临泽县实验中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临泽县实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( )A .16
B .﹣16
C .8
D .﹣8
2. 设函数的集合,平面上点的集合
,则在同一直角坐标系中,P 中函数
的图象恰好经过Q 中
两个点的函数的个数是A4B6C8D10
3. 设分别是中,所对边的边长,则直线与
,,a b c ABC ∆,,A B C ∠∠∠sin 0A x ay c ++=A 的位置关系是( )
sin sin 0bx B y C -+=A A .平行
B . 重合
C . 垂直
D .相交但不垂直
4. 复数(为虚数单位),则的共轭复数为( )
2
(2)i z i
-=i z A . B . C . D .43i -+43i +34i +34i
-【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.5. 已知,,则“”是“”的( )
α[,]βππ∈-||||βα>βαβαcos cos ||||->-A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件
D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.6. 如图所示,阴影部分表示的集合是(
)
A .(∁U
B )∩A B .(∁U A )∩B
C .∁U (A ∩B )
D .∁U (A ∪B )7. 命题“∀a ∈R ,函数y=π”是增函数的否定是(
)
A .“∀a ∈R ,函数y=π”是减函数
B .“∀a ∈R ,函数y=π”不是增函数
C .“∃a ∈R ,函数y=π”不是增函数
D .“∃a ∈R ,函数y=π”是减函数
8. 二进制数化为十进制数的结果为( )
)
(210101A .
B .
C .
D .
152133419. 如图,棱长为的正方体中,是侧面对角线上一点,若 1111D ABC A B C D -,E F 11,BC AD 1BED F 是菱形,则其在底面上投影的四边形面积( )
ABCD
A .
B .
C.
D 1
2
3
410.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
=(
)
A .﹣1
B .2
C .﹣5
D .﹣3
二、填空题
11.下列四个命题:
①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面
其中正确命题的序号是 .
12.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:
那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.
13.已知函数()()31
,ln 4
f x x mx
g x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数
()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .14.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .
15.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为
2cm ,则其
表面积为__________2cm .
16.下列命题:
①集合的子集个数有16个;{},,,a b c d ②定义在上的奇函数必满足;
R ()f x (0)0f =③既不是奇函数又不是偶函数;2
()(21)2(21)f x x x =+--④,,,从集合到集合的对应关系是映射;A R =B R =1
:||
f x x →A B f ⑤在定义域上是减函数.1
()f x x
=
其中真命题的序号是
.
三、解答题
17.已知椭圆的左右焦点分别为,椭圆过点,直线()2222:10x y C a b a b +=>>12,F F C P ⎛ ⎝1PF 交轴于,且为坐标原点.
y Q 22,PF QO O =
(1)求椭圆的方程;
C (2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率M C M ,MA MB ,A B 分别为,且,证明:直线过定点.
12,k k 122k k +=AB 18.已知A 、B 、C 为△ABC 的三个内角,他们的对边分别为a 、b 、c ,且
.
(1)求A ;(2)若,求bc 的值,并求△ABC 的面积.
19.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,
过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;
(Ⅱ)求△F2PQ面积的最小值.
20.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;
(Ⅲ)求四面体PABC体积的最大值.
21.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所
示的几何体
(Ⅰ)求几何体的表面积
(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.
22.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).
(1)求f(x)的最小值,并求取最小值时x的范围;
(2)若f(x)的最小值为2,求证:f(x)≥+.
a b
临泽县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】B
【解析】解:∵f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,∴f (﹣2)﹣g (﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f (2)+g (2)=f (﹣2)﹣g (﹣2)=﹣16.故选:B .
【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.
2. 【答案】B
【解析】本题考查了对数的计算、列举思想
a =-时,不符;a =0时,y =log 2x 过点(,-1),(1,0),此时
b =0,b =1符合;a =时,y =log 2(x +)过点(0,-1),(,0),此时b =0,b =1符合;
a =1时,y =log 2(x +1)过点(-,-1),(0,0),(1,1),此时
b =-1,b =1符合;共6个3. 【答案】C 【解析】
试题分析:由直线与,
sin 0A x ay c ++=A sin sin 0bx B y C -+=A 则,所以两直线是垂直的,故选C. 1sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=考点:两条直线的位置关系.4. 【答案】A
【解析】根据复数的运算可知,可知的共轭复数为,故选A.
43)2()2(22
--=--=-=i i i i
i z z 43z i =-+5. 【答案】A.
【解析】,设,,||||cos cos ||cos ||cos αβαβααββ->-⇔->-()||cos f x x x =-[,]x ππ∈-显然是偶函数,且在上单调递增,故在上单调递减,∴,()f x [0,]π()f x [,0]π-()()||||f f αβαβ>⇔>故是充分必要条件,故选A.6. 【答案】A
【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成,∴对应的集合表示为A ∩∁U B .故选:A .
7. 【答案】C
【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数.故选:C .
