考数学试题含答案

2017年南京市中考数学试题含答案

2017年南京市中考数学试题含答案南京市2017年初中毕业生学业考试第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算()()()1218632÷-÷---⨯的结果是()A.7B.8C.21D.362.计算()3624101010⨯÷的结果是()A.310B.710C.410D.9103.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥a <<,则下列结论中正确的是()A.13a <<B.14a << C.23a <<D.24a <<5.若方程()2519x -=的两根为a 和b ,且a b >,则下列结论中正确的是()A.a 是19的算术平方根B.b 是19的平方根 C.5a -是19的算术平方根D.5b +是19的平方根6.过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为()A.(4,176)B.(4,3) C.(5,176)D.(5,3)第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7.计算:3-=;=.8.2016年南京实现GDP 约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是.9.若式子21x -在实数范围内有意义,则x 的取值范围是.+的结果是.11.方程2102x x-=+的解是.12.已知关于x 的方程20x px q ++=的两根为-3和-1,则p =;q =.13.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.14.如图,1∠是五边形ABCDE 的一个外角,若165∠=︒,则A B C D ∠+∠+∠+∠=.15.如图,四边形ABCD 是菱形,⊙O 经过点,,A C D ,与BC 相交于点E ,连接,AC AE ,若78D ∠=︒,则EAC ∠=.16.函数1y x =与24y x=的图像如图所示,下列关于函数12y y y =+的结论:①函数的图像关于原点中心对称;②当2x <时,随的增大而减小;③当0x >时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.计算112a a a a ⎛⎫⎛⎫++÷- ⎪ ⎪⎝⎭⎝⎭.18.解不等式组()26,2,31 1.x x x x -≤>--<+⎧⎪⎨⎪⎩①②③请结合题意,完成本题的解答.(1)解不等式①,得.(2)解不等式③,得.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19.如图,在ABCD 中,点,E F 分别在,AD BC 上,且,,AE CF EF BD =相交于点O .求证OE OF =.20.某公司共25名员工,下标是他们月收入的资料.(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.“直角”在初中几何学习中无处不在.如图,已知AOB ∠,请仿照小丽的方式,再用两种不同的方法判断AOB ∠是否为直角(仅限用直尺和圆规).小丽的方法如图,在,OA OB 上分别取点,C D ,以C 为圆心,CD 长为半径画弧,交OB 的反向延长线于点E ,若OE OD =,则90AOB ∠=︒.23.张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买一个甲种文具时,x =▲,y =▲;②求y 与x 之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?24.如图,,PA PB 是⊙O 的切线,,A B 为切点.连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D .(1)求证:PO 平分APC ∠.(2)连结DB ,若30C ∠=︒,求证//DB AC .25.如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin 370.60,cos370.80,tan 370.75︒≈︒≈︒≈)26.已知函数()21y x m x m =-+-+(m 为常数)(1)该函数的图像与x 轴公共点的个数是()A.0B.1C.2D.1或2(2)求证:不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上.(3)当23m -≤≤时,求该函数的图像的顶点纵坐标的取值范围.27.折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片()ABCD AB BC >(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出,PB PC ,得到PBC ∆.(1)说明PBC ∆是等边三角形.【数学思考】经过(2)如图④.小明画出了图③的矩形ABCD和等边三角形PBC.他发现,在矩形ABCD中把PBC图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为acm.对于每一个确定的a的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.。

江苏省南京市联合体2017届中考一模数学试题(含答案)

江苏省南京市联合体2017届中考一模数学试题(含答案)

2017年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.2-等于(▲)A.2B.-2C.±2D.±122x的取值范围是(▲)A.x>1B.x≥1C.x<1D.x≤13.计算(2a 2) 3的结果是(▲)A.2a 5B.2a6C.6a 6D.8a 64.如图所示几何体的俯视图是(▲)A.B.C.D.5.在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有(▲)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为(▲)A.3或4 2 B.4或32C.3或4D.32或42E DA二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.计算 (-1)3+( 14)-1= ▲ . 8.计算 23+13= ▲ . 9.方程3x -4 x -2=12-x的解为x = ▲ . 10.南京地铁三号线全长为44830米,将44830用科学记数法表示为 ▲ .11.已知关于x 的方程x 2-m x +m -2=0的两个根为x 1、x 2,则x 1+ x 2-x 1x 2= ▲ .12.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 ▲ 岁.13.如图,正六边形ABCDEF 的边长为2,则对角线AC = ▲ .14.某体育馆的圆弧形屋顶如图所示,最高点C 到弦AB 的距离是20 m ,圆弧形屋顶的跨度AB 是80 m ,则该圆弧所在圆的半径为_____▲_____m .15.如图,将边长为6的正方形ABCD 绕点C 顺时针旋转30°得到正方形A ′B ′CD ′,则点A 的旋转路径长为 ▲ .(结果保留π)16.如图,A 、B 是反比例函数y = kx图像上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,-1.5),若△ABC 的面积为7,则点B 的坐标为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)化简: x -1 x +2 ÷(3x +2-1).F EDC BA( 第13题 )COBA (第14题)ABDA'D'B'(第15题)18.(6分)解不等式组:⎩⎪⎨⎪⎧1- x +13≥0,3+4(x -1)>1.19.(8分)如图,E 、F 是四边形ABCD 的对角线AC 上两点,AE =CF ,DF ∥BE ,DF =BE .(1)求证:四边形ABCD 是平行四边形;(2)若AC 平分∠BAD ,求证:□ABCD 为菱形.20.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是____▲______. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关..的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案) (第19题)AB CDEF21.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2017年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了____▲___天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为____▲____°;(4)如果空气污染达到中度污染或者以上........,将不适宜进行户外活动,根据目前的统计,请你估计2017年该城市有多少天不适宜开展户外活动.(2017年共365天)空气质量等级天数统计图空气质量等级天数占所抽取天数百分比统计图22.(8分)已知P (-5,m )和Q (3,m )是二次函数y =2x 2+b x +1图像上的两点.(1)求b 的值;(2)将二次函数y =2x 2+b x +1的图像沿y 轴向上平移k (k >0)个单位,使平移后的图像与x 轴无交点,求k 的取值范围.23.(8分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA =75厘米.展开小桌板使桌面保持水平,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)O CBA24.(8分)水池中有水20 m 3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56 m 3,王师傅的具体记录如下表.设从12:00时起经过t min 池中有水y m 3,右图中折线ABCD 表示y 关于t 的函数图像.(1)每个出水口每分钟出水 ▲ m 3,表格中a = ▲ ; (2)求进水口每分钟的进水量和b 的值;(3)在整个过程中t 为何值时,水池有水16 m 3 ? (第24题)miny 3AD,DE⊥BC,垂足为E.BD=⌒25.(9分)如图,四边形ABCD是⊙O的内接四边形,AC为直径,⌒(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=1,AC=4,求阴影部分的面积.(第25题)26.(9分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x千克.(1)大号苹果的单价为▲元/千克;小号苹果的单价为▲元/千克;(用含x的代数式表示) (2)若水果超市售完购进的1000千克苹果,请解决以下问题:①当x为何值时,所获利润最大?②若所获利润为3385元,求x的值.27.(10分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图①,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=▲, FBGC=▲.(2)如图②,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB 为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图③,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)图③aAB CAB CD EGF图①图②AB CD EGFMN参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分)7.解:原式= x -1 x +2÷3-x -2x +2……………………………………………………………………………2分= x -1 x +2× x +21-x …………………………………………………………………………………4分 =-1 …………………………………………………………………………………………6分18.解:解不等式①,得x ≤2. …………………………………………………………………………2分解不等式②,得x >12.…………………………………………………………………………4分所以,不等式组的解集是12<x ≤2. …………………………………………………………6分19.证明:(1)∵DF ∥BE ,∴∠AFD =∠CEB , ……………………………………………………………1分 ∵AE =CF ,∴AF =CE .∵AF =CE ,DF =BE ,…………………………………………………………2分∴△ADF ≌△CBE . ……………………………………………………3分∴AD =BC ,∠DAF =∠BCE ,∴AD ∥BC ,∴四边形ABCD 是平行四边形. ………………………………………………4分 (2)∵AC 平分∠BAD ,∴∠DAC =∠BAC .…………………………………………………………………5分 ∵四边形ABCD 是平行四边形,∴∠DCA =∠BAC .∴∠DCA =∠DAC , ………………………………………………………………6分 ∴AD =DC ,…………………………………………………………………………7分 ∴□ABCD 为菱形. ………………………………………………………………8分20.解:(1)31------------------------------------------------------------------------------------------------------------2分 (2)树状图或列表正确---------------------------------------------------------------------------------------------5分 将第一题中的三个选项记作A 1、B1、C1,第二题中去掉一个错误选项后的三个选项分别记作A2、B2、C2,其中A1、A2分别是两题的正确选项.列表如下:共有9种等可能的结果,其中,同时答对2题通关有1种结果, ∴P(同时答对两题)=19·······························……………………………………………………··········7分 (3)第一题··································………………………………………………………………·················8分 21.解:(1)50; ·······································································································································2分 (2)5·································································4分 (3)72;····················································································································································6分 (4)365×24+650=219天····························································································································8分22.解:(1)∵点P 、Q 是二次函数y =2x 2+bx +1图像上的两点,∴此抛物线对称轴是直线x=-1.·······························································································2分∴有-b2×2=-1.∴b=4.·········································································································4分 (2)平移后抛物线的关系式为y =2x 2+4x +1-k . ∵平移后的图像与x 轴无交点, ∴△=16-8+8k<0··················································································································6分解得k >1 ··································································································································8分23.解:设小桌板桌面宽度BC 的长为 x 厘米,则支架OB 的长为(75-x )厘米.延长CB 交OA 于点D ,由题意知,CD ⊥OA ,…………………………1分 在Rt △OBD 中,OD =OB cos37°=0.8(75-x )=60-0.8x ,………2分 BD =OB sin37°=0.6(75-x )=45-0.6x ,…………………………4分 所以CD =CB +BD =45+0.4x ,AD =15+0.8x ,OCBAD所以tan37°=ADCD……………………………………………………………6分 即0.75=15+0.8x45+0.4x ,解之得,x =37.5答:小桌板桌面宽度BC 的长为37.5厘米. ……………………………………8分24.解:(1)1,8 …………………………………………………………………………2分 (2)设进水口每分钟进水x m 3,由题意得:8+(x -1)(14-6)+ x (20-14)=56解得x =4 ……………………………………………………………………3分 所以b =8+(4-1)×8=32 m 3 ……………………………………………4分(3)在0~6分钟:y =20-2t当y =16时,16=20-2t ,……………………………………………………5分 解得t =2…………………………………………………………………………6分 在6~14分钟:y =kt +b (k ≠0)把(6,8)(14,32)得:⎩⎪⎨⎪⎧6k +b =8,14k +b =32. 解得⎩⎪⎨⎪⎧k =3,b =﹣10.即y =3t -10当y =16时,16=3t -10,t =263………………………………………………8分则t =2和t =263水池有水16 m 3.25.解:(1)∵四边形ABCD 是⊙O 内接四边形,∴∠BAD +∠BCD =180°,∵∠BCD +∠DCE =180°,∴∠DCE =∠BAD ,………………………………………………………1分 ∵ ⌒ BD = ⌒AD ,∴∠BAD =∠ACD ,………………………………………………………………………2分 ∴∠DCE =∠ACD ,∴CD 平分∠ACE .………………………………………………………………3分 (2)ED 与⊙O 相切.………………………………………………………………………………………4分 理由:连接OD ,∵OC =OD ,∴∠ODC =∠OCD , ∵∠DCE =∠ACD ,∴∠DCE =∠ODC ,∴OD ∥BE ,∵DE ⊥BC ,∴OD ⊥DE ,∴ED 与⊙O 相切. …………………………………………………………6分 (3)∵AC 为直径,∴∠ADC =90°=∠E ,∵∠DCE =∠ACD ,∴△DCE ∽△ACD ,…………………7分∴CE CD =CD CA ,即1CD =CD4,∴CD =2,………………………………………………………………………8分 ∵OC =OD =CD =2,∴∠ DOC =60°,∴S 阴影=S 扇形-S △OCD =23π-3.…………………………9分26.解:(1)16-0.03x ;10+0.02x ; ………………………………………………………………2分 (2)①设售完购进1000千克的苹果所获利润为y 元,由题意得:y =38000)02.010)(500()03.016)(500(=-+-+-+x x x x ………………………………····5分=﹣0.05x 2+x +5000 x =﹣b2a=10,y =5005.当x =10时,所获最大利润为5005元. ………………………………………………………····6分 ②由题意,列方程:33858000)02.010)(500()03.016)(500(=-+-+-+x x x x ……………7分 化简,整理得032300202=--x x ………………………………………………………………····8分 解得:190=x 或170-=x ………………………………………………………………………····9分 答:大号苹果比计划增加190千克或减少170千克时,才能确保这批苹果的利润为3385元.27.解:(1)3;2.……………………………………………………………………………………····2分 (2)证明:∵DE ∥FG ,∴AD AE = DF EG .………………………………………………………………………………………····3分 ∵DE ∥FG ∥BC , ∴DF EG =FB GC, ∴AD AE = DF EG =FB GC ,即AD AE = MD NE =AM AN,………………………………………………………····5分 ∴△AMD ∽△ANE , ……………………………………………………………………………····6分 ∴∠M =∠N . ………………………………………………………………………………····7分 (3)简要步骤:第一步:在射线DM 上截取△ABC 的三边.第二步:在射线DN 上截取DH =a ,连接HG ,作FI ∥C'E ∥HG , 第三步:以DC'、C'I 、IH 为边构造△A' B' C'.MD(A') E F G NH IC'B'CA B………………………………………………………………………………………………····10分。

