人工智能第三章文稿演示

合集下载

人工智能演示文稿(共35张PPT)

人工智能演示文稿(共35张PPT)
Environment: Patient, hospital, staff 正确的行为将使得Agent能够取得最大的成功 仅仅以当前感知为输入而不是以整个历史感知为输入
➢ 缺点 当达到目标的行为有很多种的时候,需要考虑效率
一个agent的传感器在每个时间点上都能获取环境的部分状态 基于当前的感知选择行动,不关注感知历史
基于模型的反射agent
基于目标的agent
➢ 除了根据感知信息之外,还要根据目标信息来选 择行动
➢ 效率比较低,需要推理
➢ 搜索和规划算法
基于目标的agent
基于效用的agent
➢ 当达到目标的行为有很多种的时候,需要考虑 效率
➢ 环境是部分可观察的和随机的,不确定下的决策 过程可以通过基于效用的agent来实现。
(Environment),agent的执行器(Actuators) 和传感器(Sensors),英文缩写为PEAS ➢ 对于每一个智能agent,必须说明其PEAS参数 ➢ Eg.自动驾驶出租车
➢性能度量
➢ 环境 ➢执行器
➢ 传感器
任务环境
➢ Eg.自动驾驶出租车
➢性度量:安全性,快速性,交通违规,舒适度, 利润
➢ 环境:马路,其他交通工具,行人,乘客 ➢执行器:方向盘,加速油门,刹车,语音合成器
➢传感器:摄像头,红外或声纳,速度表,GPS,键 盘,麦克风
任务环境
➢ Eg.医疗诊断系统
➢ 性能度量:病人的健康性,病人花费 ➢ 环境:病人,医院,工作人员
➢ 执行器:显示屏(询问,测试,诊断,治疗方案) ➢传感器:键盘(输入症状,现场检测,病人的回答)
➢ 仅仅以当前感知为输入而不是以整个历史感知为输 入
Agent的表驱动方法

《人工智能导论》第3章 图搜索与问题求解

《人工智能导论》第3章 图搜索与问题求解
(4)对其余子节点配上指向N的返回指针后放入OPEN表中 某处, 或对OPEN表进行重新排序, 转步2。
第 3 章 图搜索与问题求解 图 3-5 修改返回指针示例
第 3 章 图搜索与问题求解
说明:
(1) 这里的返回指针也就是父节点在CLOSED表中的编 号。
(2) 步6中修改返回指针的原因是, 因为这些节点又被第 二次生成, 所以它们返回初始节点的路径已有两条, 但这两 条路径的“长度”可能不同。 那么, 当新路短时自然要走 新路。
第 3 章 图搜索与问题求解
3.1.5 加权状态图搜索
1.加权状态图与代价树
例3.6 图3-9(a)是一个交通图,设A城是出发地,E城 是目的地, 边上的数字代表两城之间的交通费。试求 从A到E最小费用的旅行路线。
第 3 章 图搜索与问题求解 图 3-9 交通图及其代价树
第 3 章 图搜索与问题求解
第 3 章 图搜索与问题求解
3. 状态图表示
一个问题的状态图是一个三元组 (S, F, G)
其中S是问题的初始状态集合, F是问题的状态转换 规则集合, G是问题的目标状态集合。
一个问题的全体状态及其关系就构成一个空间, 称为状态空间。所以,状态图也称为状态空间图。
第 3 章 图搜索与问题求解
例 3.7 迷宫问题的状态图表示。
的返回指针和f(x)值, 修改原则是“抄f(x)
”。
(2)对其余子节点配上指向N的返回指针后放入OPEN表中, 并对OPEN表按f(x)值以升序排序, 转步2。
第 3 章 图搜索与问题求解
算法中节点x的估价函数f(x)的计算方法是 f(xj)=g(xj)+h(xj) =g(xi)+c(xi, xj)+h(xj) (xj是xi的子节点)

