扬州市20172018高二上期末数学试题及答案
2017-2018学年江苏省扬州市高二(上)期末数学试卷(解析版)
2017-2018学年江苏省扬州市高二(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)命题“∃x∈R,x2﹣1<0”的否定是.2.(5分)直线2x+y+1=0在y轴上的截距为.3.(5分)抛物线y2=4x的焦点坐标为.4.(5分)曲线y=2x﹣sin x在(0,0)处的切线方程为.5.(5分)在边长为2的正方形内随机取一点,取到的点到正方形中心的距离大于1的概率为.6.(5分)某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为n的样本.已知从高三学生中抽取的人数为10,那么n=.7.(5分)执行如图所示的程序框图,输出的s值为.8.(5分)已知函数y=ln(x﹣4)的定义域为A,集合B={x|x>a},若x∈A是x∈B的充分不必要条件,则实数a的取值范围为.9.(5分)已知椭圆上的点M到右焦点的距离为2,则点M到左准线的距离为.10.(5分)已知双曲线的渐近线方程为y=±x,且过点,则双曲线的标准方程为.11.(5分)已知函数f(x)的定义域为R,f'(x)是f(x)的导函数,且f(2)=3,f'(x)<1,则不等式f(x)>x+1的解集为.12.(5分)已知A(4,0),B(1,0),动点P满足P A=2PB.设点P到点C(﹣3,0)的距离为d,则d的取值范围为.13.(5分)斜率为直线l经过椭圆的左顶点A,且与椭圆交于另一个点B,若在y轴上存在点C使得△ABC是以点C为直角顶点的等腰直角三角形,则该椭圆的离心率为.14.(5分)已知函数f(x)=x|x2﹣3a|在x∈[0,2]的值域为[0,4m],则实数m的最小值为.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(14分)已知命题p:“椭圆的焦点在x轴上”;命题q:“关于x的不等式3x2+2ax+3≥0在R上恒成立”.(1)若命题p为真命题,求实数a的取值范围;(2)若命题“p或q”为真命题、“p且q”为假命题,求实数a的取值范围.16.(14分)为了让学生更多地了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:(1)填充上述表中的空格(在解答中直接写出对应空格序号的答案);(2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩;(3)甲同学的初赛成绩在[90,100],学校为了宣传班级的学习经验,随机抽取分数在[90,100]的4位同学中的两位同学到学校其他班级介绍,求甲同学被抽取到的概率.17.(14分)已知圆C的半径为3,圆心在y轴正半轴上,直线4x﹣3y﹣9=0圆C相切.(1)求圆C的方程;(2)过点Q(1,0)的直线l与圆C交于不同的两点A(x1,y1),B(x2,y2)且AB=4,求x1x2的值.18.(16分)某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量y (万只)与时间x(年)(其中x∈N*)的关系为y=2e x.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值M=:(其中a为常数.且a>0)来进行生态环境分析.(1)当a=1时.求比值M取最小值时x的值;(2)经过调查,环保部门发现:当比值M不超过e4时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数a的取值范围.(e为自然对数的底,e=2.71828…)19.(16分)已知椭圆E:+=1(a>b>0)的右准线方程为x=2,又离心率为,椭圆的左顶点为A,上顶点为B,点P为椭圆上异于A、B任意一点.(1)求椭圆的方程;(2)若直线BP与x轴交于点M,直线AP与y轴交于点N,求证;AM•BN为定值.20.