江苏省南京市2017年中考数学真题试题(含解析)

江苏省南京市2017年中考数学真题试题(含解析)

江苏省南京市2017年中考数学真题试题第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算12+(-18)÷(-6)-(-3)×2的结果是( )A . 7B . 8C . 21D .36【答案】C考点:有理数的混合运算2. 计算()3624101010⨯÷的结果是( ) A . 310 B . 710 C .810 D .910【答案】C【解析】试题分析:根据乘方的意义及幂的乘方,可知623410(10)10⨯÷=664810101010⨯÷=. 故选:C考点:同底数幂相乘除3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( )A .三棱柱B .四棱柱C . 三棱锥D .四棱锥【答案】D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选:D考点:几何体的形状4. a < ( )A .13a <<B .14a << C. 23a << D .24a <<【答案】B【解析】 试题分析:根据二次根式的近似值可知134=2<<,而3=9104<<,可得1<a <4.故选:B考点:二次根式的近似值5. 若方程()2519x -=的两根为a 和b ,且a b >,则下列结论中正确的是 ( )A .a 是19的算术平方根B .b 是19的平方根 C.5a -是19的算术平方根 D .5b +是19的平方根【答案】C考点:平方根6. 过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( )A .(4,176)B .(4,3) C.(5,176) D .(5,3) 【答案】A【解析】试题分析:根据题意,可知线段AB 的线段垂直平分线为x=4,然后由C 点的坐标可求得圆心的横坐标为x=4,然后设圆的半径为r ,则根据勾股定理可知2222(52)r r =+--,解得r=136,因此圆心的纵坐标为1317566-=,因此圆心的坐标为(4,176). 故选:A考点:1、线段垂直平分线,2、三角形的外接圆,3、勾股定理第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7. 计算:3-=;= . 【答案】3,3【解析】 试题分析:根据绝对值的性质(0)0(0)(0)a a a a a a ⎧⎪==⎨⎪-⎩><,可知|-3|=32(0)0(0)(0)a a a a a a a ⎧⎪===⎨⎪-⎩><,3=.故答案为:3,3.考点:1、绝对值,2、二次根式的性质8. 2016年南京实现GDP 约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是.【答案】1.05×104考点:科学记数法的表示较大的数9. 若式子21x -在实数范围内有意义,则x 的取值范围是 . 【答案】x ≠1【解析】试题分析:根据分式有意义的条件,分母不为0,可知x-1≠0,解得x ≠1.故答案为:x ≠1.考点:分式有意义的条件10. 1286的结果是 .【答案】【解析】=故答案为:考点:合并同类二次根式11. 方程2102x x-=+的解是 . 【答案】x=2考点:解分式方程12. 已知关于x 的方程20x px q ++=的两根为-3和-1,则p = ;q = .【答案】4,3【解析】试题分析:根据一元二次方程的根与系数的关系,可知p=-(-3-1)=4,q=(-3)×(-1)=3.故答案为:4,3.考点:一元二次方程的根与系数的关系13. 下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年.【答案】2016,2015【解析】试题分析:根据条形统计图可知私家车拥有最多的年份为2016年,由折线统计图可知2015年的私家车的拥有量增长率最高.故答案为:2016,2015.考点:1、条形统计图,2、折线统计图14. 如图,1∠是五边形ABCDE 的一个外角,若165∠=︒,则A B C D ∠+∠+∠+∠= .【答案】425考点:1、多边形的内角和,2、多边形的外角15. 如图,四边形ABCD 是菱形,⊙O 经过点,,A C D ,与BC 相交于点E ,连接,AC AE ,若78D ∠=︒,则EAC ∠= .【答案】27【解析】试题分析:根据菱形的性质可知AD=DC ,AD ∥BC ,因此可知∠DAC=∠DCA ,AE DC =,然后根据三角形的内角和为180°,可知∠DAC=51°,即∠ACE=51°,然后根据等弧所对的圆周角可知∠DAE=∠D=78°,因此可求得∠EAC=78°-51°=27°.故答案为:27.考点:1、菱形的性质,2、圆周角的性质,3、三角形的内角和16. 函数1y x =与24y x=的图像如图所示,下列关于函数12y y y =+的结论:①函数的图像关于原点中心对称;②当2x <时,y 随x 的增大而减小;③当0x >时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 .【答案】①③考点:一次函数与反比例函数三、解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算112a a a a ⎛⎫⎛⎫++÷- ⎪ ⎪⎝⎭⎝⎭. 【答案】11a a +- 【解析】试题分析:根据分式的混合运算的法则,可先算括号里面的(通分后相加减),然后把除法转化为乘法,再约分化简即可. 试题解析:112a a a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝++÷⎭- 22211a a a a a++-=÷ 22211a a a a a ++=⋅- ()()()2111a a aa a +=⋅+- 11a a +=-. 考点:分式的混合运算18. 解不等式组()26,2,31 1.x x x x -≤>--<+⎧⎪⎨⎪⎩①②③请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是______.(2)解不等式③,得 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .【答案】22x -<<【解析】试题分析:分别求解两个不等式,系数化为1时可用性质2或性质3,然后画数轴,确定其公共部分,得到不等式组的解集.考点:解不等式19. 如图,在ABCD 中,点,E F 分别在,AD BC 上,且,,AE CF EF BD =相交于点O .求证OE OF =.【答案】证明见解析试题解析:∵四边形ABCD 是平行四边形,∴//,AD BC AD BC =.∴,EDO FBO DEO BFO ∠=∠∠=∠.∵AE CF =,∴AD AE CB CF -=-,即DE BF =.∴DOE BOF ∆∆≌.∴OE OF =.考点:1、平行四边形的性质,2、全等三角形的判定与性质20. 某公司共25名员工,下标是他们月收入的资料.(1)该公司员工月收入的中位数是 元,众数是 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【答案】(1)3400,3000. (2)利用中位数可以更好地反映这组数据的集中趋势【解析】试题分析:(1)根据大小排列确定中间一个或两个的平均数,得到中位数,然后找到出现最多的为众数;(2)根据表格信息,结合中位数、平均数、众数说明即可.试题解析:(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势.考点:1、中位数,2、众数21. 全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【答案】(1)12 (2)34考点:概率22. “直角”在初中几何学习中无处不在.如图,已知AOB ∠,请仿照小丽的方式,再用两种不同的方法判断AOB ∠是否为直角(仅限用直尺和圆规).【答案】作图见解析【解析】试题分析:方法一是根据勾股定理作图,方法二是根据直径所对的圆周角为直角画图.方法2:如图②,在,OA OB 上分别取点,C D ,以CD 为直径画圆.若点O 在圆上,则90AOB ∠=︒.考点:基本作图——作直角23. 张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买一个甲种文具时,x = ,y = ;②求y 与x 之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?【答案】(1)①99,2②2200y x =-+(2)甲、乙两种文具各购买了60个和80个【解析】试题分析:(1)①根据“每减少购买1个甲种文具,需增加购买2个乙种文具”可直接求解;②根据①的结论直接列式即可求出函数的解析式;(2)根据题意列出二元一次方程组求解即可.考点:1、一次函数,2、二元一次方程组24. 如图,,PA PB 是⊙O 的切线,,A B 为切点.连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D .(1)求证:PO 平分APC ∠.(2)连结DB ,若30C ∠=︒,求证//DB AC .【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)连接OB ,根据切线的性质和角平分线的概念可证明;(2)根据角平分线的性质可证明△ODB 是等边三角形,然后根据平行线的判定得证.试题解析:(1)如图,连接OB .∵,PA PB 是⊙O 的切线,∴,OA AP OB BP ⊥⊥,又OA OB =,∴PO 平分APC ∠.又OD OB =,∴ODB ∆是等边三角形.∴60OBD ∠=︒.∴906030DBP OPB OBD ∠=∠-∠=︒-︒=︒.∴DBP C ∠=∠.∴//DB AC .考点:1、圆的切线,2、角平分线的性质与判定,3、平行线的判定25. 如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)【答案】35km【解析】试题分析:过点C 作CH AD ⊥,垂足为H .构造直角三角形的模型,然后解直角三角形和平行线分线段成比例的定理列方程求解即可.∵,CH AD BD AD ⊥⊥,∴90AHC ADB ∠=∠=︒.∴//HC DB . ∴BAH HD AC C =. 又C 为AB 的中点,∴AC CB =.∴AH HD =. ∴tan 375x x ︒=+. ∴5tan 3750.75151tan 3710.75x ⨯︒⨯=≈=-︒-. ∴()151535tan 37AE AH HE km =+=+≈︒. 因此,E 处距离港口A 大约为35km .考点:解直角三角形26. 已知函数()21y x m x m =-+-+(m 为常数) (1)该函数的图像与x 轴公共点的个数是( )A.0B.1C.2D.1或2(2)求证:不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上.(3)当23m -≤≤时,求该函数的图像的顶点纵坐标的取值范围.【答案】(1)D (2)证明见解析(3)04z ≤≤试题解析:(1)D .(2)()()22211124m m y x m x m x ⎛⎫ ⎪⎝+-=-+-+=--+⎭, 所以该函数的图像的顶点坐标为()211,24m m ⎛⎫ ⎝+ -⎪⎪⎭. 把x =12m -代入()21y x =+,得()2211124m m y ⎛⎫ ⎪⎭=⎝+-=+. 因此,不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上. (3)设函数z =()214m +. 当1m =-时,z 有最小值0.当1m <-时,z 随m 的增大而减小;当1m >-时,z 随m 的增大而增大. 又当2m =-时,()221144z -+==;当3m =时,()23144z +==. 因此,当23m -≤≤时,该函数的的图像的顶点纵坐标的取值范围是04z ≤≤.考点:二次函数的图像与性质27. 折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片()ABCD AB BC >(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②). 第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出,PB PC ,得到PBC ∆.(1)说明PBC ∆是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD 中把PBC ∆经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm ,另一边长为acm .对于每一个确定的a 的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a 的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为 cm .【答案】(1)PBC ∆是等边三角形(2)答案见解析(3)330a <≤3323a <<a ≥ (4)165试题解析:(1)由折叠,,PB PC BP BC == ,因此,PBC ∆是等边三角形.(2)本题答案不惟一,下列解法供参考.例如,如图,以点B 为中心,在矩形ABCD 中把PBC ∆逆时针方向旋转适当的角度,得到11PBC ∆;再以点B 为位似中心,将11PBC ∆放大,使点1C 的对应点2C 落在CD 上,得到22P BC ∆.(3)本题答案不惟一,下列解法供参考,例如,3302a <≤ 33223a <<23a ≥(4)165. 考点:1、规律探索,2、矩形的性质,3、正方形的性质,4、等边三角形。

