苏科七年级苏科初一数学下册期末试题及答案word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科七年级苏科初一数学下册期末试题及答案word 版
一、选择题
1.下列等式由左边到右边的变形中,属于因式分解的是( )
A .(a ﹣2)(a+2)=a 2﹣4
B .8x 2y =8×x 2y
C .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2
D .x 2+2x ﹣3=(x ﹣1)(x+3)
2.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( )
A .4 2.110-⨯kg
B .52.110-⨯kg
C .42110-⨯kg
D .62.110-⨯kg
3.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )
A .①④
B .②③
C .①③
D .①③④ 4.a 5可以等于( ) A .(﹣a )2•(﹣a )3 B .(﹣a )•(﹣a )4
C .(﹣a 2)•a 3
D .(﹣a 3)•(﹣a 2) 5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是
( )
A .11
B .12
C .13
D .14
6.计算23x x 的结果是( )
A .5x
B .6x
C .8x
D .23x 7.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高
B .一条中线
C .一条角平分线
D .一边上的中垂线 8.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )
A .5个
B .4个
C .3个
D .2个
9.如图,AB ∥CD ,DA ⊥AC ,垂足为A ,若∠ADC=35°,则∠1的度数为( )
A .65°
B .55°
C .45°
D .35°
10.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )
A .90°
B .100°
C .105°
D .110°
11.下列等式由左边到右边的变形中,因式分解正确的是( )
A .22816(4)m m m -+=-
B .323346(46)x y x y x y y +=+
C .()22121x x x x ++=++
D .22()()a b a b a b +-=-
12.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )
A .(46,4)
B .(46,3)
C .(45,4)
D .(45,5)
二、填空题
13.分解因式:m 2﹣9=_____.
14.多项式2412xy xyz +的公因式是______.
15.已知()4432234464a b a a b a b ab b +=++++,则()4
a b -=__________. 16.a m =2,b m =3,则(ab )m =______.
17.分解因式:ab ﹣ab 2=_____.
18.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____.
19.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.
20.计算(﹣2xy )2的结果是_____.
21.内角和等于外角和2倍的多边形是__________边形.
22.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.
三、解答题
23.定义:对于任何数a ,符号[]a 表示不大于a 的最大整数.
(1)103⎡⎤-=⎢⎥⎣⎦
(2)如果2333x -⎡⎤=-⎢⎥⎣⎦
,求满足条件的所有整数x 。

24.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;
(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;
(3)若25,2x y xy +==,求2x y -的值.
25.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.
26.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.
27.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.
(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;
(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.
28.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半. (1)求这个多边形是几边形;
(2)求这个多边形的每一个内角的度数.
29.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法
叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:
2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,
()213x -+,2(2)x -2x +,2
2213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).
请根据阅读材料解决下列问题:
(1)比照上面的例子,写出249x x -+三种不同形式的配方;
(2)已知22610340x y x y +-++=,求32x y -的值;
(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.
30.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-2
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,
据此即可得到本题的答案.
【详解】
解:A .不是乘积的形式,错误;
B .等号左边的式子不是多项式,不符合因式分解的定义,错误;
C .不是乘积的形式,错误;
D .x 2+2x ﹣3=(x ﹣1)(x+3),是因式分解,正确;
故选:D .
【点睛】
本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.
2.A
解析:A
【分析】
科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。

本题小数点往右移动到2的后面,所以 4.n =-
【详解】
解:0.0002142.110.-=⨯
故选A .
【点睛】
本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.
3.D
解析:D
【详解】
解:①∵∠1=∠2,∴AB ∥CD ,故本选项正确;
②∵∠3=∠4,∴BC ∥AD ,故本选项错误;
③∵∠A=∠CDE ,∴AB ∥CD ,故本选项正确;
④∵∠A+∠ADC=180°,∴AB ∥CD ,故本选项正确.
故选D.
4.D
解析:D
【分析】
根据同底数幂的乘法底数不变指数相加,可得答案.
【详解】
A 、(﹣a )2(﹣a )3=(﹣a )5,故A 错误;
B 、(﹣a )(﹣a )4=(﹣a )5,故B 错误;
C 、(﹣a 2)a 3=﹣a 5,故C 错误;
D 、(﹣a 3)(﹣a 2)=a 5,故D 正确;
故选:D .
【点睛】
本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.
5.C
解析:C
【解析】
【分析】
根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.
【详解】
解:设第三边为a ,
根据三角形的三边关系,得:4-3<a <4+3,
即1<a <7,
∵a 为整数,
∴a 的最大值为6,
则三角形的最大周长为3+4+6=13.
故选:C .
【点睛】
本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.
6.A
解析:A
【分析】
根据同底数幂相乘,底数不变,指数相加即可求解.
【详解】
解:∵23235x x x x +==,
故选A .
【点睛】
本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.
7.B
解析:B
【分析】
根据三角形中线的性质作答即可.
【详解】
解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线. 故选:B .
【点睛】
本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.
8.B
解析:B
【分析】
根据平行线的判定定理对各小题进行逐一判断即可.