(16分)已知:函数f(x)=ax﹣lnx.(1)当a=1时,求函数y=f(x)的极值;(2)若函数g(x)=f(x)﹣x2,讨论y=g(x)的单调性;(3)若函数h(x)=f(x)+x2的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2.设x0=λx1+μx2,其中常数λ、μ满足条件λ+μ=1,且μ≥λ>0.试判断在点M (x0,h(x0))处的切线斜率的正负,并说明理由.2017-2018学年江苏省扬州市高二(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.【解答】解:因为特称命题的否定是全称命题,所以命题“∃x∈R,x2﹣1<0”的否定是:∀x∈R,x2﹣1≥0,故答案为:∀x∈R,x2﹣1≥0.2.【解答】解:直线2x+y+1=0化为:y=﹣2x﹣1,则在y轴上的截距为﹣1.故答案为:﹣1.3.【解答】解:∵抛物线y2=4x是焦点在x轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)4.【解答】解:y=2x﹣sin x的导数为y′=2﹣cos x,即有在点O(0,0)处切线斜率为k=2﹣cos0=1,可得切线的方程为y=x.故答案为:y=x.5.【解答】解:如图,正方形ABCD的边长为2,其中心为O,所有到正方形中心O的距离大于1的点均在以O为圆心,半径为1的单位圆外,易得S正方形=2×2=4,S圆=π×12=π,故所求概率为,故答案为:.6.【解答】解:∵某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为n的样本.已知从高三学生中抽取的人数为10,∴,解得n=45.故答案为:45.7.【解答】解:模拟执行如图所示的程序框图,如下;n=0,s=1,n=1,s=3,n=2,s=,n=3,s=;此时终止循环,输出s=.故答案为:.8.【解答】解:要使函数有意义,则x﹣4>0,即x>4,即A=(4,+∞),若x∈A是x∈B的充分不必要条,则A⊊B,即a<4,故实数a的取值范围是(﹣∞,4),故答案为:(﹣∞,4).9.【解答】解:根据椭圆的第二定义可知M到左焦点F1的距离与其到左准线的距离之比为离心率,依题意可知a=2,b=∴c=1,∴e=,点M到右焦点的距离为2,点M到右准线的距离:4.双曲线左右准线的距离为2×=8.∴M到左准线的距离为:8﹣4=4.故答案为:4.10.【解答】解:根据题意,双曲线的渐近线方程为y=±x,设双曲线的方程为y2﹣x2=λ,又由双曲线经过点,则有1﹣2=λ,λ,﹣1,则双曲线的方程为:y2﹣x2=1.故答案为:y2﹣x2=1.11.【解答】解:令g(x)=f(x)﹣x,对g(x)求导,得g′(x)=f′(x)﹣1,∵f′(x)<1,∴g′(x)<0,即g(x)在R上为减函数,∵f(2)=3,∴g(2)=f(2)﹣2=3﹣2=1,不等式f(x)>x+1可化为不等式f(x)﹣x>1,即g(x)>g(2),由g(x)在R上为减函数得x<2,∴不等式的解集为{x|x<2}.故答案为:(﹣∞,2).12.【解答】解:设点P(x,y),由P A=2PB,得,整理得到点P的轨迹方程为x2+y2=4.又C(﹣3,0),如图,由图可知,d的取值范围为[1,5].故答案为:[1,5].13.【解答】解:由题意可得A(﹣a,0),设直线AB的方程为y=(x+a),代入椭圆方程可得(9b2+a2)x2+2a3x+a4﹣9a2b2=0,设B(x1,y1),C(0,t),即有﹣a+x1=﹣,可得x1=,y1=(x1+a)=,即B(,),由题意可得k AC k BC=﹣1,且|AC|=|BC|,可得•=﹣1,即﹣a(9ab2﹣a3)=t(6ab2﹣ta2﹣9b2t),①又a2+t2=()2+(﹣t)2,②将②化简可得t=,代入①化简可得a2=3b2,则椭圆的离心率为e====.故答案为:.14.