2017年江苏省南京市秦淮区中考数学一模试卷

2017年江苏省南京市秦淮区中考数学一模试卷

2017年江苏省南京市秦淮区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.)1.(2分)下列四个数中,是负数的是()A.|﹣3|B.(﹣3)2C.﹣(﹣3)D.﹣322.(2分)据南京市统计局调查数据显示,截至2016年年底,全市汽车拥有量首次进入全国“200万俱乐部”,达到了2 217 000辆.将2 217 000用科学记数法表示是()A.0.2217×106 B.0.2217×107 C.2.217×106D.2.217×1073.(2分)如图,数轴上的点A表示的数可能是下列各数中的()A.﹣8的算术平方根B.10的负的平方根C.﹣10的算术平方根D.﹣65的立方根4.(2分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,5000元,7000元,4000元和10000元,那么他们工资的中位数为()A.4000元B.5000元C.7000元D.10000元5.(2分)下列长度的三条线段能组成锐角三角形的是()A.2,3,3 B.2,3,4 C.2,3,5 D.3,4,56.(2分)如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF:FG:GD=3:2:1,则AB的长为()A.1 B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)7.(2分)﹣2的倒数是;﹣2的相反数是.8.(2分)若式子在实数范围内有意义,则x的取值范围是.9.(2分)计算的结果是.10.(2分)方程的根是.11.(2分)正方形ABCD内接于⊙O,E是的中点,连接BE、CE,则∠ABE=°.12.(2分)如图,将△ABC绕点B顺时针旋转到△DBE的位置.连接AD,若∠ADB=60°,则∠1=°.13.(2分)已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为.14.(2分)某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是元.15.(2分)我们已经学习过反比例函数y=的图象和性质,请回顾研究它的过程,对函数y=进行探索.下列结论:①图象在第一、二象限,②图象在第一、三象限,③图象关于y轴对称,④图象关于原点对称,⑤当x>0时,y随x增大而增大;当x<0时,y随x增大而增大,⑥当x>0时,y随x增大而减小;当x<0时,y随x增大而增大,是函数y=的性质及它的图象特征的是:.(填写所有正确答案的序号)16.(2分)如图,在△ABC中,∠C=90°,CA=4,CB=3.与CA延长线、AB、CB 延长线相切,切点分别为E、D、F,则该弧所在圆的半径为.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组.18.(6分)化简﹣.19.(6分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接DE并延长至点F,使EF=DE,连接AF、DC.求证:四边形ADCF是菱形.20.(8分)脸谱是中国戏曲男演员脸部的彩色化妆.这种脸部化妆主要用于净(花脸)和丑(小丑),表现人物的性格和特征.现有四张脸谱,如图所示:有两张相同的表现忠勇侠义的净角姜维,有一张表现直爽刚毅的净角包拯,有一张表现阴险奸诈的丑角夏侯婴.(1)随机抽取一张,获得一张净角脸谱的概率是;(2)随机抽取两张,求获得一张姜维脸谱和一张包拯脸谱的概率.21.(8分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣10123…y…105212…(1)求该函数的表达式;(2)当y<5时,x的取值范围是.22.(8分)“智慧南京、绿色出行”,骑共享单车出行已经成为一种时尚.记者随机调查了一些骑共享单车的秦淮区市民,并将他们对各种品牌单车的选择情况绘制成图①和图②的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)在图①中,C部分所占扇形的圆心角度数为°;(2)将图②补充完整;(3)根据抽样调查结果,请你估计某天该区48万名骑共享单车的市民中有多少名选择摩拜单车?23.(8分)某商场以80元/个的价格购进1000个保温杯.经市场调研,保温杯定价为100元/个时可全部售完,定价每提高1元,销售量将减少5个.未卖完的保温杯可以直接退还厂家.要使商场利润达到60500元,保温杯的定价应为多少元?24.(8分)如图,在路边安装路灯,灯柱BC高15m,与灯杆AB的夹角ABC为120°.路灯采用锥形灯罩,照射范围DE长为18.9m,从D、E两处测得路灯A的仰角分别为∠ADE=80.5°,∠AED=45°.求灯杆AB的长度.(参考数据:cos80.5°≈0.2,tan80.5°≈6.0)25.(9分)如图,在△ABC中,AB=AC,以AB为直径作半圆O交BC于点D,过点D作DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若CE=1,BC=6,求半圆O的半径的长.26.(11分)概念理解一组对边平行,另一组对边相等且不平行的四边形叫做等腰梯形.类比研究我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对四边形进行研究.请根据示例图形,完成表.四边形示例图形对称性边角对角线平行四(1).两组对边分别平行,两两组对角分别相等.对角线互相平分.边形组对边分别相等.等腰梯形轴对称图形,过平行的一组对边中点的直线是它的对称轴.一组对边平行,另一组对边相等.(2).(3).演绎论证证明等腰梯形有关角和对角线的性质.(4)已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是对角线.求证:.证明:揭示关系我们可以用图来揭示三角形和一些特殊三角形之间的关系.(5)请用类似的方法揭示四边形、对角线相等的四边形、平行四边形、矩形以及等腰梯形之间的关系.27.(10分)一列快车和一列慢车同时从甲地出发,分别以速度v1、v2(单位:km/h,且v1>2v2)匀速驶向乙地.快车到达乙地后停留了2h,沿原路仍以速度v1匀速返回甲地.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示从慢车出发至慢车到达乙地的过程中,y与x之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为km;(2)求线段AB、CD所表示的y与x之间的函数表达式;(3)慢车出发多长时间后,两车相距480km?2017年江苏省南京市秦淮区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.)1.(2分)下列四个数中,是负数的是()A.|﹣3|B.(﹣3)2C.﹣(﹣3)D.﹣32【分析】各项利用绝对值的代数意义,乘方的意义,相反数的性质判断即可.【解答】解:A、|﹣3|=3,不符合题意;B、原式=9,不符合题意;C、原式=3,不符合题意;D、原式=﹣9,符合题意,故选D【点评】此题考查了有理数的乘方,正数与负数,相反数,以及绝对值,熟练掌握各自的性质是解本题的关键.2.(2分)据南京市统计局调查数据显示,截至2016年年底,全市汽车拥有量首次进入全国“200万俱乐部”,达到了2 217 000辆.将2 217 000用科学记数法表示是()A.0.2217×106 B.0.2217×107 C.2.217×106D.2.217×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2 217 000=2.217×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)如图,数轴上的点A表示的数可能是下列各数中的()A.﹣8的算术平方根B.10的负的平方根C.﹣10的算术平方根D.﹣65的立方根【分析】设A点表示的数为x,则﹣4<x<﹣3,再根据每个选项中的范围进行判断.【解答】解:如图,设A点表示的数为x,则﹣4<x<﹣3,∵﹣8<0,∴﹣8没有算术平方根,故A错误;∵﹣4<﹣<﹣3,故B正确;∵﹣10<0,∴﹣10没有算术平方根,故C错误;∵﹣5<<﹣4,故D错误.故选B.【点评】本题考查了实数与数轴的对应关系.关键是明确数轴上的点表示的数的大小,估计无理数的取值范围.4.(2分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,5000元,7000元,4000元和10000元,那么他们工资的中位数为()A.4000元B.5000元C.7000元D.10000元【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:3000元,4000元,5000元,7000元,10000元,5000元处在第3位为中位数,故他们工资的中位数是5000元.故选B.【点评】考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(2分)下列长度的三条线段能组成锐角三角形的是()A.2,3,3 B.2,3,4 C.2,3,5 D.3,4,5【分析】根据勾股定理求出以较短的两条边为直角边的三角形的斜边的长度,然后与较长的边进行比较作出判断即可.【解答】解:A、∵=>3,2+3>3,∴能组成锐角三角形;B、∵=<4,2+3>4,∴不能组成锐角三角形;C、∵2+3=5,∴不能组成三角形;D、∵=5,是直角三角形,∴不能组成锐角三角形.故选:A.【点评】本题考查了勾股定理的逆定理,利用勾股定理求出直角三角形的斜边是解题的关键.6.(2分)如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF:FG:GD=3:2:1,则AB的长为()A.1 B.C.D.2【分析】由四边形ABCD是矩形,得到AB=CD,AD=BC=6,∠A=∠D=90°,根据余角的性质得到∠ABF=∠DGC,推出△AFB∽△DCG,根据相似三角形的性质得到AB2=AF•DG=3,于是得到结论.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠A=∠D=90°,∵∠E=90°,∴∠EFG+∠EGF=90°,∴∠AFB+∠DGC=90°,∵∠AFB+∠ABF=90°,∴∠ABF=∠DGC,∴△AFB∽△DCG,∴,∵AF:FG:GD=3:2:1,∴AF=3,DG=1,∴AB2=AF•DG=3,∴AB=.故选C.【点评】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)7.(2分)﹣2的倒数是﹣;﹣2的相反数是2.【分析】首先根据求一个整数的倒数,就是写成这个整数分之一,可得:﹣2的倒数是﹣;然后根据相反数的含义和求法,可得:﹣2的相反数是2.【解答】解:﹣2的倒数是﹣;﹣2的相反数是2.故答案为:﹣、2.【点评】此题主要考查了一个数的倒数的求法,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①求一个整数的倒数,就是写成这个整数分之一.②求一个分数的倒数,就是调换分子和分母的位置.8.(2分)若式子在实数范围内有意义,则x的取值范围是x≥﹣1.【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【解答】解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.(2分)计算的结果是2.【分析】直接化简二次根式进而约分求出答案.【解答】解:==2.故答案为:2.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.10.(2分)方程的根是x=3.【分析】先去分母把分式方程化为整式方程得到x=3,然后进行检验确定分式方程的解.【解答】解:去分母得x=3(x﹣2),解得x=3,检验:当x=3时,x(x﹣2)≠0,x=3是原方程的解.所以原方程的解为x=3.故答案为x=3【点评】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.11.(2分)正方形ABCD内接于⊙O,E是的中点,连接BE、CE,则∠ABE= 22.5°.【分析】先根据正方形的性质得出∠AOD的度数,再由E是的中点即可得出∠AOE的度数,进而可得出结论.【解答】解:连接OA、OD、OE,如图所示.∵四边形ABCD是园内接正方形,∴∠AOD=90°.∵E是的中点,∴∠AOE=45°,∴∠ABE=×45°=22.5°.故答案为:22.5.【点评】本题考查的是圆周角定理及圆心角、弧、弦的关系.熟知正方形的性质是解答此题的关键.12.(2分)如图,将△ABC绕点B顺时针旋转到△DBE的位置.连接AD,若∠ADB=60°,则∠1=60°.【分析】直接利用旋转的性质结合三角形内角和定理得出∠E=∠C,∠3=∠4,∠5=60°,进而求出答案.【解答】解:如图所示:∵△ABC绕点B顺时针旋转60°,得到△DBE,∴∠E=∠C,∠3=∠4,∠5=60°,∴∠2=∠5=60°,∴∠1=60°.故答案为:60.【点评】此题主要考查了旋转的性质,根据题意得出∠2=∠5是解题关键.13.(2分)已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为2.【分析】由抛物线的对称轴为x=1,可得出b=﹣2a,再根据根与系数的关系即可得出关于x的方程ax2+bx+c=0的两个根的和.【解答】解:∵二次函数y=ax2+bx+c的对称轴为x=1,∴﹣=1,∴b=﹣2a,∴关于x的方程ax2+bx+c=0的两个根的和为﹣=2.