人工智能 第三章 基本的问题求解方法

人工智能 第三章 基本的问题求解方法

存在问题及解决办法
问题和解决方法:
深度问题
对搜索深度加以限制
死循环问题
状态重复: A→B,B→C, C→A 记录从初始状态到当前状态的路径
TOPIC2 GRAPH SEARCH
图搜索策略 问题的引出
回溯搜索:只保留从初始状态到当前状态的 一条路径。
图搜索:保留所有已经搜索过的路径。 N0
(2)求最佳解路的搜索策略
大英博物馆法(British Museum);最佳图搜索法(A*)
(3)求与或关系解图的搜索法
一般与或图搜索法(AO*);极小极大法(Minimax) 剪枝法(Alpha-beta Pruning);启发式剪枝法(Heuristic Pruning)
TOPICS
回溯策略( Backtracking )
83 214 765
283 714
65
28 143 765
283 145 76
123 784
65
12 3 84 7 65
目标
分析
宽度优先搜索是图搜索一般过程的特殊情 况,将图搜索一般过程中的第8步具体化为本 算法中的第6步,这实际是将OPEN表作为“先 进先出”的队列进行操作。 一定能找到解 找到的解一定是最佳解
最优解是否唯一?
下棋
搜索问题
状态空间
123
8
4
765
237 51
486
搜索不是检索
123
8
4
765
237 51
486
难点
123
8
4
765
237 51
486
启发式方法
123
8

人工智能 第3章(确定性推理3-与或树搜索)

人工智能 第3章(确定性推理3-与或树搜索)
常用启发式函数
包括基于距离的启发式函数、基于成本的启发式函数、基于规则的启发式函数等。
节点排序和选择策略
节点排序的目的和意义
节点排序是为了在扩展节点时,按照一定的顺序选择下一个要扩展的节点,以优化搜索过程。
常用节点排序策略
包括最佳优先搜索、广度优先搜索、深度优先搜索等。最佳优先搜索根据启发式函数的值来选择最优节点; 广度优先搜索按照节点的层次顺序进行扩展;深度优先搜索则尽可能深地扩展节点。
盲目搜索方法比较与选择
• 宽度优先搜索、深度优先搜索和迭代加深搜索都是盲目搜索方法,它们在不同的场景下有不同的应用。 • 宽度优先搜索适用于问题空间较大、解存在于较浅层次的情况,因为它可以逐层遍历整个问题空间,找到最短
路径。 • 深度优先搜索适用于问题空间较小、解存在于较深层次的情况,因为它可以尽可能深地搜索树的分支,找到更
启发式信息获取途径
01
02
03
问题自身的特性
通过分析问题的性质、结 构、约束条件等,提取出 对搜索过程有指导意义的 启发式信息。
领域知识
利用领域内的经验、规则、 常识等,为搜索过程提供 有价值的启发式信息。
搜索过程中的信息
在搜索过程中,通过评估 当前状态、已搜索路径、 未搜索路径等,动态地获 取启发式信息。
04 与或树搜索优化技术
剪枝策略
01
剪枝的定义和目的
剪枝是在搜索过程中,通过某些评估标准,提前终止对某些无意义或低
效的节点的扩展,以减少搜索空间,提高搜索效率。
02 03
常用剪枝策略
包括限界剪枝、启发式剪枝、概率剪枝等。限界剪枝通过设置上下界来 限制搜索范围;启发式剪枝利用启发式函数来评估节点的重要性;概率 剪枝则根据节点的概率分布来进行剪枝。

人工智能第三章_搜索策略-1

人工智能第三章_搜索策略-1
❖搜索什么
搜索什么通常指的就是目标。
❖在哪里搜索
在哪里搜索就是“搜索空间”。搜索空间通常 是指一系列状态的汇集,因此称为状态空间。
和通常的搜索空间不同,人工智能中大多数问题的状 态空间在问题求解之前不是全部知道的。
2020/10/31
6
所以,人工智能中的搜索可以分成两个 阶段:
状态空间的生成阶段 在该状态空间中对所求问题状态的搜索
(1)初始状态集合:定义了初始 的环境。
(2)操作符集合:把一个问题从 一个状态变换为另一个状态的 动作集合。
(3)目标检测函数:用来确定一 个状态是不是目标。
(4)路径费用函数:对每条路径 赋予一定费用的函数。
其中,初 始状态集 合和操作 符集合定 义了问题 的搜索空
间。
2020/10/31
5
➢ 在人工智能中,搜索问题一般包括两个重 要的问题:
分析:通过引入一个三维变量将问题表示出来。设 三维变量为:Q=[q1,q2,q3],式中qi (i=1,2,3)=1表 示钱币为正面,qi (i=1,2,3)=0表示钱币为反面。 则三个钱币可能出现的状态有8种组合: Q0=(0,0,0),Q1=(0,0,1),Q2=(0,1,0),Q3=(0,1,1),Q4= (1,0,0),Q5=(1,0,1), Q6=(1,1,0), Q7=(1,1,1)。 即初始状态为Q5,目标状态为Q0或Q7,要求步数为3。
2020/10/31
21
钱币问题的状态空间图
2020/10/31
22
状态空间搜索
——1.状态空间及其搜索的表示
(2)状态空间表示的经典例子“传教士和野人问题” ★
问题的描述:
N个传教士带领N个野人划船过河; 3个安全约束条件:

