土壤中各种钾的测定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1概述

土壤中全钾的含量(K,g·kg-1)一般在16.1g·kg-1左右,高的可达24.9~33.2g·kg-1,低的可低至0.83~3.3g·kg-1。在不同地区、不同土壤类型和气候条件下,全钾量相差很大。如华北平原除盐渍化土外,全钾为18.2~21.6g·kg-1,西北黄土性土壤为14.9~18.3 g·kg-1,到了淮河以南,土壤中钾的含量变化十分悬殊。如安徽南部山地钾含量为9.9~33.2g·kg-1,广西为5.0~24.9g·kg-1,海南岛为0.83~32.4g·kg-1。由此可以看出华北、西北地区钾的含量变幅较小,而淮河长江以南则较大。这是因为华北、西北地区成土母质均一和气候干旱,而淮河长江以南成土母质不均一和气候多雨有关。

此外,土壤全钾量与粘土矿物类型有密切关系。一般来说2:1型粘土矿物较1:1型粘土矿物为高,特别是伊利石(一系列水化云母)高的土壤钾的含量较高。

土壤中钾主要成无机形态存在。按其对作物有效程度划分为速效钾(包括水溶性钾、交换性钾)、缓效性钾和相对无效钾三种。它们之间存在着动态平衡,调节着钾对植物的供应。

按化学形态分:

非交换性钾

(层间钾)

水溶性钾→非交换性钾Ⅰ→非交换性钾Ⅱ→非交换性钾Ⅲ……→矿物钾

按植物有效性分[2]:

速效钾→相对无效钾

L-1热HNO3

植物有效性降低

土壤中钾主要成矿物的结合形态,速效性钾(包括水溶性钾和交换性钾)只占全钾的1%左右。交换性钾(K)含量从小于一百m g·kg-1到几百m g·kg-1,而水溶性钾只有几个m g·kg-1。通常交换性钾包括水溶性钾在内,这部分钾能很快地被植物吸收利用,故称为速效钾。缓效钾或称非交换性钾(间层钾),主要是次生矿物如伊利石、蛭石、绿泥石等所固定的钾。我国土壤缓效钾的含量,一般在40~1400m g·kg-1,它占全钾的1%~10%。缓效性钾和速效性钾之间存在着动态平衡,是土壤速效钾的主要储备仓库,是土壤供钾潜力的指标。但缓效性钾与相对无效性钾之间没有明确界线,这种动态平衡愈向右方,植物有效性愈低。

矿物态钾即原生矿物如钾长石(KAlSi3O8)、白长石[H2KAl3(SiO4)3] 、黑云母等的风化难易不同。它占全钾量的90%~98%。土壤中全钾含量与氮、磷相比要高得多,但不等于说土壤已经有了足够的钾素供应植物需要了,这是因为土壤中钾矿物绝大多数是呈难溶性状态存在,所以贮量虽很高,而植物仍可能缺乏钾素。土壤钾素肥力的供应能力主要决定于速效钾和缓效钾。土壤全钾的分析在肥力上意义并不大,但是土壤粘粒部分钾的分析,可以帮助鉴定土壤粘土矿物的类型。

6.2土壤全钾的测定

6.2.1土壤样品的分解和溶液中钾的测定

土壤全钾的测定在操作上分为两步:一是样品的分解,二是溶液中钾的测定。

土壤全钾样品的分解,大体上可分为碱熔和酸溶两大类。较早采用的是wrence Smith提出的NH4Cl-CaCO3碱熔法,因所用的熔剂纯度要求较高,样品用量大,KCl 易挥发损失,结果偏低,同时对坩埚的腐蚀性大,而且手续比较繁琐,目前已很少使用。HF-HClO4法需用昂贵的铂坩埚,同时要求有良好的通风设备,即使这样,通风设备的腐蚀以及空气污染仍很严重,此法不易被人们所接受。但目前已经可用密闭的聚四氟乙烯塑料坩埚代替,所制备的待测液也可同时测定多种元素,而且溶液中杂质较少,有利于各种元素分析,但是近年来已逐渐被NaOH熔融法所代替。采用NaOH熔融法不仅操作方便,分解也较为完全,而且可用银坩埚(或镍坩埚)代替铂坩埚,这是适用于一般实验室的好方法。同时所制备的同一待测液可以测定全磷和全钾。

溶液中钾的测定,一般可采用火焰光度法、亚硝酸钴钠法、四苯硼钠法和钾电极法。自人火焰光度计被普遍应用以来,钾和钠的测定主要用火焰光度法。因为钾和钠的化合物溶解度都很大,用一般的质量法和容量法都不大理想。钾电极法用于土壤中钾的测定,由于各种干扰因素的影响还没有研究清楚,因此它在土壤钾的测定受到限制,目前化学方法中四苯硼钠法是比较好的方法。

6.2.2土壤中全钾的测定方法——NaOH熔融法,火焰光度法

6.2.2.1 方法原理用NaOH熔融土壤与Na2CO3熔融土壤原理是一样的,即增

加盐基成分,促进硅酸盐的分解,以利于各种元素的溶解。NaOH熔点(321℃)比Na2CO3(853℃)低,可以在比较低的温度下分解土样,缩短熔化所需要的时间。样品经碱熔后,使难溶的硅酸盐分解成可溶性化合物,用酸溶解后可不经脱硅和去铁、铝等手续,稀释后即可直接用火焰光度法测定。

火焰光度法的基本原理。当样品溶液喷成雾状以气—液溶胶形式进入火焰后,溶剂蒸发掉而留下气—固溶胶,气—固溶胶中的固体颗粒在火焰中被熔化、蒸发为气体分子,继续加热即又分解为中性原子(基态),更进一步供给处于基态原子以足够能量,即可使基态原子的一个外层电子移至更高的能级(激发态),当这种电子回到低能级时,即有特定波长的光发射出来,成为该元素的特征之一。例如,钾原子线波长是766.4nm、769.8nm,钠原子线波长是589nm。用单色器或干涉型滤光片把元素所发射的特定波长的光从其余辐射谱线中分离出来,直接照射到光电池或光电管上,把光能变为光电流,再由检流计量出电流的强度。用火焰光度法进行定量分析时,若激发的条件(可燃气体和压缩空气的供给速度,样品溶液的流速,溶液中其它物质的含量等)保持一定,则光电流的强度与被测元素的浓度成正比。即可用下式表示之,即I=ac b,由于用火焰作为激发光源时较为稳定,式中a是常数,当浓度很低时,自吸收现象可忽略为计,此时b=1,于是谱线强度与试样中欲测元素的浓度成正比关系:I=ac 。

把测得的强度与一种标准或一系列标准的强度比较,即可直接确定待测元素的浓度而计算出未知溶液含钾量(有关仪器的构造使用方法详见仪器说明书)。

6.2.2.2主要仪器茂福电炉、银或镍坩埚或铁坩埚、火焰光度计或原子吸收分光光度计。

6.2.2.3试剂

(1)无水酒精(分析纯)。

(2)H2SO4(1:3)溶液。取浓H2SO4(分析纯)1体积缓缓注入3体积水中混

相关文档
最新文档