【详解】
解:①∵∠1=∠3,∴l1∥l2,故本小题正确;
②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;
③∵∠4=∠5,∴l1∥l2,故本小题正确;
④∠2=∠3不能判定l1∥l2,故本小题错误;
⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.
故选B.
【点睛】
本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.
9.B
解析:B
【解析】
试题分析:由DA⊥AC,∠ADC=35°,可得∠ACD=55°,根据两线平行,同位角相等即可得∵AB∥CD,∠1=∠ACD=55°,故答案选B.
考点:平行线的性质.
10.C
解析:C
【分析】
根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.
【详解】
解:∵△ACB是等腰直角三角形,
∴∠BAC=45°,
∵CF//AB,
∴∠ACF=∠BAC=45°,
∵∠E=30°,
∴∠EFC=180°﹣∠E﹣∠ACF=105°,
故选:C.
【点睛】
本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.11.A
解析:A
【分析】
根据因式分解的意义,可得答案.
【详解】
解:A、属于因式分解,故本选项正确;
B、因式分解不彻底,故B选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
D、是整式的乘法,故D不符合题意;
【点睛】
本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.12.D
解析:D
【分析】
以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.
【详解】
解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方
且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴
∵452=2025
∴第2025个点在x轴上坐标为(45,0)
则第2020个点在(45,5)
故选:D.
【点睛】
本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.
二、填空题
13.(m+3)(m﹣3)
【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).
【详解】
解:m2﹣9
=m2﹣32
=(m+3)(m﹣3).
故答案为
解析:(m+3)(m﹣3)
【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a 2﹣b 2=(a +b )(a ﹣b ).
【详解】
解:m 2﹣9
=m 2﹣32
=(m +3)(m ﹣3).
故答案为:(m +3)(m ﹣3).
【点睛】
此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.
14.【分析】
根据公因式的定义即可求解.
【详解】
∵=(y+3z ),
∴多项式的公因式是,
故答案为:.
【点睛】
此题主要考查公因式,解题的关键是熟知公因式的定义.
解析:4xy
【分析】
根据公因式的定义即可求解.
【详解】
∵2412xy xyz +=4xy (y+3z ),
∴多项式2
412xy xyz +的公因式是4xy , 故答案为:4xy .
【点睛】
此题主要考查公因式,解题的关键是熟知公因式的定义.
15.a4-4a3b+6a2b2-4ab3+b4
【分析】
原式变形后,利用(a+b )4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b )4的结果.
【详解】
解:根据题意得:(a-b )4=
解析:a 4-4a 3b+6a 2b 2-4ab 3+b 4
【分析】
原式变形后,利用(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4,即可得到(a-b )4的结果.
【详解】
解:根据题意得:(a-b)4=[a+(-b)]4=a4-4a3b+6a2b2-4ab3+b4,
故答案为:a4-4a3b+6a2b2-4ab3+b4
【点睛】
此题考查了完全平方公式,熟练掌握公式是解本题的关键.
16.6
【分析】
根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】
解:因为am=2,bm=3,
所以(ab)m=am•bm=2×3=6,
故答案为:6.
【点睛】
此题考查积
解析:6
【分析】
根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.
【详解】
解:因为a m=2,b m=3,
所以(ab)m=a m•b m=2×3=6,
故答案为:6.
【点睛】
此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.
17.ab(1﹣b)
【分析】
根据题意直接提取公因式ab,进而分解因式即可得出答案.
【详解】
解:ab﹣ab2=ab(1﹣b).
故答案为:ab(1﹣b).
【点睛】
本题主要考查提取公因式法分解因式
解析:ab(1﹣b)
【分析】
根据题意直接提取公因式ab,进而分解因式即可得出答案.
【详解】
解:ab﹣ab2=ab(1﹣b).
故答案为:ab(1﹣b).
【点睛】
本题主要考查提取公因式法分解因式,熟练掌握并正确找出公因式是解题的关键.18.a2+4ab+3b2
【分析】
根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】
解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.
故答案为
解析:a2+4ab+3b2
【分析】
根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.
【详解】
解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.
故答案为:a2+4ab+3b2.
【点睛】
本题考查长方形的面积公式和多项式乘法,熟练掌握多项式乘法计算法则是解题的关键.19.4×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解析:4×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.00000004,4的前面有8个0,所以n=8,
所以0.00000004=4×10-8.
故答案为:4×10-8.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
20.4x2y2.
【分析】
直接利用积的乘方运算法则计算得出答案.
【详解】
解:(﹣2xy)2=4x2y2.
故答案为:4x2y2.
【点睛】
本题考查了积的乘方运算,正确掌握运算法则是解题的关键.
解析:4x2y2.
【分析】
直接利用积的乘方运算法则计算得出答案.
【详解】
解:(﹣2xy)2=4x2y2.
故答案为:4x2y2.
【点睛】
本题考查了积的乘方运算,正确掌握运算法则是解题的关键.
21.六
【解析】
【分析】
设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.