走进人工智能电子课件第三章人工智能技术应用之一智能制造

走进人工智能电子课件第三章人工智能技术应用之一智能制造

一、历史由来: 智能制造的前世今生
三、关注当下: 人工智能在智能制造 中的应用场景
人工智能 +
智能制造
二、人工智能与智能制造 : 智能制造的赋能技术
四、展望未来: 智能制造的现状 、问题与趋势
本章知识思维导图
制造业是一个国家经济发展的支柱性产业和战略性产业, 在国民经济中占有举足轻重的作用。可以说,没有制造业,就 没有了生产的工具与设施,也就谈不上农业、建筑业、服装业。
第三章 人工智能技术应用之一 ——智能制造
目录
一、历史由来:智能制造的前世今生 二、人工智能与智能制造:智能制造的赋能技术 三、关注当下:人工智能在智能制造中的应用场景 四、展望未来:智能制造的现状、问题与趋势
“若没有一个真正强盛、充满生机的制造业基础,没有国家可以长期成功。” --艾伦•穆拉利(AlanMulally,福特总裁)
(二)“工业4.0”的由来
前三次工业革命的发生,分别源于机械化、电力和信息技术。一般将18世纪引入机 械制造设备定义为“工业1.0”,20世纪初的电气化定义为“工业2.0”,始于20世纪70 年代的生产工艺自动化定义为“工业3.0”,而物联网和制造业服务化迎来了以智能制造 为主导的第四次工业革命,或革命性的生产方法,即“工业4.0”。
(3)加工过程的自动化 智能工厂中的各种设备、物料等大量釆用了如条码、二维码、RFID(射频识别系统)等识别 技术,使车间中任何实体均可被唯一识别,实现了物料、加工设备、刀具、工装等的自动装夹与传 输。在智能制造设备中还大量引入智能传感技术,可以实时采集加工过程中的温度、振动、噪声、 应力等制造数据,并采用大数据分析技术来实时控制设备的运行参数,使设备在加工过程中始终处 于最优的工作状态,实现设备的自适应加工。例如,通过在机床底脚上引入位置与应力传感器,即 可检测到不同时段地基的沉降程度,据此,通过对机床底脚的调整即可弥补该精度损失。

人工智能第三版课件第3章 搜索的基本策略

人工智能第三版课件第3章 搜索的基本策略

2.3.1 启发式信息的表示
(2) 启发式函数应能够估计出可能加速 达到目标的程度
这可以帮助确定当扩展一个节点时,那些 节点应从搜索树中删除。
启发式函数对搜索树(图)的每一节点的真正 优点估计得愈精确,解题过程就愈少走弯路。
2.3.1 启发式信息的表示
例 2.8 八 皇 后 问 题 (8-Queens problem)
弱法主要包括: .最佳优先法 .生成测试法 .爬山法 .广度优先法 .问题归约法 .约束满足法 .手段目的分析法。
1.生成测试法(Generateand-test)
生成测试法的基本步骤为: 1. 生成一个可能的解,此解是状态空 间一个点,或一条始于S0的路径。 2. 用生成的“解”与目标比较。 3. 达到目标则停止,否则转第一步。
确定一个启发式函数f(n), n 为被搜索 的节点,它把问题状态的描述映射成问题 解决的程度,通常这种程度用数值来表示, 就是启发式函数的值。这个值的大小用来 决定最佳搜索路径。
2.3.1 启发式信息的表示
(2)表示成规则
如AM的一条启发式规则为: 如 果 存 在 一 个 有 趣 的 二 元 函 数 f(x,y) , 那 么看看两变元相同时会发生什么?
2.3.1 启发式信息的表示
如何构造启发式函数? (1)启发式函数能够根据问题的当前状态, 确定用于继续求解问题的信息。
这样的启发式函数能够有效地帮助决定 那些后继节点应被产生。
2.3.1 启发式信息的表示
例2.7 八数码问题。
S0
283 16 4
Sg
75
123 84 7 65
问题空间为:
a11 a12 a13 a21 a22 a23 a31 a32 a33