故答案为:2.【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及根与系数的关系,根据函数图象结合二次函数的性质找出b=﹣2a是解题的关键.14.(2分)某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是300元.【分析】设商品的定价为x元,根据商品的成本不变结合成本=售价﹣利润即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设商品的定价为x元,根据题意得:0.75x+25=0.9x﹣20,解得:x=300.故答案为:300.【点评】本题考查了一元一次方程的应用,根据商品的成本不变结合,成本=售价﹣利润列出关于x的一元一次方程是解题的关键.15.(2分)我们已经学习过反比例函数y=的图象和性质,请回顾研究它的过程,对函数y=进行探索.下列结论:①图象在第一、二象限,②图象在第一、三象限,③图象关于y轴对称,④图象关于原点对称,⑤当x>0时,y随x增大而增大;当x<0时,y随x增大而增大,⑥当x>0时,y随x增大而减小;当x<0时,y随x增大而增大,是函数y=的性质及它的图象特征的是:①③⑥.(填写所有正确答案的序号)【分析】根据函数解析式确定出图象所经过的点的坐标,再画出图象即可,根据图象可得出该函数的性质.【解答】解:列表:x ﹣3 ﹣2 ﹣11 2 3y141画图:由函数y=的图象可知此图象具有以下性质:函数的图象在一、二象限,当x>0时,y随x增大而减小;当x<0时,y随x 增大而增大;函数的图象关于y对称.故选①③⑥.【点评】此题主要考查了画反比例函数图象和反比例函数的性质,画出函数的图象是解题的关键.16.(2分)如图,在△ABC中,∠C=90°,CA=4,CB=3.与CA延长线、AB、CB 延长线相切,切点分别为E、D、F,则该弧所在圆的半径为6.【分析】根据勾股定理求出AB,连接OE、OF、得出正方形CEOF,求出CE=CF=r,根据切线长定理得出AD=AE,BD=BF,即可得出方程,求出方程的解即可.【解答】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,设弧所在的圆的圆心为O,圆的半径为r,连接OE、OF,如图,∵.与CA延长线、AB、CB延长线相切,切点分别为E、D、F,∴AE=AD,BF=BD,∠OEC=∠OFC=90°,∵∠C=90°,OE=OF=r,∴四边形CEOF是正方形,∴CE=CF=OE=OF=r,则AE=AD=r﹣4,BF=DB=r﹣3,∴r﹣3+r﹣4=5,解得:r=6,故答案为:6.【点评】本题考查了切线长定理,切线的性质,勾股定理等知识点,能综合运用知识点进行推理是解此题的关键.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得x≥4.解不等式②,得x<7.所以,不等式组的解集是4≤x<7.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)化简﹣.【分析】先把原式的分母通分,化为同分母的分数后再相加减.【解答】解:原式=﹣===﹣.【点评】本题考查了分式的加减法,要牢记异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.:19.(6分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接DE并延长至点F,使EF=DE,连接AF、DC.求证:四边形ADCF是菱形.【分析】先证明四边形ADCF是平行四边形,再证明DE是△ABC的中位线,得出DE∥BC,证出AC⊥DF,即可得出结论【解答】证明:∵点E是边AC的中点,∴AE=EC.又∵EF=DE,∴四边形ADCF是平行四边形.又∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC.又∵∠ACB=90°,∴∠AED=90°.∴AC⊥DF.∴四边形ADCF是菱形.【点评】本题考查了菱形的判定与性质、三角形中位线定理;熟练掌握菱形的判定与性质,由三角形中位线定理得出DE∥BC是解决该题的关键.20.(8分)脸谱是中国戏曲男演员脸部的彩色化妆.这种脸部化妆主要用于净(花脸)和丑(小丑),表现人物的性格和特征.现有四张脸谱,如图所示:有两张相同的表现忠勇侠义的净角姜维,有一张表现直爽刚毅的净角包拯,有一张表现阴险奸诈的丑角夏侯婴.(1)随机抽取一张,获得一张净角脸谱的概率是;(2)随机抽取两张,求获得一张姜维脸谱和一张包拯脸谱的概率.【分析】(1)由4张脸谱中净角脸谱有3张,根据概率公式求解可得;(2)根据题意列出所有等可能结果,找到一张姜维脸谱和一张包拯脸谱的结果数,由概率公式求解可得.【解答】解:(1)∵四张脸谱中随机抽取一张共有4种等可能结果,其中净角脸谱的有3张,∴随机抽取一张,获得一张净角脸谱的概率是,故答案为:.(2)记第一张姜维脸谱为1,第二张姜维脸谱为2,包拯脸谱为3,夏侯婴脸谱为4.随机抽取两张,所有可能出现的结果有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,它们出现的可能性相同.所有的结果中,满足“随机抽取两张,获得一张姜维脸谱和一张包拯脸谱”(记为事件A)的结果有2种,所以P(A)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.(8分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣10123…y…105212…(1)求该函数的表达式;(2)当y<5时,x的取值范围是0<x<4.【分析】(1)根据表中的数据,可得该二次函数图象的顶点坐标(2,1),设函数的表达式为y=a(x﹣2)2+1,代入数据解得a,可的解析式;(2)根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【解答】解:(1)由题意得图象的顶点坐标为(2,1),设函数的表达式为y=a(x﹣2)2+1.由题意得函数的图象经过点(0,5),所以5=a•(﹣2)2+1.所以a=1.所以函数的表达式为y=(x﹣2)2+1(或y=x2﹣4x+5);(2)由所给数据可知当x=2时,y有最小值1,∴二次函数的对称轴为x=2,又由表格数据可知当y<5时,对应的x的范围为0<x<4,故答案为:0<x<4.【点评】本题主要考查二次函数的对称性,掌握二次函数的图象关于对称轴对称是解题的关键.22.(8分)“智慧南京、绿色出行”,骑共享单车出行已经成为一种时尚.记者随机调查了一些骑共享单车的秦淮区市民,并将他们对各种品牌单车的选择情况绘制成图①和图②的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)在图①中,C部分所占扇形的圆心角度数为30°;(2)将图②补充完整;(3)根据抽样调查结果,请你估计某天该区48万名骑共享单车的市民中有多少名选择摩拜单车?【分析】(1)根据B组有120人,所占的百分比是50%,即可求得调查的总人数,然后利用360°乘以对应的比例求得C组对应扇形的圆心角的度数;(2)利用总人数减去其它组的人数即可求得A组的人数,从而补全直方图;(3)利用总人数乘以对应的比例求解.【解答】解:(1)调查的总人数是120÷50%=240(人),则C部分所占扇形的圆心角的度数是360°×=30°,故答案是:30;(2)A为240﹣120﹣20=100(名).;(3)48×=20(万名).所以估计某天该区48万名骑共享单车的市民中有20万名选择摩拜单车.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(8分)某商场以80元/个的价格购进1000个保温杯.经市场调研,保温杯定价为100元/个时可全部售完,定价每提高1元,销售量将减少5个.未卖完的保温杯可以直接退还厂家.要使商场利润达到60500元,保温杯的定价应为多少元?【分析】设保温杯的定价应为x元,根据总利润=单个利润×销售数量结合商场总利润达到60500元,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设保温杯的定价应为x元,根据题意得:(x﹣80)[1000﹣5(x﹣100)]=60500,整理得:x2﹣380x+36100=0,解得:x1=x2=190.答:保温杯的定价应为190元.【点评】本题考查了一元二次方程的应用,根据总利润=单个利润×销售数量列出关于x的一元二次方程是解题的关键.24.(8分)如图,在路边安装路灯,灯柱BC高15m,与灯杆AB的夹角ABC为120°.路灯采用锥形灯罩,照射范围DE长为18.9m,从D、E两处测得路灯A的仰角分别为∠ADE=80.5°,∠AED=45°.求灯杆AB的长度.(参考数据:cos80.5°≈0.2,tan80.5°≈6.0)【分析】过点A作AF⊥CE,点B作BG⊥AF,根据正切的概念求出DF,列方程求出AF,根据正弦的概念计算即可.【解答】解:过点A作AF⊥CE,交CE于点F.设AF的长度为xm.∵∠AED=45°,∴△AEF是等腰直角三角形.∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF===.∵DE=18.9,∴+x=18.9,解得x=16.2,过点B作BG⊥AF,交AF于点G,则BC=GF=15,∠CBG=90°.∴AG=AF﹣GF=16.2﹣15=1.2,∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.在Rt△ABG中,∵sin∠ABG=,∴AB===2.4,答:灯杆AB的长度为2.4 m.【点评】本题考查的是解直角三角形的应﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25.(9分)如图,在△ABC中,AB=AC,以AB为直径作半圆O交BC于点D,过点D作DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若CE=1,BC=6,求半圆O的半径的长.【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)连接AD.由AB为半圆O的直径,得到∠ADB=90°,根据垂直的定义得到∠DEC=∠ADB=90°.根据等腰三角形的性质得到CD=BD=BC=3,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OD.∵OD=OB,∴∠ODB=∠OBD.∵AB=AC,∴∠ACB=∠OBD.∴∠ACB=∠ODB.∴OD∥AC,∴∠DEC=∠ODE.∵DE⊥AC,∴∠DEC=90°.∴∠ODE=90°,即OD⊥DE,∵DE过半径OD的外端点D,∴DE是⊙O的切线;(2)解:连接AD.∵AB为半圆O的直径,∴∠ADB=90°,∵DE⊥AC,∴∠DEC=∠ADB=90°.∵AB=AC,BC=6,∴CD=BD=BC=3,又∵∠ECD=∠DBA,∴△CED∽△BDA,∴=.∵CE=1,∴=.∴AB=9,∴半圆O的半径的长为4.5.【点评】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.26.(11分)概念理解一组对边平行,另一组对边相等且不平行的四边形叫做等腰梯形.类比研究我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对四边形进行研究.请根据示例图形,完成表.四边形示例图形对称性边角对角线平行四边形(1)中心对称图形,对角线的交点是它的对称中心.两组对边分别平行,两组对边分别相等.两组对角分别相等.对角线互相平分.等腰梯形轴对称图形,过平行的一组对边中点的直线是它的对称轴.一组对边平行,另一组对边相等.(2)同一底上的两个角相等.(3)对角线相等.演绎论证证明等腰梯形有关角和对角线的性质.(4)已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是对角线.求证:∠ABC=∠DCB,∠BAD=∠CDA,AC=BD.证明:揭示关系我们可以用图来揭示三角形和一些特殊三角形之间的关系.(5)请用类似的方法揭示四边形、对角线相等的四边形、平行四边形、矩形以及等腰梯形之间的关系.【分析】(1)(2)(3)根据平行四边形、等腰梯形的性质即可解决问题.(4)结论:∠ABC=∠DCB,∠BAD=∠CDA,AC=BD.方法一:过点D作DE∥AB,交BC于点E.首先证明四边形ABED是平行四边形,推出AB=DE,又AB=DC,推出DE=DC,推出∠DCE=∠DEC,推出∠ABE=∠DCE,即∠ABC=∠DCB,由AD∥BC,推出∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,由∠ABC=∠DCB,推出∠BAD=∠CDA,再证明△ABC≌△DCB即可解决问题.方法二:分别过点A、D作AE⊥BC于点E、DF⊥BC于点F.由Rt△ABE≌Rt△DCF,推出∠ABE=∠DCF,即∠ABC=∠DCB,由AD∥BC,推出∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,由∠ABC=∠DCB,推出∠BAD=∠CDA,再证明△ABC≌△DCB,即可.(5)模仿三角形和一些特殊三角形之间的关系,画出图形即可.【解答】解:(1)中心对称图形,对角线的交点是它的对称中心.(2)同一底上的两个角相等.(3)对角线相等.(4)∠ABC=∠DCB,∠BAD=∠CDA,AC=BD.故答案分别为中心对称图形,对角线的交点是它的对称中心;同一底上的两个角相等;对角线相等;∠ABC=∠DCB,∠BAD=∠CDA,AC=BD.方法一:证明:过点D作DE∥AB,交BC于点E.∴∠ABE=∠DEC,。