【详解】
解:设多边形有n条边,由题意得:
1
解析:六
【解析】
【分析】
设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.
【详解】
解:设多边形有n条边,由题意得:
180(n-2)=360×2,
解得:n=6,
故答案为:六.
【点睛】
本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).
22.15
【分析】
由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.
【详解】
∵边长为6cm的正方形ABCD先向上平移3cm,
∴阴影部分的宽为6-3=
解析:15
【分析】
由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.
【详解】
∵边长为6cm 的正方形ABCD 先向上平移3cm ,
∴阴影部分的宽为6-3=3cm ,
∵向右平移1cm ,
∴阴影部分的长为6-1=5cm ,
∴阴影部分的面积为3×5=15cm 2.
故答案为15.
【点睛】
本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.
三、解答题
23.(1)−4;(2)满足条件的所有整数x 的值为−3、−2.
【分析】
(1)根据新定义即可得;
(2)由新定义得出2333x -⎡⎤=-⎢⎥⎣⎦
,解之可得x 的范围,从而得出答案. 【详解】
解:(1)103⎡⎤-=⎢⎥⎣⎦
−4,故答案为:−4; (2)由题意得−3≤
233x -<−2,解得:−3≤x <−32,∴满足条件的所有整数x 的值为−3、−2.
【点睛】
本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.
24.(1)224()()xy x y x y =+--;(2)16
xy =
;(3)23x y -=±. 【分析】
(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;
(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;
(3)利用完全平方变形求值,即可得到答案.
【详解】
解:(1)图中阴影部分的面积为:
224()()xy x y x y =+--;
故答案为:22
4()()xy x y x y =+--;
(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,
∵2
(32)9x y +=,
∴2291249x xy y ++=②,
∴由②-①,得 24954xy =-=, ∴16
xy =
; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,
∴224254217x y +=-⨯=,
∴222(2)4417429x y x y xy -=+-=-⨯=;
∴23x y -=±;
【点睛】
本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.
25.3x 2-3x -5,25
【分析】
原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.
【详解】
原式=()222945521x x x x x -----+
=222945521x x x x x ----+-
=2335x x --,
当2100x x =--,即210x x =-时,
原式=()
235310525x x -=⨯-=-
【点睛】
本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.
26.131°
【解析】
【分析】
先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,根据∠BEC=180°-∠BCE-∠CBD即可得出结论
【详解】
在△ABC中,
∵∠A=65°,∠ACB=72°
∴∠ABC=43°
∵∠ABD=30°
∴∠CBD=∠ABC﹣∠ABD=13°
∵CE平分∠ACB
∴∠BCE=∠ACB=36°
∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.
【点睛】
本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键
27.(1)见解析;(2)(2,6);(3)19 2
【分析】
(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系,再写出A1坐标即可;
(3)利用分割法求出坐标即可.
【详解】
解:(1)画出平移后的△A1B1C1如下图;

(2)如上图建立平面直角坐标系,使得点A的坐标为(-4,3),由图可知:点A1的坐标为(2,6);
(3)由(2)中的图可知:A(-4,3),B(5,-1),C(0,0),
∴S△ABC=11119 (45)43451
2222 +⨯-⨯⨯-⨯⨯=.
【点睛】
本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
28.(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.
【分析】
(1)先设内角为x ,根据题意可得:外角为12x ,根据相邻内角和外角的关系可得:,x +12x =180°,从而解得:x =120°,即外角等于60°,根据外角和等于360°可得这个多边形的边数为:36060
=6, (2)先设内角为x ,根据题意可得:外角为
12x ,根据相邻内角和外角的关系可得:,x +12
x =180°,从而解得内角:x =120°,内角和=(6﹣2)×180°=720°.
【详解】 (1)设内角为x ,则外角为12
x , 由题意得,x +
12
x =180°, 解得:x =120°, 12
x =60°, 这个多边形的边数为:
36060
=6, 答:这个多边形是六边形, (2)设内角为x ,则外角为
12x , 由题意得: x +
12
x =180°, 解得:x =120°,
答:这个多边形的每一个内角的度数是120度.
内角和=(6﹣2)×180°=720°.
【点睛】
本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.
29.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4
【分析】
(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;
(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;
(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.
【详解】
解:(1)249x x -+的三种配方分别为:
2249(2)5x x x -+=-+;
2249(3)10x x x x -+=+-;
2249(3)2x x x x -+=-+(或22
22549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,
∴x-3=0,y+5=0,
∴x=3,y=-5,
∴3x-2y=3×3-2×(-5)=19
(3)2223240a b c ab b c ++---+=
()2222134421044
a a
b b b b
c c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝
⎭ ∴102a b -=,3(2)04
b -=,10
c -= ∴1a =,2b =,1c =,
则4a b c ++=
【点睛】
本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.
30.-5a 2+2ab ,-1
【分析】
先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.
【详解】
()()()22222()=4222b a a a b b a ab b a b --++----
2222=42b a a b ab ---+
252a ab =-+,
当a =-1,b =-2时,原式=-1.
【点睛】
本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.。

相关文档
最新文档