人工智能基础与实践 第3章 Python与人工智能 课件PPT

人工智能基础与实践 第3章 Python与人工智能 课件PPT

变量是指在运行过程中值可以被修改的量。变量的名称除必须符 合标识符的构成规则外,要尽量遵循一些约定俗成的规范: 除了循环控制变量可以使用i或者x这样的简单名字外,其他变量 最好使用有意义的名字,以提高程序的可读性。例如,表示平均 分的变量应使用average_score或者avg_score,而不建议用as或 者pjf。直接用汉字命名也是可以的,但限于输入烦琐和编程环境 对汉字兼容等因素,习惯上很少使用。 用英文名字时,多个单词之间为表示区隔,可以用下画线来连 接不同单词,或者把每个单词的首字母大写。 用于表示固定不变值的变量名称一般用全大写英文字母,例如 :PI,MAX_SIZE。变量一般使用大小写混合的方式。 因为以下画线开头的变量在Python中有特殊含义,所以,自定 义名称时,一般不用下画线作为开头字符。 此外,还要注意Python标识符是严格区分大小字母的。
2.3 Python的基本运算和表达式
2.3.1 变量 1.变量的赋值和存储 (1)变量定义 在Python中没有专门的变量定义语句,变量定义是 通过对变量第一次进行赋值来实现 (2)删除变量 使用del命令可以删除一个对象(包括变量、函数等 ),删除之后就不能再访问这个对象了,因为它已 经不存在了。当然,也可以通过再次赋值重新定义x 变量
(5)字符串切片 在Python程序中,可使用切片(slice)从字符串中提取子串。 切片的参数是用两个冒号分隔的三个数字:
• 第一个数字表示切片开始位置(默认为0) • 第二个数字表示切片截止位置(但不包含这个位置,默认为字符串长度) • 第三个数字表示切片的步长(默认为1),当步长省略时,可以顺便省略最
优雅、明确、简单 优美胜BE于xepa丑luict陋iiftui,lsisb显ebt式etettr优etrh于tahna隐nim式upgllicy.it.

人工智能导论 第3章 确定性推理方法(导论) [兼容模式]

人工智能导论 第3章 确定性推理方法(导论) [兼容模式]

①足球运动员的身体都是强壮的;
(大前提)
②高波是一名足球运动员;
(小前提)
③所以,高波的身体是强壮的。 (结 论)
9
3.1.2推理方式及其分类
1.演绎推理、归纳推理、默认推理 (2)归纳推理(inductive reasoning):个别一一般
完全归纳推理(必然性推理) 不完全归纳推理(非必然性推理)
■逆向推理需要解决的问题: ♦如何判断一个假设是否是证据?
___ ♦当导出假设的知识有多条时,如何确定先选哪一条? ♦ 一条知识的运用条件一般都有多个,当其中的一个经 验证成立后,如何自动地换为对另一个的验证?
♦ ......
选择初 -_逆向推理:目的性强,利于向用户提供解释,但 始目标时具有盲目性,比正向推理复杂。
22
3.1.3推理的方向
3.混合推理
.正向推理:盲目、效率低。
■逆向推理:若提出的假设目标不符合实际,会降低效
率C
■正反向混合推理:
1 ( ) 先正向后逆向:先进行正向推理,帮助选择某个目标,
即从已知事实演绎出部分结果,然后再用逆向推理证实该目标
2 或提高其可信度;
( ) 先逆向后正向:先假设一个目标进行逆向推理,然后
■实现正向推理需要解决的问题: .确定索知识库。 .冲突消解策略。
■正向推理简单,易实现,但目的性不强,效率低。
19
3.1.3推理的方向
2.逆向推理
.逆向推理(目标驱动推理):以某个假设目标作为出 发点。 -基本思想:
选定一个假设目标。 寻找支持该假设的证据,若所需的证据都能找到,则 原假设成立;若无论如何都找不到所需要的证据,说明 原假设不成立的;为此需要另作新的假设。 ■主要优点:不必使用与目标无关的知识,目的性强, 同时它还有利于向用户提供解释。