2017南京市各区中考一模数学试题(含答案及评分标准)

2017南京市各区中考一模数学试题(含答案及评分标准)

九年级数学试卷 第1 页 共 6 页2016~2017学年度第一次调研测试九年级数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算-1+2的值是( ▲ )A .-3B .-1C .1D .32.不等式组⎩⎨⎧ 2 x >-1,x -1≤0的解集是( ▲ )A .x >-12B .x <-12C .x ≤1D .-12<x ≤13. 计算32)(a 的结果是( ▲ )A. 23a B. 32a C. 5a D. 6a4.地球绕太阳每小时转动通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是( ▲ )A .0.264×10 7千米B .2.64×10 6千米C .26.4×10 5千米D .264×10 4千米 5.如图所示的平面图形能折叠成的长方体可能是( ▲ )6.把函数y =2x 2的图象先沿x 轴向右平移3个单位长度,再沿y 轴向下平移2个单位长度得到新函数的图象,则新函数的关系式是( ▲ )A .y =2(x +3)2-2B .y =2(x -3)2-2C .y =2(x +3)2+2D .y =2(x -3)2+2(第5题)A .B .C .D .九年级数学试卷 第2 页 共 6 页DCBA(第13题) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:20 +112-⎛⎫ ⎪⎝⎭= ▲ .8.分解因式:269xx -+= ▲ .9.计算:82+= ▲ .10.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是 ▲ (填“甲”、“乙”、“丙”中的一个). 11.如果反比例函数y =kx 的图象经过点(1,3),那么它一定经过点(-1, ▲ ).12.圆锥形烟囱帽的底面直径为80 cm ,母线长为50 cm ,该烟囱帽的侧面积等于 ▲ cm 2(结果保留π).13.如图,在△ABC 中,AD =DB =BC .若∠C =n °,则∠ABC = ▲ 度.(用含n 的代数式表示)14.如图,在Rt △ABC 中,∠C =90°,∠B =60°,内切圆O 与边AB 、BC 、CA 分别相切于点D 、E 、F ,则∠DEF 的度数为 ▲ °.15.已知正比例函数y =2x 的图象过点),(11y x 、),(22y x .若112=-x x ,则21y y -= ▲ . 16.如图,已知A 、B 两点的坐标分别为(2,0)、(0,4),P 是△AOB 外接圆⊙C 上的一点,且∠AOP =45°,则点P的坐标为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (7分)计算: (a 2a -b +b 2b -a)÷a +b ab .(第14题)(第16题)九年级数学试卷 第3 页 共 6 页18. (7分) 解方程组:⎩⎪⎨⎪⎧x +y =2,2x - 13 y =53.19. (7分)某校学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,随机抽取其中32名学生两次考试考分等级制成统计图(如图),试回答下列问题:(1)这32名学生经过培训,考分等级“不合格”的百分比由 ▲ 下降到 ▲ ; (2)估计该校640名学生,培训后考分等级为“合格”与“优秀”的学生共有多少名.20. (8分) 如图,某同学在大楼AD 的观光电梯中的E 点测得大楼BC 楼底C 点的俯角为45°,此时该同学距地面高度AE 为20米,电梯再上升5米到达D 点,此时测得大楼BC 楼顶B 点的仰角为37º,求大楼的高度BC .(参考数据:sin37 º≈0.60, cos37 º≈0.80, tan37 º≈0.75)不合格合格 15 5 10(第19题)(第20题)九年级数学试卷 第4 页 共 6 页21.(8分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为D ,AE ∥BC , DE ∥AB . 求证:(1)AE =DC ;(2)四边形ADCE 为矩形.22.(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏. (1)在实验中他们共做了50次试验,试验结果如下:① 填空:此次实验中,“1点朝上”的频率是 ▲ ;② 小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么? (2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.23.(8分)建造一个池底为正方形、深度为2m 的长方体无盖水池,池壁的造价为每平方米100元,池底的造价为每平方米200元,总造价为6400元.求该水池池底的边长.ABCDE(第21题图)九年级数学试卷 第5 页 共 6 页24.(8分)甲、乙两车从A 地将一批物品匀速运往B 地,已知甲出发0.5h 后乙开始出发,如图,线段OP 、MN 分别表示甲、乙两车离A 地的距离S (km )与时间t (h )的关系,请结合图中的信息解决如下问题: (1)计算甲、乙两车的速度及a 的值; (2)乙车到达B 地后以原速立即返回.①在图中画出乙车在返回过程中离A 地的距离S (km )与时间t (h )的函数图象;(请标出必要的相关数据)②请问甲车在离B 地多远处与返程中的乙车相遇?25.(8分)如图,CD 为⊙O 的直径,弦AB 垂直于CD ,垂足为H ,∠EAD =∠HAD . (1)求证:AE 为⊙O 的切线;(2)延长AE 与CD 的延长线交于点P ,过D 作DE ⊥AP ,垂足为E ,已知P A =2,PD =1,求⊙O 的半径和DE 的长.26.(9分)已知:二次函数y =ax 2 +bx 的图像经过点M (1,n )、N (3,n ).(1)求b 与a 之间的关系式;(2)若二次函数y =ax 2 +bx 的图像与x 轴交于点A 、B ,顶点为C ,△ABC 为直角三角形,求该二次函数的关系式.C(第25题)九年级数学试卷 第6 页 共 6 页27.(10分)重温我们知道:同弧或等弧所对的圆周角相等.也就是,如图(1),⊙O 中,AB ︵所对的圆周角∠ACB=∠ADB=∠AEB . 应用(1)已知:如图(2),矩形ABCD . ①若AB <12BC ,在边AD 上求作点P ,使∠BPC =90°.(保留作图痕迹,写出作法.)②小明经研究发现,当AB 、BC 的大小关系发生变化时,①中点P 的个数也会发生变化,请你就点P 的个数,探讨AB 与BC 之间的数量关系.(直接写出结论) 创新(2)小明经进一步研究发现:命题“若四边形的一组对边相等和一组对角相等,则这个四边形是平行四边形.”是一个假命题,并在平行四边形的基础上利用“同弧或等弧所对的圆周角相等.”作出了一个反例图形.请你利用下面如图(3)所给的□ABCD 作出该反例图形.(不写作法,保留作图痕迹)(第27题图(1))C(第27题图(2))ADBABCD(第27题图(3))九年级数学试卷 第7 页 共 6 页初三一模数学试题参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3 8.(x-3)2 9.10.乙 11.-3 12.2000π 13.180-1.5n 14.75 15.2 16.(3,3) 三、解答题(本大题共11小题,共88分) 17.(7分)解:原式=(a 2a -b -b 2a -b)÷a +b ab ………2分=a 2-b 2a -b ÷a +bab ……………4分=()()a b a b a b+--×aba +b……6分 =ab ……………………………7分18. (7分) 对某一方程进行有效变形且正确 ………………………………………1分 得用代入或加减消去一个未知数得一元一次方程正确………………3分 解得一个未知数的值正确………………………………………………4分 代入求得另一个未知数的值正确………………………………………6分正确写出方程组的解1,1.x y =⎧⎨=⎩…………………………………………7分.19.(7分)(1)75﹪,25﹪…………………………………………………………………4分 (2)据题意得:培训后32名学生中“合格”与“优秀”的学生共有24名 ………5分 考分等级为“合格”与“优秀”的学生人数约占2432=34…………………………6分 所以,培训后全校考分等级为“合格”与“优秀”的学生人数约有: 640×34=480名分20. (8分)解:过点E 、D 分别作BC 的垂线,交BC 于点F 、G .在Rt △EFC 中,因为FC =AE =20,∠FEC =45° 所以EF =20………………………………………3分 在Rt △DBG 中,DG =EF =20,∠BDG =37°C因为tan∠BDG=BGDG≈0.75 ………………………………5分所以BG≈DG×0.75=20×0.75=15………………………6分而GF=DE=5所以BC=BG+GF+FC=15+5+20=40答:大楼BC的高度是40米.………………………………8分21.(8分)证明:(1)在△ABC中,∵AB=AC,AD⊥BC,∴BD=DC ……………………………………………………2分∵AE∥BC, DE∥AB,∴四边形ABDE为平行四边形………………………………4分∴BD=AE,…………………………………………………5分∵BD=DC∴AE = DC.……………………………………………………6分(2)∵AE∥BC,AE = DC,∴四边形ADCE为平行四边形.………………………………7分又∵AD⊥BC,∴∠ADC=90°,∴四边形ADCE为矩形.………………………………………8分22.(8分)(1)①0.2 …………………………………………………………1分②不正确……………………………………………………2分因为在一次实验中频率并不一定等于概率,只有当实验中试验次数很大时,频率才趋近于概率.………………………………………………………3分(2)列表如下:………5分所有可能的结果共有36种,每一种结果出现的可能性相同.九年级数学试卷第8 页共6 页九年级数学试卷 第9 页 共 6 页)所以P (点数之和超过6)=2136 ,P (点数之和不超过6)=1536 ………7分因为2136 >1536,所以小亮获胜的可能性大.………………………………8分23.(8分)设池底的边长为x m . ……………………………………1分 200x 2+800x =6400 …………………………………………4分 解得x 1=4,x 2=-8(舍) …………………………………7分 答:池底的边长为4m . ……………………………………8分24.(本题8分) 解:(1)由题意可知M (0.5,0),线段OP 、MN 都经过(1.5,60)甲车的速度60÷1.5=40 km/小时,……………………………………………1分乙车的速度60÷(1.5-0.5)=60 km/小时, ………………………………2分 a =40×4.5=180 km ; …………………………………………………………3分(2)①乙车在返回过程中离A 地的距离S (km )与时间t (h )的函数图象25.(8分)连结OA∵AB ⊥CD ,∴∠AHD =90°.∴∠HAD +∠ODA =90°………………………1分 ∵OA =OD ,∴∠OAD =∠ODA …………2分 又∵∠EAD =∠HAD∴∠EAD +∠OAD =90°, …………………3分 ∴OA ⊥AE ,又∵点A 在圆上,∵AE 为⊙O 的切线.………4分 (2)设⊙O 的半径为x ,在Rt △AOP 中,OA 2+AP 2=OP 2x 2+22=(x +1)2 …………………5分 解得x =1.5 ………………………6分 ∴⊙O 的半径为1.5∵OA ∥DE ,所以△PED ∽△P AO ,PC九年级数学试卷 第10 页 共 6 页∴DP PO =DE AO ,1 2.5 =DE1.5,…………………7分 解得DE =35…………………………………8分26.(本题9分)解:(1)∵图像经过M (1,n )、N (3,n )∴图像的对称轴为直线x =2. …………………………………2分 ∴22ba-=,所以b = -4a .…………………………………4分 (2)y =ax 2 -4ax 的图像与x 轴交于点A (0,0)、B (4,0).………5分∵△ABC 为直角三角形,∴顶点C 坐标为(2,2)或(2,-2).…………………………7分 代入得4a -8a =2或4a -8a =-2.∴a =-12 或12 .……………………………………………………8分∴y = - 12 x 2 +2x 或y =12x 2 -2x .…………………………………9分27.(10分)(1)①作图正确………………………………………………………………2分.作法:以BC 为直径作⊙O ,交AD 于P 1、P 2P 1、P 2 为所求作的点P .………………………………………………4分 ②AB <12BC 时,点P 有两个;………………………………………………5分 AB=12BC 时,点P 有且只有1个; ………………………………………6分 AB >12BC 时,点P 有0个; ………………………………………………7分(2)……………………………………………10分连接AC ,作△ADC 的外接圆⊙O ,再以C 为圆心, CD 的长为半径画弧,与⊙O 相交于点E ,则四边形ABCE 即为所求反例图形.(画法不计分)九年级数学试卷 第11 页 共 6 页2017年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .0(第4题) A BCD (第6题)6.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,则△ABC 的面积为(▲)A.48 B.50 C.54 D.60九年级数学试卷第12 页共6 页九年级数学试卷 第13 页 共 6 页二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ .10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =k x 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m.(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a=_▲_,初赛成绩为1.70m所在扇形图形的圆心角为_▲_°;(2)补全条形统计图;(3)这组初赛成绩的众数是▲ m,中位数是▲ m;(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n的值为;(2)当n=2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD绕点C旋转得到矩形FECG,点E在AD上,延长ED交FG 于点H.(1)求证:△EDC≌△HFE;九年级数学试卷第14 页共6 页九年级数学试卷 第15 页 共 6 页(2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 时,四边形BEHC 为菱形.(第21题)ABCDGFEH九年级数学试卷 第16 页 共 6 页22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点.(1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。

