BP神经网络在多传感器数据融合中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络在多传感器数据融合中的应用

摘要:提出一种基于多传感器神经网络融合的机动目标估计算法,利用BP 神经网络的函数逼近能力,将BP神经网络与卡尔曼滤波器相结合构成一个估计器,该算法可以对来自经不同噪声污染的传感器信息加以充分利用,在改善估计性能的同时又保持估计滤波的计算结构尽可能简单。仿真结果表明所提出的估计滤波算法在估计应用上优于一般的加权估计算法,提高了估计算法的精度。

关键词:BP神经网络卡尔曼滤波数据融合

一、引言

数据融合是指对来自多个传感器的信息进行融合,也可以将来自多个传感器的信息和人机界面的观测事实进行信息融(这种融合通常是决策级融合)。提取征兆信息,在推理机作用下.将征兆与知识库中的知识匹配,做出故障诊断决策,提供给用户。在基于信息融合的故障诊断系统中可以加入自学习模块.故障决策经自学习模块反馈给知识库.并对相应的置信度因子进行修改,更新知识库。同时.自学习模块能根据知识库中的知识和用户对系统提问的动态应答进行推理。以获得新知识。总结新经验,不断扩充知识库,实现专家系统的自学习功能。

多传感器数据融合是20世纪70年代以来发展起来的一门新兴边缘学科,目前已经成为备受人们关注的热门领域。多传感器数据融合是一门新兴技术,在军事和非军事领域中都碍到了广泛应用、多传感器数据融合技术汲取了人工智能、模式识别、统计估计等多门学科的相关技术,计算机技术的快速发展以及数据融合技术的成熟为数据融合的广泛应用提供了基础。

多传感器信息融合状态估计是多传感器信息融合学科的一个重要分支。多传感器数据融合的基本原理就像是人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。目前有两种常用的信息融合方法:一种方法是状态融合方法,另一种方法是观测融合方法。状态融合方法又可分为集中式kalman滤波[1]和分散式kalman滤波。集中式kalman滤波虽然在理论上可获得全局最优融合状态估计,但这种方法计算量大,且容错性能差,而分散式kalman滤波信息融合能克服这些缺点,但这种方法是局部最优的,因此基于此思想我们可以利用BP神经网络来提高融合精度。

BP(Back Propagation)神经网络[2],即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期

望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。

BP神经网络是模拟人脑的信息处理机制而构造出来的一种并行信息处理模型,它有分布式存储和联想记忆功能,具有较强的自适应性和自组织性,具有任意的非线性映射能力,能被用来对两个估计模型的输出结果进行有效的分析和综合,提高估计的精度和可靠性。

二、模型描述

带有观测噪声的三传感器雷达跟踪系统:

状态,,和分别为在时刻处运动目标的位置、速度和加速度,为第个传感器对位置的观测,为与相关的白噪声。

kalman滤波按矩阵加权融合准则算法是基于L个传感器观测已知它的L 个无偏估计,即,

设已知估计误差的方差阵和协方差阵,,,,其中E为均值号,T为转置号,问题是寻求X的按矩阵加权无偏融合估计,,

其中加权阵为矩阵,在线性最小方差意义下,应选择加权阵极小化融合估计误差的分量均方和J,,

它等价于

按矩阵加权融合准则算法既是对L个传感器经kalman滤波器得到的状态求得加权矩阵使得性能指标J最小。

基于加权思想,对以上的三传感器雷达跟踪模型建立BP神经网络,三传感器的输出作为网络的输入,网络的输出与模型的状态数据比较后反向传播对各层神经元权值进行修改,直到输出层与模型状态的误差达到期望误差。由于本次实验模型简单,对其采用两层BP网络,隐层神经元采用Sigmoid型激活函数,输出层采用线性激活函数。在使用网络前需要对网络进行训练,本次实验设置训练时间为50个单位时间,训练目标设置为误差小于0.2。

三、仿真分析

以下给出个状态在各种方法下的仿真结果:

图1、图2为三个传感器的测量值经kalman平滑器估计后的的状态1经BP神经网络融合后的值和理想状态的对比图。从图中可以看出经神经网络融合后对状态1的估计精度有了进一步的提高。而且训练速度也非常迅速,大约10步左右就能达到要求的误差。

图3、图4为三个传感器的测量值经kalman平滑器估计后的的状态2经BP神经网络融合后的值和理想状态的对比图。从图中可以看出经神经网络融合后对状态2的估计精度有了进一步的提高。而且训练速度也非常迅速,大约20步左右就能达到要求的误差。

图5为比较加权融合后的稳态误差方差阵的迹和三个传感器的稳态平滑误差方差阵的迹,可以明显看出经融合后的精度明显高于局部平滑的精度。由于设置的神经网络的误差目标为0.2,通过训练后目标误差能达到要求,因此经神经网络融合后的状态估计精度要大大高于经加权矩阵融合估计的精度。

四、结论

本文利用BP神经网络对来自经不同噪声污染的传感器的测量信息进行处理,完成机动检测,并与卡尔曼滤波器相结合构成一个性估计器,对目标进行估计。这种估计方案可以利用神经网络的函数逼近能力对来自各传感器的充信息加以充分利用,在改善估计性能的同时又保持估计滤波的计算结构尽可能简单。

参考文献:

[1]邓自立. 最优估计理论及其应用——建模、滤波、信息融合估计.

[2]杨行峻、郑君里. 人工神经网络与盲信号处理.

[3]matlab7.0辅助神经网络分析与设计.

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文

相关文档
最新文档