人工智能第三章知识与知识表示

人工智能第三章知识与知识表示
第3章 知识与知识表示
人类的智能活动过程主要是一个获得并运用知识 的过程,知识是智能的基础。为了使计算机具有 智能,使它能模拟人类的智能行为,就必须使它 具有知识。但知识是需要用适当的模式表示出来 才能存储到计算机中去的,因此关于知识的表示 问题就成为人工智能中一个十分重要的研究课题。
第3章 知识与知识表示
第3章 知识与知识表示
第3章 知识与知识表示
第3章 知识与知识表示
第3章 知识与知识表示
二、一阶谓词逻辑表示法的特点
第3章 知识与知识表示
第3章 知识与知识表示 3.3 产生式表示法
“产生式”这一术语是由美国数学家波斯特(E.POST) 在1943年首先提出来的,他根据串代替规则提出了一 种称为波斯特机的计算机模型,模型中的每条规则称 为一个产生式。 1972年纽厄尔和西蒙在研究人类知识模型中开发了基 于规则的产生式系统。
第3章 知识与知识表示
一般来说,在选择知识表示方法时,应从以下几个方面进行考虑: 1 .充分表示领域知识 确定一个知识表示模式时,首先应该考虑的是它能否充分地表示 我们所要解决的问题所在领域的知识。为此,需要深入地了解领 域知识的特点以及每一种表示模式的特征,以便做到“对症下 药”。例如,在医疗诊断领域中,其知识一般具有经验性、因果 性的特点,适合于用产生式表示法进行表示;而在设计类(如机 械产品设计)领域中,由于一个部件一般由多个子部件组成,部 件与子部件既有相同的属性又有不同的属性,即它们既有共性又 有个性,因而在进行知识表示时,应该把这个特点反映出来,此 时单用产生式模式来表示就不能反映出知识间的这种结构关系, 这就需要把框架表示法与产生式表示法结合起来。
第3章 知识与知识表示 3.2 一阶谓词逻辑表示法
一、表示知识的方法

人工智能导论第3章 机器学习

人工智能导论第3章 机器学习

机器学习方法
监督学习
分类
回归
非监督学习
聚类
降维
星蓝海学习网
强化学习
深度学习也成为机器学习的新领域。
机器学习方法
机器学习是建立在数据建模基础上的,因此,数据是进行机器 学习的基础。可以把所有数据的集合称为数据集(dataset),其 中每条记录称为一个“样本”,在面对一个新样本时,可以根据样本 的不同属性对样本进行相应的分类。为了学习到这一模型,相关 研究者提出了不同的策略,这些不同的策略就构成了机器学习的 方法,常见的有监督学习,非监督学习,强化学习以及最近兴起 的深度学习。
星蓝海学习网
繁荣时期
20世纪80年代―至今,机器学习达到了一个繁荣时期。由于这 一时期互联网大数据以及硬件GPU的出现,使得机器学习脱离了 瓶颈期。机器学习开始爆炸式发展,开始成为了一门独立热门学 科并且被应用到各个领域。各种机器学习算法不断涌现,而利用 深层次神经网络的深度学习也得到进一步发展。同时,机器学习 的蓬勃发展还促进了其他分支的出现,例如模式识别,数据挖掘, 生物信息学和自动驾驶等等。
通常的做法是计算所有成绩的总分来衡量学生成绩的好坏,但 是总会存在一些特殊的学生,比如表中总分为482的三位学生,总 分相同,各科成绩差别很大,那如何去区分评价总分相同的学生的 学习表现呢?这时可以引入方差的概念,即计算每一个学生成绩的 方差,方差的大小可以表明学生各科成绩的波动。因此可以使用一 个二维数据(总分,方差)来替代原来的六维数据(数学,物理, 化学,语文,历史,英语)来衡量一个学生的学习表现。
星蓝海学习网
财富
有钱
工作
没钱
人品
自食其力者
啃老族
外貌
不见