南京2017中考数学试卷包括答案

南京2017中考数学试卷包括答案

优选文档南京市 2017 年初中毕业生学业考试第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每题 5 分,共 60 分 .在每题给出的四个选项中,只有一项为哪一项吻合题目要求的 .1.计算 12 18 63 2 的结果是() A . 7B . 8C . 21D .362.计算 106 10 2 3104 的结果是( )A . 103B . 107C . 104D . 1093.不透明袋子中装有一个几何体模型, 两位同学摸该模型并描述它的特色 .甲同学:它有 4 个面是三角形;乙间学:它有 8 条棱 .该模型的形状对应的立体图形可能是 ( )A .三棱柱B .四棱柱C . 三棱锥D .四棱锥4.若 3a10 ,则以下结论中正确的选项是 ( )A . 1 a 3B . 1 a 4C. 2 a 3D . 2 a 4 若方程 x 5219的两根为 a和 b ,且 a b ,则以下结论中正确的选项是( ) 5.A . a 是 19 的算术平方根B . b 是 19 的平方根C. a 5 是 19 的算术平方根D . b 5 是19 的平方根6.过三点 A (2,2), B (6,2), C (4,5)的圆的圆心坐标为( )A .(4,17)B .(4,3)C.(5,17)D .(5, 3)66第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)7.计算:332;.8.2016 年南京实现 GDP 约 10500 亿元,成为全国第 11 个经济总量高出万亿的城市,用科学记数法表示 10500 是 .9.若式子x 2 在实数范围内有意义,则 x 的取值范围是.110.计算 12 8 6 的结果是 .11.方程21 0 的解是..12.已知关于x的方程x2px q 0 的两根为-3和-1,则 p;q.13.下面是某市 2013~2016 年个人汽车拥有量和年增加率的统计图,该市个人汽车拥有量年净增量最多的是年,个人汽车拥有量年增加率最大的是年.14.如图, 1 是五边形ABCDE的一个外角,若 1 65 ,则A B C D.15.如图,四边形 ABCD 是菱形,⊙ O 经过点A,C , D,与 BC 订交于点 E ,连接AC , AE,若D 78 ,则EAC.16.函数y1x 与 y24的图像以下列图,以下关于函数y y1y2的结论:①函数的图像关于x原点中心对称;②当 x 2 时,随的增大而减小;③当 x 0 时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算 a 21a1.a a2x6, ①18. 解不等式组x2, ②3 x 1 x 1.③请结合题意,完成本题的解答.( 1)解不等式①,得.( 2)解不等式③,得.( 3)把不等式①,②和③的解集在数轴上表示出来.( 4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19. 如图,在ABCD 中,点E, F分别在AD, BC上,且AE CF , EF , BD 订交于点O .求证OE OF .20.某公司共 25 名员工,下标是他们月收入的资料 .月收入 /元45000180001000055004800340050002200人数111361111( 1)该公司员工月收入的中位数是元,众数是元.( 2)依照上表,可以算得该公司员工月收入的平均数为6276 元 .你认为用平均数,中位数和众数中的哪一个反响该公司全体员工月收入水平较为合适?说明原由.21.全面两孩政策推行后,甲,乙两个家庭有了各自的规划 .假定生男生女的概率相同,回答以下问题:( 1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;( 2)乙家庭没有孩子,准备生两个孩子,求最少有一个孩子是女孩的概率.22.“直角”在初中几何学习中无处不在 .如图,已知 AOB ,请模拟小丽的方式,再用两种不相同的方法判断 AOB 可否为直角(仅限用直尺和圆规) .小丽的方法如图,在 OA, OB 上分别取点 C , D ,以C为圆心,CD长为半径画弧,交OB 的反向延长线于点E ,若OE OD,则AOB 90 ..文具的购买品种,每减少购买 1 个甲种文具,需增加购买 2 个乙种文具 .设购买x个甲种文具时,需购买 y 个乙种文具 .( 1)①当减少购买一个甲种文具时,x▲,y▲;②求 y 与x之间的函数表达式 .(2)已知甲种文具每个 5 元,乙种文具每个 3 元,张老师购买这两种文具共用去 540 元 .甲,乙两种文具各购买了多少个?24.如图,PA, PB是⊙ O 的切线,A, B为切点 .连接 AO 并延长,交 PB 的延长线于点 C ,连接 PO ,交⊙ O 于点D .(1)求证: PO 均分 APC .()连接 DB ,若C30 ,求证 DB / / AC.225.如图,港口B位于港口A的南偏东 37 方向,灯塔 C 恰幸好AB的中点处,一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行 5 km ,到达E处,测得灯塔 C 在北偏东 45 方向上 .这时,E处距离港口A有多远?(参照数据: sin370.60,cos370.80, tan370.75 )26.已知函数 y x2m 1 x m (m为常数)( 1)该函数的图像与x 轴公共点的个数是()D.1 或 2( 2)求证:不论m为何值,该函数的图像的极点都在函数y x12的图像上 .( 3)当 2 m 3 时,求该函数的图像的极点纵坐标的取值范围 .27.折纸的思虑 .用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD AB BC (图①),使 AB 与 DC 重合,获取折痕EF ,把纸片展平(图②) .第二步,如图③,再一次折叠纸片,使点 C 落在EF上的P处,并使折痕经过点 B ,获取折痕BG ,折出PB, PC,获取PBC .( 1)说明PBC 是等边三角形 .【数学思虑】( 2)如图④ .小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD 中把PBC 经过图形变化,可以获取图⑤中的更大的等边三角形.请描述图形变化的过程 .(3)已知矩形一边长为 3 cm,另一边长为acm .关于每一个确定的a的值,在矩形中都能画出最大的等边三角形 .请画出不相同状况的表示图,并写出对应的a的取值范围 .【问题解决】(4)用一张正方形铁片剪一个直角边长分别为 4 cm和 1 cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm .优选文档试卷答案一、选择题1-5:CCDBC 6:A二、填空题,3. 8.1.05 104 . 9. x 1.10.6.11. x 2 .,3,2015.14.425.15.27.16.①③ .三、解答题17.解: a21 1aaaa 22a 1 a 2 1aaa 22a 1 aaa 2 1a2a1a a 1 a 1a 1 . a118.(1) x3 .不等式两边乘(或除以)同一个负数,不等号的方向改变 .( 2) x 2 . ( 3)( 4) 2 x 2 .19.证明:∵四边形 ABCD 是平行四边形,∴ AD / /BC , ADBC .∴ EDOFBO , DEO BFO .∵ AE CF ,∴DOE≌ BOF .∴OE OF .20.解( 1) 3400, 3000.(2)本题答案不独一,以下解法供参照,比方,用中位数反响该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会以致平均数较大 .该公司员工月收入的中位数是 3400 元,这说明除去收入为 3400 元的员工,一半员工收入高于 3400 元,另一半员工收入低于 3400 元 .因此,利用中位数可以更好地反响这组数据的集中趋势 .21.解:(1)1 . 2(2)乙家庭没有孩子,准备生两个孩子,所有可能出现的结果有:(男,男)、(男,女)、(女,男)、(女,女),共有 4 种,它们出现的可能性相同 .所有的结果中,满足“最少有一个是女孩”(记为事件 A )的结果有三种,因此P A 3 .422.本题答案不独一,以下解法供参照,比方,方法 1:如图①,在OA, OB上分别截取OC4, OD 3 .若CD 5 ,则 AOB 90 .方法 2:如图②,在OA, OB上分别取点C , D,以 CD 为直径画圆 .若点 O 在圆上,则AOB 90 .23.解:(1)① 99,2.②依照题意,得 y 2 100 x 2 x200.因此 y 与x之间的函数表达式为y2x 200 .y2x200,( 2)依照题意,得解得5x 3y540.x 60,y80.答:甲、乙两种文具各购买了60 个和 80 个.24.证明:( 1)如图,连接 OB .∵ PA, PB 是⊙O的切线,∴OA AP,OB BP ,又OA OB ,∴PO 均分 APC .( 2)∵AO AP, OB BP ,∴CAPOBP 90 .∵ C 30 ,∴APC 90 C 90 30 60 .∵PO 均分 APC ,∴116030 ,OPC APC22∴POB 90OPC9030 60 .又OD OB ,∴ODB 是等边三角形 .∴OBD 60 .∴DBPOPB OBD 90 60 30 .∴ DBP C .∴ DB / / AC .25.解:如图,过点 C 作 CH AD ,垂足为 H .设 CH xkm . 在 Rt ACH 中, A 37,∵ tan 37CH ,AH∴ AHCH x .tan 37tan37在 Rt CEH 中, CEH45 ,∵ tan 45CH ,EH∴ EHCH x .tan 45∵ CHAD , BDAD ,∴ AHCADB 90 .∴ HC / / DB .∴AH AC .HD CB又 C 为 AB 的中点, ∴ AC CB .∴ AH HD .∴xx5.tan 37∴ x5 tan 3751 tan 37 115 .∴ AEAH HE1535 km .15tan 37因此, E 处距离港口 A 大体为 35 km .26.解:(1) D .2 2( ) yx 2m 1 x mx m 1 m 1,224m 1 m 2因此该函数的图像的极点坐标为1.,422m2把 xm 1代入 y2m 1 11x 1 ,得 y.因此,不论 m 为何值,该函数的图像的极点都在函数y x 12的图像上 .m21( 3)设函数z.4当 m1时,z有最小值 0.当 m1时,z随m的增大而减小;当 m1时,z随m的增大而增大 .2232又当 m 2 时, z11;当 m 3 时, z144.44因此,当 2 m 3时,该函数的的图像的极点纵坐标的取值范围是0 z 4 .27.解:(1)由折叠,PB PC, BP BC,因此,PBC 是等边三角形 .( 2)本题答案不独一,以下解法供参照.比方,如图,以点 B 为中心,在矩形ABCD 中把PBC 逆时针方向旋转合适的角度,获取PBC ;11再以点 B 为位似中心,将1 1 放大,使点 1 的对应点C 2落在CD上,获取 2 2.PBC C P BC ( 3)本题答案不独一,以下解法供参照,比方,3 33 3a 2 30 a2a 2 32( 4)16.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省南京市秦淮区中考数学一模试卷解析版一、选择题(本大题共6小题,每小题2分,共12分.)1.(2分)下列四个数中,是负数的是()A.|﹣3|B.(﹣3)2C.﹣(﹣3)D.﹣32【分析】各项利用绝对值的代数意义,乘方的意义,相反数的性质判断即可.【解答】解:A、|﹣3|=3,不符合题意;B、原式=9,不符合题意;C、原式=3,不符合题意;D、原式=﹣9,符合题意,故选:D.