五年级奥数.数论. 余数性质及同余定理(B级).学生版

合集下载

奥数讲义数论专题:余数及同余

奥数讲义数论专题:余数及同余

华杯赛数论专题:余数及同余一、带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q…r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:(1)当时:我们称a可以被b整除,记作b|a,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,记作,q称为a除以b的商或不完全商二、同余的概念两个整数被同一个大于1的整数m除,所得的余数相同,就说这两个整数对于除数m来说是同余的.也可以换句话来说这个概念,如果两个整数的差能被大于1的整数m整除,那么这两个整数对于除数m来说是同余的.同余的概念和符号都是德国伟大数学家高斯引进的.一般地,两个整数a和b,除以大于1的正整数m,如果所得的余数相同,就说a、b对于模m同余,记作a≡b(mod m).由于一个整数被m除的余数只能是0、1、2、3、…、m-1这m个数,所以全体整数可按被m除的余数分类,凡是余数相同的归为一类,全体整数就被划分成了m类,同一类中的任何两数被m除的余数都相等,即同一类中任何两数的差都能被m整除,不同类的任何两数被m除的余数都不相等.三、同余的性质1.如果a≡b(mod m),那么m|(a-b);如果整数a和b对于模m是同余的,那么a 与b的差能被m整除.2.a≡a(mod m),即任何整数都与自身同余.3.若a≡b(mod m),则b≡a(mod m).4.若a≡b(mod m),b≡c(mod m),则a≡c(mod m).5.若a≡b(mod m),c≡d(mod m),则a+c≡b+d (mod m),a-c≡b-d (mod m),a×c≡b×d (mod m).6.若a≡b(mod m),则an≡bn(mod m)。

(其中n为正整数).例1.用一个两位数除708,余数为43,求这个两位数.【答案】95【解答】根据被除数-余数=商×除数,可知,所求两位数一定是707-43=665的大于43的约数,所以所求的两位数是95.例2.数713、1103、830、947被一个数除所得余数相同(余数不为0),求这个除数.【答案】39,13或3.【解答】1103-713=390=3×13×2×5,947-830=117=3×13×3,1103-947=156=2×13×3×2,除数为39,13或3.例3.从1、2、…100中最多能选出多少个数,使选出的数中每两个的和都不能被3整除?【答案】35【解答】1、2、…100中,除以3余1的数共34个,即1、4、7、10、…、100.除以3余2的数共33个,选出的数中,如果有除以3余1的,就一定不能有除以3余2的;如果有除以3余2的,也就不能有除以3余1的。

小学数学奥赛5-5-5 同余问题.学生版

小学数学奥赛5-5-5 同余问题.学生版

1. 学习同余的性质2. 利用整除性质判别余数同余定理1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b ) 3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数; ⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数; ⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数; ⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.例题精讲知识点拨教学目标5-5-3.同余问题【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【例 3】有一个自然数,除345和543所得的余数相同,且商相差33.求这个数是多少?【例 4】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【例 5】两位自然数ab与ba除以7都余1,并且a b⨯.>,求ab ba【例 6】现有糖果254粒,饼干210块和桔子186个.某幼儿园大班人数超过40.每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子。

小学奥数模块教程同余

小学奥数模块教程同余

同余知识框架一、余数的性质⑴被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵余数小于除数.余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.二、同余定理1、定义整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即a≡b(modm)2、同余的重要性质及举例。

〈1〉a≡a(modm)(a为任意自然);〈2〉若a≡b(modm),则b≡a(modm)〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm);〈4〉若a≡b(modm),则ac≡bc(modm)〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm);〈6〉若a≡b(modm)则an≡bm(modm)其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性"注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b (modm)3、整数分类:〈1〉用2来将整数分类,分为两类:1,3,5,7,9,……(奇数);0,2,4,6,8,……(偶数)〈2〉用3来将整数分类,分为三类:0,3,6,9,12,……(被3除余数是0)1,4,7,10,13,……(被3除余数是1)2,5,8,11,14,……(被3除余数是2)〈3〉在模6的情况下,可将整数分成六类,分别是:0(mod6):0,6,12,18,24,……1(mod6):1,7,13,19,25,……2(mod6):2,8,14,20,26,……3(mod6):3,9,15,21,27,……4(mod6):4,10,16,22,29,……5(mod6):5,11,17,23,29,……例题精讲一、同余的性质【例1】有一个整数,除100、195所得的余数都是5,求这个数的可能值。

五年级奥数余数性质及同余定理(B级)

五年级奥数余数性质及同余定理(B级)

【巩固】带余除法的定义及性质 【巩固】 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r , 0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

【巩固】 余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数.【巩固】 余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=知识框架 余数性质及同余定理2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

【精编版】同余问题.学生版

【精编版】同余问题.学生版

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;知识点拨教学目标5-5-3.同余问题⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.【例 2】 某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.【例 3】 有一个自然数,除345和543所得的余数相同,且商相差33.求这个数是多少?【例 4】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【例 5】 两位自然数ab 与ba 除以7都余1,并且a b >,求ab ba ⨯.例题精讲【例 6】现有糖果254粒,饼干210块和桔子186个.某幼儿园大班人数超过40.每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 带余除法的定义及性质
1. 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,
0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:
(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商
(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商
一个完美的带余除法讲解模型:如图
这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2. 余数的性质
⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数.
二、 余数定理:
1.余数的加法定理
a 与
b 的和除以
c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.
当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为
2
2.余数的加法定理
a 与
b 的差除以
c 的余数,等于a ,b 分别除以c 的余数之差。

知识框架
余数性质及同余定理
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=
2.
当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4
3.余数的乘法定理
a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.
乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.
一、同余定理
1、定义
整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即a≡b(modm)
2、同余的重要性质及举例。

〈1〉a≡a(modm)(a为任意自然);
〈2〉若a≡b(modm),则b≡a(modm)
〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm);
〈4〉若a≡b(modm),则ac≡bc(modm)
〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm);
〈6〉若a≡b(modm)则an≡bm(modm)
其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性"
注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm)3、整数分类:
〈1〉用2来将整数分类,分为两类:
1,3,5,7,9,……(奇数);
0,2,4,6,8,……(偶数)
〈2〉用3来将整数分类,分为三类:
0,3,6,9,12,……(被3除余数是0)
1,4,7,10,13,……(被3除余数是1)
2,5,8,11,14,……(被3除余数是2)。

相关文档
最新文档