人工智能第三章归结推理方法

人工智能第三章归结推理方法

Y
失败退出
成功退出
逆向推理的流程图
22
逆向推理




对上例,采用逆向推理,其推理过程如下: 推理开始前,综合数据库和假设集均为空。 推理开始后,先将初始证据A和目标C分别 放入综合数据库和假设集,然后从假设集中取 出一个假设C,查找C是否为综合数据库中的 已知事实,回答为“N”。 再检查C是否能被知识库中的知识所导出, 发现C可由r1 导出,于是r1 被放入可用知识集。 由于知识库中只有r1可用,故可用知识集中仅 含r1。
13
正向推理


正向推理是从已知事实出发、正向使用推理规 则,亦称为数据驱动推理或前向链推理。 算法描述 (1) 把用户提供的初始证据放入综合数据库; (2) 检查综合数据库中是否包含了问题的解, 若已包含,则求解结束,并成功推出;否则执 行下一步; (3) 检查知识库中是否有可用知识,若有,形 成当前可用知识集,执行下一步;否则转(5)。
11
推理的控制策略

推理过程不仅依赖于所用的推方法,同时也依 赖于推理的控制策略。 推理的控制策略是指如何使用领域知识使推理 过程尽快达到目标的策略。


控制策略的分类:由于智能系统的推理过程一 般表现为一种搜索过程,因此,推理的控制策 略可分为推理策略和搜索策略。
推理策略:主要解决推理方向、冲突消解等问 题,如推理方向控制策略、求解策略、限制策 略、冲突消解策略等
18
正向推理