【点评】此题考查了有理数的乘方,正数与负数,相反数,以及绝对值,熟练掌握各自的性质是解本题的关键.2.(2分)据南京市统计局调查数据显示,截至2016年年底,全市汽车拥有量首次进入全国“200万俱乐部”,达到了2 217 000辆.将2 217 000用科学记数法表示是()A.0.2217×106B.0.2217×107C.2.217×106D.2.217×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2 217 000=2.217×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)如图,数轴上的点A表示的数可能是下列各数中的()A.﹣8的算术平方根B.10的负的平方根C.﹣10的算术平方根D.﹣65的立方根【分析】设A点表示的数为x,则﹣4<x<﹣3,再根据每个选项中的范围进行判断.【解答】解:如图,设A点表示的数为x,则﹣4<x<﹣3,∵﹣8<0,∴﹣8没有算术平方根,故A错误;∵﹣4<﹣<﹣3,故B正确;∵﹣10<0,∴﹣10没有算术平方根,故C错误;∵﹣5<<﹣4,故D错误.故选:B.【点评】本题考查了实数与数轴的对应关系.关键是明确数轴上的点表示的数的大小,估计无理数的取值范围.4.(2分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,5000元,7000元,4000元和10000元,那么他们工资的中位数为()A.4000元B.5000元C.7000元D.10000元【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:3000元,4000元,5000元,7000元,10000元,5000元处在第3位为中位数,故他们工资的中位数是5000元.故选:B.【点评】考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(2分)下列长度的三条线段能组成锐角三角形的是()A.2,3,3B.2,3,4C.2,3,5D.3,4,5【分析】根据勾股定理求出以较短的两条边为直角边的三角形的斜边的长度,然后与较长的边进行比较作出判断即可.【解答】解:A、∵=>3,2+3>3,∴能组成锐角三角形;B、∵=<4,2+3>4,∴不能组成锐角三角形;C、∵2+3=5,∴不能组成三角形;D、∵=5,是直角三角形,∴不能组成锐角三角形.故选:A.【点评】本题考查了勾股定理的逆定理,利用勾股定理求出直角三角形的斜边是解题的关键.6.(2分)如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF:FG:GD=3:2:1,则AB的长为()A.1B.C.D.2【分析】由四边形ABCD是矩形,得到AB=CD,AD=BC=6,∠A=∠D=90°,根据余角的性质得到∠ABF=∠DGC,推出△AFB∽△DCG,根据相似三角形的性质得到AB2=AF•DG=3,于是得到结论.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠A=∠D=90°,∵∠E=90°,∴∠EFG+∠EGF=90°,∴∠AFB+∠DGC=90°,∵∠AFB+∠ABF=90°,∴∠ABF=∠DGC,∴△AFB∽△DCG,∴,∵AF:FG:GD=3:2:1,∴AF=3,DG=1,∴AB2=AF•DG=3,∴AB=.故选:C.【点评】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)7.(2分)﹣2的倒数是﹣;﹣2的相反数是2.【分析】首先根据求一个整数的倒数,就是写成这个整数分之一,可得:﹣2的倒数是﹣;然后根据相反数的含义和求法,可得:﹣2的相反数是2.【解答】解:﹣2的倒数是﹣;﹣2的相反数是2.故答案为:﹣、2.【点评】此题主要考查了一个数的倒数的求法,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①求一个整数的倒数,就是写成这个整数分之一.②求一个分数的倒数,就是调换分子和分母的位置.8.(2分)若式子在实数范围内有意义,则x的取值范围是x≥﹣1.【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【解答】解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.(2分)计算的结果是2.【分析】直接化简二次根式进而约分求出答案.【解答】解:==2.故答案为:2.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.10.(2分)方程的根是x=3.【分析】先去分母把分式方程化为整式方程得到x=3,然后进行检验确定分式方程的解.【解答】解:去分母得x=3(x﹣2),解得x=3,检验:当x=3时,x(x﹣2)≠0,x=3是原方程的解.所以原方程的解为x=3.故答案为x=3【点评】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.11.(2分)正方形ABCD内接于⊙O,E是的中点,连接BE、CE,则∠ABE=22.5°.【分析】先根据正方形的性质得出∠AOD的度数,再由E是的中点即可得出∠AOE 的度数,进而可得出结论.【解答】解:连接OA、OD、OE,如图所示.∵四边形ABCD是园内接正方形,∴∠AOD=90°.∵E是的中点,∴∠AOE=45°,∴∠ABE=×45°=22.5°.故答案为:22.5.【点评】本题考查的是圆周角定理及圆心角、弧、弦的关系.熟知正方形的性质是解答此题的关键.12.(2分)如图,将△ABC绕点B顺时针旋转到△DBE的位置.连接AD,若∠ABD=60°,则∠1=60°.【分析】直接利用旋转的性质结合三角形内角和定理得出∠E=∠C,∠3=∠4,∠5=60°,进而求出答案.【解答】解:如图所示:∵△ABC绕点B顺时针旋转60°,得到△DBE,∴∠E=∠C,∠3=∠4,∠5=60°,∴∠2=∠5=60°,∴∠1=60°.故答案为:60.【点评】此题主要考查了旋转的性质,根据题意得出∠2=∠5是解题关键.13.(2分)已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为2.【分析】由抛物线的对称轴为x=1,可得出b=﹣2a,再根据根与系数的关系即可得出关于x的方程ax2+bx+c=0的两个根的和.【解答】解:∵二次函数y=ax2+bx+c的对称轴为x=1,∴﹣=1,∴b=﹣2a,∴关于x的方程ax2+bx+c=0的两个根的和为﹣=2.故答案为:2.【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及根与系数的关系,根据函数图象结合二次函数的性质找出b=﹣2a是解题的关键.14.(2分)某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是300元.【分析】设商品的定价为x元,根据商品的成本不变结合成本=售价﹣利润即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设商品的定价为x元,根据题意得:0.75x+25=0.9x﹣20,解得:x=300.故答案为:300.【点评】本题考查了一元一次方程的应用,根据商品的成本不变结合,成本=售价﹣利润列出关于x的一元一次方程是解题的关键.15.(2分)我们已经学习过反比例函数y=的图象和性质,请回顾研究它的过程,对函数y=进行探索.下列结论:①图象在第一、二象限,②图象在第一、三象限,③图象关于y轴对称,④图象关于原点对称,⑤当x>0时,y随x增大而增大;当x<0时,y随x增大而增大,⑥当x>0时,y随x增大而减小;当x<0时,y随x增大而增大,是函数y=的性质及它的图象特征的是:①③⑥.(填写所有正确答案的序号)【分析】根据函数解析式确定出图象所经过的点的坐标,再画出图象即可,根据图象可得出该函数的性质.【解答】解:列表:x﹣3 ﹣2 ﹣11 2 3y141画图:由函数y=的图象可知此图象具有以下性质:函数的图象在一、二象限,当x>0时,y随x增大而减小;当x<0时,y随x增大而增大;函数的图象关于y对称.故选①③⑥.【点评】此题主要考查了画反比例函数图象和反比例函数的性质,画出函数的图象是解题的关键.16.(2分)如图,在△ABC中,∠C=90°,CA=4,CB=3.与CA延长线、AB、CB延长线相切,切点分别为E、D、F,则该弧所在圆的半径为6.【分析】根据勾股定理求出AB,连接OE、OF、得出正方形CEOF,求出CE=CF=r,根据切线长定理得出AD=AE,BD=BF,即可得出方程,求出方程的解即可.【解答】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,设弧所在的圆的圆心为O,圆的半径为r,连接OE、OF,如图,∵.与CA延长线、AB、CB延长线相切,切点分别为E、D、F,∴AE=AD,BF=BD,∠OEC=∠OFC=90°,∵∠C=90°,OE=OF=r,∴四边形CEOF是正方形,∴CE=CF=OE=OF=r,则AE=AD=r﹣4,BF=DB=r﹣3,∴r﹣3+r﹣4=5,解得:r=6,故答案为:6.【点评】本题考查了切线长定理,切线的性质,勾股定理等知识点,能综合运用知识点进行推理是解此题的关键.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得x≥4.解不等式②,得x<7.所以,不等式组的解集是4≤x<7.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)化简﹣.【分析】先把原式的分母通分,化为同分母的分数后再相加减.【解答】解:原式=﹣===﹣.【点评】本题考查了分式的加减法,要牢记异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.:19.(6分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接DE 并延长至点F,使EF=DE,连接AF、DC.求证:四边形ADCF是菱形.【分析】先证明四边形ADCF是平行四边形,再证明DE是△ABC的中位线,得出DE ∥BC,证出AC⊥DF,即可得出结论【解答】证明:∵点E是边AC的中点,∴AE=EC.又∵EF=DE,∴四边形ADCF是平行四边形.又∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC.又∵∠ACB=90°,∴∠AED=90°.∴AC⊥DF.∴四边形ADCF是菱形.【点评】本题考查了菱形的判定与性质、三角形中位线定理;熟练掌握菱形的判定与性质,由三角形中位线定理得出DE∥BC是解决该题的关键.20.(8分)脸谱是中国戏曲男演员脸部的彩色化妆.这种脸部化妆主要用于净(花脸)和丑(小丑),表现人物的性格和特征.现有四张脸谱,如图所示:有两张相同的表现忠勇侠义的净角姜维,有一张表现直爽刚毅的净角包拯,有一张表现阴险奸诈的丑角夏侯婴.(1)随机抽取一张,获得一张净角脸谱的概率是;(2)随机抽取两张,求获得一张姜维脸谱和一张包拯脸谱的概率.【分析】(1)由4张脸谱中净角脸谱有3张,根据概率公式求解可得;(2)根据题意列出所有等可能结果,找到一张姜维脸谱和一张包拯脸谱的结果数,由概率公式求解可得.【解答】解:(1)∵四张脸谱中随机抽取一张共有4种等可能结果,其中净角脸谱的有3张,∴随机抽取一张,获得一张净角脸谱的概率是,故答案为:.(2)记第一张姜维脸谱为1,第二张姜维脸谱为2,包拯脸谱为3,夏侯婴脸谱为4.