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
8. 【答案】B 【解析】
试题分析:,故选B.()21212121101010
2
4
2=⨯+⨯+⨯=考点:进位制9. 【答案】B 【解析】
试题分析:在棱长为的正方体中,,
1111D ABC A B C D -11BC AD ==AF x =x -=
解得,即菱形,则在底面上的投影四边形是底边
x =
1BED F =1BED F ABCD 为,高为的平行四边形,其面积为,故选B.343
4
考点:平面图形的投影及其作法.10.【答案】C
【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f ′(x )=0的两个根,∵f (x )=ax 3+bx 2+cx+d ,∴f ′(x )=3ax 2+2bx+c ,由f ′(x )=3ax 2+2bx+c=0,得2+(﹣1)==1,
﹣1×2=
=﹣2,
即c=﹣6a ,2b=﹣3a ,
即f ′(x )=3ax 2+2bx+c=3ax 2﹣3ax ﹣6a=3a (x ﹣2)(x+1),则=
=
=﹣5,
故选:C
【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.
二、填空题
11.【答案】 ③ .
【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;②经过空间不共线三点有且只有一个平面,故错误;③过两平行直线有且只有一个平面,正确;
④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③,故答案为:③
12.【答案】1464
【解析】【知识点】函数模型及其应用
【试题解析】显然,面积大的房间用费用低的涂料,所以房间A 用涂料1,房间B 用涂料3,房间C 用涂料2,即最低的涂料总费用是元。
故答案为:1464
13.【答案】()
53
,44
--
【解析】
试题分析:()2
3f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足
()10,0,0f f m ><<,解得51534244
m m >->⇒-<<-考点:函数零点
【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.14.【答案】 .
【解析】解:∵△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,
∴由正弦定理可得:
,解得:a=3,
∴利用余弦定理:a 2=b 2+c 2﹣2bccosA ,可得:9=4+c 2﹣2c ,即c 2﹣2c ﹣5=0,∴解得:c=1+,或1﹣(舍去).
故答案为:.
【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于
基础题.
15.【答案】20+【解析】
考
点:棱台的表面积的求解.16.【答案】①②【解析】
试题分析:子集的个数是,故①正确.根据奇函数的定义知②正确.对于③为偶函数,故错误.
2n
()2
41f x x =-对于④没有对应,故不是映射.对于⑤减区间要分成两段,故错误.0x =考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于
2n
奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要0x =()00f =根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个
()()()(),f x f x f x f x -=-=-A 元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1
B 三、解答题
17.【答案】(1);(2)证明见解析.2
212
x y +=【解析】
试
题解析:
(1),∴,∴,
22PF QO =
212PF F F ⊥1c =,22222
2112
1,1a b c b a b +==+=+∴,
22
1,2b a ==即;2
212
x y +=(2)设方程为代入椭圆方程
AB y kx b =+,,
222
12102k x kbx b ⎛⎫+++-= ⎪⎝⎭22221
,112
2
A B A B kb b x x x x k
k --+==++A ,∴,
11,A B MA MB A B y y k k x x --==()
112A B A B A B A B MA MB A B A B
y x x y x x y y k k x x x x +-+--+=+=
=A ∴代入得:所以, 直线必过.11k b =+y kx b =+1y kx k =+-()1,1--考点:直线与圆锥曲线位置关系.
【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.18.【答案】
【解析】解:(1)∵A 、B 、C 为△ABC 的三个内角,且cosBcosC ﹣sinBsinC=cos (B+C )=
,
∴B+C=,
则A=;
(2)∵a=2,b+c=4,cosA=﹣,
∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,
解得:bc=4,
则S△ABC=bcsinA=×4×=.
【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.
19.【答案】
【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,
∴,解得a2=4,b2=3,
∴椭圆C的方程为=1.
(Ⅱ)设直线MN的方程为x=ty+1,(﹣),
代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,
∴,,
设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),
则直线F1M:,令x=4,得P(4,),同理,Q(4,),
∴=||=15×||=180×||,
令μ=∈[1,),则=180×,
∵y==在[1,)上是增函数,
∴当μ=1时,即t=0时,()min=.
【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.
20.【答案】
【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,
∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.
(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,
PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,
故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,
∴,
,
设平面PBC的法向量,直线AB与平面PBC成角为θ,
∴,取x=1,则,于是,
∴,∴直线AB与平面PBC成角的正弦值为.
(Ⅲ)法一:
设∠ABC=∠APC=α,α∈(0,π),∴,,
又PO⊥平面ABC,∴=
(),
∴
,
∴,当且仅当,即时取等号,
∴四面体PABC体积的最大值为.
法二:设∠ABC=∠APC=α,α∈(0,π),
∴,,又PO⊥平面ABC,
∴=(),设,则,且0<t<1,
∴,
∴当时,V'PABC>0,当时,V'PABC<0,
∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.
法三:设PO=x,则BO=x,,(0<x<2)
又PO⊥平面ABC,
∴,
∵,
当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.
【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.
21.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=×4π×2×2=8π,
或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;
(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,
∴∠MFE为二面角M﹣BC﹣D的平面角,
设∠CAM=θ,∴
EM=2sinθ,EF=,
∵tan∠MFE=1,∴,∴tan=,∴,
∴CM=2.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
22.【答案】
【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|
=|a+b|得,
当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,
∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.
(2)证明:由(1)知a+b=2,
(+)2=a+b+2≤2(a+b)=4,
a b ab
∴+≤2,
a b
∴f(x)≥a+b=2≥+,
a b
即f(x)≥+.
a b。