正向推理的主要优点
比较直观,允许用户主动提供有用的事实信息, 适合于诊断、设计、预测、监控等领域的问题求 解。 正向推理的主要缺点

推理无明确目标,求解问题是可能会执行许多 与解无关的操作,导致推理效率较低。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能第三章文稿演示
谓词归结子句形( Skolem 标准形)
Skolem标准形
前束范式中消去所有的量词。
Skolem函数
如果某个存在量词是在其他任意量词 的辖域内,就存在某种依赖关系,可 以用一个函数描述这种依赖关系,叫 做Skolem函数。
谓词归结子句形( Skolem 标准形)
量词消去原则: • 存在量词。将该量词约束的变量用任意
(x)(y)P(a, x, y) ∧ (y)(~Q(y, b) ∧~R(x))
谓词归结子句形( Skolem 标准形)
第四步,变量易名,存在量词左移,直至所 有的量词移到前面,得:
(x)(y)P(a, x, y) ∧ (y)(~Q(y, b) ∧~R(x)) = (x)(y)P(a, x, y) ∧ (z)(~Q(z, b) ∧~R(x)) =(x)(y) (z) (P(a, x, y) ∧~Q(z, b) ∧~R(x))
– 将谓词公式G转换成前束范式; – 生成Skolem标准形; – 将各个子句提出,以“,”取代“Λ”,并表
示为集合形式 。
谓词归结子句形
• 定理3.1 谓词公式G是不可满足的,当且 仅当其子句集 S是不可满足的。
– G与S不等价,但在不可满足的意义下是一 致的。
注意:G真不一定S真,而S真必有G真。 即: S => G
求取子句集例(2)
对于第一个条件,“如果y是x的父亲, z又是y的父亲,则z是x 的祖父”,一阶逻辑表达式如下:
A1:(x)(y)(z)(P(x, y)∧P(y, z)→Q(x, z)) S A1:~P(x ,y)∨~P(y, z)∨Q(x, z) 对于第二个条件:“每个人都有父亲”,一阶逻辑表达式:
常量(a,b等)或任意变量的函数 (f(x),g(y)等)代替。 • 左边有任意量词的存在量词,消去时该 变量改写成为任意量词的函数;如没有, 改写成为常量。 • 任意量词。简单地省略掉该量词。
谓词归结子句形( Skolem 标准形)
例:将下式化为Skolem标准形:
~((x)(y)P(a, x, y) →(x)(~(y)Q(y, b)→R(x))) 解: – 第一步,消去→,得G = G1Λ G2Λ G3Λ …Λ Gn 的谓词公式
–G的子句集可以分解成几个部分单独处 理。
– 有 SG = S1 U S2 U S3 U …U Sn 则SG 与 S1 U S2 U S3 U …U Sn在不可满 足的意义上是一致的 。即SG 不可满足 <=> S1 U S2 U S3 U …U Sn不可满足。
谓词归结子句形
• 子句与子句集
– 文字:不含任何连接词的谓词公式。 – 子句:一些文字的析取(谓词的和)。 – 空子句:不含任何文字的子句。记作NIL或
□ – 子句集:所有子句的集合。 – 对于任何一个谓词公式G,都可以通过
Skolem标准形,建立起一个子句集与之对应。
谓词归结子句形
• 子句集S的求取:
可以对一个复杂的谓词公式分而治之。
求取子句集例(1)
例:对所有的x,y,z来说,如果y是x的父亲,z又是 y的父亲,则z是x的祖父。又知每个人都有父 亲,试问对某个人来说谁是他的祖父?
求:用一阶逻辑表示这个问题,并建立子句集。 解:这里我们首先引入谓词: • P(x, y) 表示y是x 的父亲 • Q(x, y) 表示y是x的祖父 • ANS(x) 表示问题的解答
由此得到前述范式
谓词归结子句形( Skolem 标准形)
– 第五步,消去存在量词,略去任意量词 消去(y),因为它左边只有(x),所以使用 x的函数f(x)代替,这样得到: (x)(z)( P(a, x, f(x)) ∧~Q(z, b)∧~R(x))
– 消去(z),同理使用g(x)代替,这样得到: (x) ( P(a, x, f(x)) ∧~Q(g(x), b)∧~R(x))
– 略去任意量词,原式的Skolem标准形为: P(a, x, f(x)) ∧~Q(g(x), b)∧~R(x)
谓词归结子句形( Skolem 标准形)
• Skolem定理:
谓词逻辑的任意公式都可以化为 与之等价的前束范式,但其前束 范式不唯一。 注意:谓词公式G的Skolem标准形 同G并不等值。
• 一阶谓词逻辑得归结比命题逻辑的 归结要复杂的多,其中一个原因就 是谓词逻辑公式中含有个体变量与 函数。
• 如P(x) ∨ Q(y)与~P(a) ∨ R(z)
• 所以要考虑置换与合一。即对变量
作适当的替换。
置换
• 置换:可以简单的理解为是在一个谓词公式中用 置换项去置换变量。
• 定义: 置换是形如{t1/x1, t2/x2, …, tn/xn}的有限集合。其 中,x1, x2, …, xn是互不相同的变量,t1, t2, …, tn是 不同于xi的项(常量、变量、函数);ti/xi表示用ti 置换xi,并且要求ti与xi不能相同,而且xi不能循环 地出现在另一个ti中。
~ (( ~ (x)(y)P(a, x, y)) ∨(x) ( ~ ~ (y)Q(y, b)∨R(x))) – 第二步,~深入到量词内部,得: (x)(y)P(a, x, y) ∧~(x) ((y)Q(y, b)∨R(x)) =(x)(y)P(a, x, y) ∧(x) ((y)~Q(y, b) ∧~R(x)) – 第三步,任意量词左移,得:
A2:(x)(y)P(x, y) S A2:P(x,f(x)) 对于结论:某个人是他的祖父
B:(x)(y)Q(x, y) 否定后得到子句: ~( (x)(y)Q(x, y))∨ANS(y) S~B:~Q(x, y)∨ANS(y) 则得到的相应的子句集为:{ S A1,S A2,S~B }
置换与合一
例如: {a/x,c/y,f(b)/z}是一个置换。 {g(y)/x,f(x)/y}不是一个置换。
置换的合成
• 设={t1/x1, t2/x2, …, tn/xn}, ={u1/y1, u2/y2, …, un/yn},是两个置换。 则与的合成也是一个置换,记作·。它是从集合
相关文档
最新文档