随机抽取两张,所有可能出现的结果有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,它们出现的可能性相同.所有的结果中,满足“随机抽取两张,获得一张姜维脸谱和一张包拯脸谱”(记为事件A)的结果有2种,所以P(A)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.(8分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣10123…y…105212…(1)求该函数的表达式;(2)当y<5时,x的取值范围是0<x<4.【分析】(1)根据表中的数据,可得该二次函数图象的顶点坐标(2,1),设函数的表达式为y=a(x﹣2)2+1,代入数据解得a,可的解析式;(2)根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【解答】解:(1)由题意得图象的顶点坐标为(2,1),设函数的表达式为y=a(x﹣2)2+1.由题意得函数的图象经过点(0,5),所以5=a•(﹣2)2+1.所以a=1.所以函数的表达式为y=(x﹣2)2+1(或y=x2﹣4x+5);(2)由所给数据可知当x=2时,y有最小值1,∴二次函数的对称轴为x=2,又由表格数据可知当y<5时,对应的x的范围为0<x<4,故答案为:0<x<4.【点评】本题主要考查二次函数的对称性,掌握二次函数的图象关于对称轴对称是解题的关键.22.(8分)“智慧南京、绿色出行”,骑共享单车出行已经成为一种时尚.记者随机调查了一些骑共享单车的秦淮区市民,并将他们对各种品牌单车的选择情况绘制成图①和图②的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)在图①中,C部分所占扇形的圆心角度数为30°;(2)将图②补充完整;(3)根据抽样调查结果,请你估计某天该区48万名骑共享单车的市民中有多少名选择摩拜单车?【分析】(1)根据B组有120人,所占的百分比是50%,即可求得调查的总人数,然后利用360°乘以对应的比例求得C组对应扇形的圆心角的度数;(2)利用总人数减去其它组的人数即可求得A组的人数,从而补全直方图;(3)利用总人数乘以对应的比例求解.【解答】解:(1)调查的总人数是120÷50%=240(人),则C部分所占扇形的圆心角的度数是360°×=30°,故答案是:30;(2)A为240﹣120﹣20=100(名).;(3)48×=20(万名).所以估计某天该区48万名骑共享单车的市民中有20万名选择摩拜单车.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(8分)某商场以80元/个的价格购进1000个保温杯.经市场调研,保温杯定价为100元/个时可全部售完,定价每提高1元,销售量将减少5个.未卖完的保温杯可以直接退还厂家.要使商场利润达到60500元,保温杯的定价应为多少元?【分析】设保温杯的定价应为x元,根据总利润=单个利润×销售数量结合商场总利润达到60500元,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设保温杯的定价应为x元,根据题意得:(x﹣80)[1000﹣5(x﹣100)]=60500,整理得:x2﹣380x+36100=0,解得:x1=x2=190.答:保温杯的定价应为190元.【点评】本题考查了一元二次方程的应用,根据总利润=单个利润×销售数量列出关于x 的一元二次方程是解题的关键.24.(8分)如图,在路边安装路灯,灯柱BC高15m,与灯杆AB的夹角ABC为120°.路灯采用锥形灯罩,照射范围DE长为18.9m,从D、E两处测得路灯A的仰角分别为∠ADE =80.5°,∠AED=45°.求灯杆AB的长度.(参考数据:cos80.5°≈0.2,tan80.5°≈6.0)【分析】过点A作AF⊥CE,点B作BG⊥AF,根据正切的概念求出DF,列方程求出AF,根据正弦的概念计算即可.【解答】解:过点A作AF⊥CE,交CE于点F.设AF的长度为xm.∵∠AED=45°,∴△AEF是等腰直角三角形.∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF===.∵DE=18.9,∴+x=18.9,解得x=16.2,过点B作BG⊥AF,交AF于点G,则BC=GF=15,∠CBG=90°.∴AG=AF﹣GF=16.2﹣15=1.2,∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.在Rt△ABG中,∵sin∠ABG=,∴AB===2.4,答:灯杆AB的长度为2.4 m.【点评】本题考查的是解直角三角形的应﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25.(9分)如图,在△ABC中,AB=AC,以AB为直径作半圆O交BC于点D,过点D作DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若CE=1,BC=6,求半圆O的半径的长.【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)连接AD.由AB为半圆O的直径,得到∠ADB=90°,根据垂直的定义得到∠DEC =∠ADB=90°.根据等腰三角形的性质得到CD=BD=BC=3,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OD.∵OD=OB,∴∠ODB=∠OBD.∵AB=AC,∴∠ACB=∠OBD.∴∠ACB=∠ODB.∴OD∥AC,∴∠DEC=∠ODE.∵DE⊥AC,∴∠DEC=90°.∴∠ODE=90°,即OD⊥DE,∵DE过半径OD的外端点D,∴DE是⊙O的切线;(2)解:连接AD.∵AB为半圆O的直径,∴∠ADB=90°,∵DE⊥AC,∴∠DEC=∠ADB=90°.∵AB=AC,BC=6,∴CD=BD =BC=3,又∵∠ECD=∠DBA,∴△CED∽△BDA,∴=.∵CE=1,∴=.∴AB=9,∴半圆O的半径的长为4.5.【点评】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.26.(11分)概念理解一组对边平行,另一组对边相等且不平行的四边形叫做等腰梯形.类比研究我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对四边形进行研究.请根据示例图形,完成表.四边形示例图形对称性边角对角线平行四边形(1)中心对称图形,对角线的交点是它的对称中心.两组对边分别平行,两组对边分别相等.两组对角分别相等.对角线互相平分.等腰轴对称图形,一组对边平(2)同一(3)对角线梯形过平行的一组对边中点的直线是它的对称轴.行,另一组对边相等.底上的两个角相等.相等.演绎论证证明等腰梯形有关角和对角线的性质.(4)已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是对角线.求证:∠ABC=∠DCB,∠BAD=∠CDA,AC=BD.证明:揭示关系我们可以用图来揭示三角形和一些特殊三角形之间的关系.(5)请用类似的方法揭示四边形、对角线相等的四边形、平行四边形、矩形以及等腰梯形之间的关系.【分析】(1)(2)(3)根据平行四边形、等腰梯形的性质即可解决问题.(4)结论:∠ABC=∠DCB,∠BAD=∠CDA,AC=BD.方法一:过点D作DE∥AB,交BC于点E.首先证明四边形ABED是平行四边形,推出AB=DE,又AB=DC,推出DE=DC,推出∠DCE=∠DEC,推出∠ABE=∠DCE,即∠ABC=∠DCB,由AD∥BC,推出∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,由∠ABC=∠DCB,推出∠BAD=∠CDA,再证明△ABC≌△DCB即可解决问题.方法二:分别过点A、D作AE⊥BC于点E、DF⊥BC于点F.由Rt△ABE≌Rt△DCF,推出∠ABE=∠DCF,即∠ABC=∠DCB,由AD∥BC,推出∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,由∠ABC=∠DCB,推出∠BAD=∠CDA,再证明△ABC≌△DCB,即可.(5)模仿三角形和一些特殊三角形之间的关系,画出图形即可.【解答】解:(1)中心对称图形,对角线的交点是它的对称中心.(2)同一底上的两个角相等.(3)对角线相等.(4)∠ABC=∠DCB,∠BAD=∠CDA,AC=BD.故答案分别为中心对称图形,对角线的交点是它的对称中心;同一底上的两个角相等;对角线相等;∠ABC=∠DCB,∠BAD=∠CDA,AC=BD.方法一:证明:过点D作DE∥AB,交BC于点E.∴∠ABE=∠DEC,∵AD∥BC,∴四边形ABED是平行四边形,∴AB=DE,又∵AB=DC,∴DE=DC,∴∠DCE=∠DEC,∴∠ABE=∠DCE,即∠ABC=∠DCB,∵AD∥BC,∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,∵∠ABC=∠DCB,∴∠BAD=∠CDA,在△ABC和△DCB中,,∴△ABC≌△DCB,∴AC=BD.方法二:证明:分别过点A、D作AE⊥BC于点E、DF⊥BC于点F.∴∠AEF=∠DFC=90°,∴AE∥DF,∵AD∥BC,∴四边形AEFD是平行四边形,∴AE=DF,在Rt△ABE和Rt△DCF中,∴Rt△ABE≌Rt△DCF,∴∠ABE=∠DCF,即∠ABC=∠DCB,∵AD∥BC,∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,∵∠ABC=∠DCB,∴∠BAD=∠CDA,在△ABC和△DCB中,,∴△ABC≌△DCB,∴AC=BD.(5)如图所示.【点评】本题考查四边形综合题、平行四边形的性质、等腰梯形的性质的证明、全等三角形的判定和性质等知识,解题的关键是学会圆转化的思想思考问题,把四边形问题转化为三角形问题解决,学会添加常用辅助线,构造全等三角形,属于中考常考题型.27.(10分)一列快车和一列慢车同时从甲地出发,分别以速度v1、v2(单位:km/h,且v1>2v2)匀速驶向乙地.快车到达乙地后停留了2h,沿原路仍以速度v1匀速返回甲地.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示从慢车出发至慢车到达乙地的过程中,y与x之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为900km;(2)求线段AB、CD所表示的y与x之间的函数表达式;(3)慢车出发多长时间后,两车相距480km?【分析】(1)由图象即可得到结论;(2)根据图象,得到慢车的速度为=60(km/h),快车的速度为=150(km/h),于是得到结论;(3)根据每段的函数解析式即可得到结论.【解答】解:(1)由图象知,甲、乙两地之间的距离为900km,故答案为:900;(2)根据图象,得慢车的速度为=60(km/h),快车的速度为=150(km/h),所以线段AB所表示的y与x之间的函数表达式为y1=900﹣60x,所以线段CD所表示的y与x之间的函数表达式为y2=(60+150)(x﹣10)=210x﹣2100;(3)①线段OA所表示的y与x之间的函数表达式为y3=90x(0≤x<6),令y3=480,得x=,②线段AB所表示的y与x之间的函数表达式为y1=﹣60x+900(6≤x<8),令y1=480,得x=7,③线段CD所表示的y与x之间的函数表达式为y2=210x﹣2100(10≤x<14),令y2=480,得x=.答:慢车出发h、7h、h后,两车相距480km.【点评】此题主要考查了一次函数的应用,利用图表中数据得出慢车速度是解题关键.。

相关文档
最新文档