【解答】解:f(0)=0,对a分类讨论:①a≥时,f(x)=x(3a﹣x2)=﹣x3+3ax,x∈[0,2],f′(x)=﹣3x2+3a=﹣3(x+)(x﹣),a≥4时,f′(x)≥0,函数f(x)单调递增,可得x=2时,函数f(x)取得最大值,f(2)=﹣8+6a=4m,∴m=≥4.4时,可得:x=时,函数f(x)取得最大值,∴f()=﹣a+3a=2a=4m,m=∈.②a≤0时,f(x)=x(x2﹣3a)=x3﹣3ax,x∈[0,2],f′(x)=+3x2﹣3a≥0,函数f(x)在x∈[0,2]上单调递增,∴f(2)=8﹣6a=4m,m=≥2.③时,f(x)=x(x+)•|x﹣|=.x∈时,f′(x)=﹣3(x+)(x﹣),可得x=时,f(x)取得最大值,因此f()=2a≤4m,解得m≥.x∈(]时,f′(x)=3(x+)(x﹣),可得x=2时,函数f(x)取得最大值,f(2)=8﹣6a≤4m,m≥.令=,解得a=1.∴m≥.综上可得:m,可得m的最小值为.故答案为:.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解答】解:(1)p真:椭圆的焦点在x轴上,∴0<a<5 …(5分)(2)∵命题“p或q”为真命题、“p且q”为假命题,∴p真q假或p假q真…(7分)q真:∵关于x的不等式3x2+2ax+3≥0在R上恒成立∴△=4a2﹣4×3×3≤0,解得:﹣3≤a≤3 …(11分)∴或解得:3<a<5或﹣3≤a≤0∴实数a的取值范围是3<a<5或﹣3≤a≤0.…(14分)16.【解答】解:(1)由频率分布表得:,解得①22;②14;③0.28.…(3分)(2)此次数学史初赛的平均成绩为:65×0.20+75×0.44+85×0.28+95×0.08=77.4.…(8分)(3)记“甲同学被抽取到”为事件A,设四名学生为甲、乙、丙、丁,则总的基本事件为:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,共6个基本事件,满足事件A的基本事件:甲乙、甲丙、甲丁,共3个基本事件,则此次数学史初赛的平均成绩P(A)=.…(13分)答:此次数学史初赛的平均成绩为77.4,甲同学被抽取到的概率为.…(14分)17.【解答】解:(1)设C(0,m),m>0,∵直线4x﹣3y﹣9=0与圆C相切,且圆C的半径为3,∴,解得m=2或m=﹣8,∵m>0,∴m=2.∴圆C的方程为:x2+(y﹣2)2=9;(2)若直线AB的斜率不存在,则直线AB:x=1,∴,不符合题意,舍;若直线AB的斜率存在,设AB:y=k(x﹣1),∵AB=4,∴点C到直线AB的距离为,即,化简得:4k2﹣4k+1=0,解得k=.联立方程:,消去y得:5x2﹣10x﹣11=0.∴.18.【解答】解:(1)当a=1时,M=(x>1).∴,列表,得:∴M在(1,2)上单调减,在(2,+∞)上单调增,∴比值M取最小值时x的值为2.(2)∵M′=,(a>0),根据(1)知:M在(1,2)上单调减,在(2,+∞)上单调增,∵确保恰好三年不需要保护,∴,解得.∴实数a的取值范围是(].19.【解答】解:(1)∵右准线方程为x=2,离心率为,可得得又a2=b2+c2解得a=,b=1.∴椭圆的方程为:.(2)证明:由(1)知A(﹣,0),B(0,1),设P(x0,y0),则当x0=0时,M(0,0),N(0,﹣1),|BN|•|AM|=2ab=2.当x0≠0时,直线P A的方程为:y=,令x=0,得:,故:|BN|=|1﹣|,直线PB的方程为:y=,令y=0,得:,|AM|=|+|,即|BN|•|AM|=||=||=2为定值.综上所述,|AM|•|BN|为定值为定值2.20.【解答】解:(1)当a=1时,f(x)=x﹣lnx,∴f′(x)=1﹣=,令f′(x)=0,则x=1,列表得:∴f(x)有极小值f(1)=1,无极大值;…(3分)(2)g(x)=ax﹣lnx﹣x2,x>0,∴g′(x)=a﹣﹣2x=,设G(x)=﹣2x2+ax﹣1,①当a≤0时,G(x)<0恒成立,即g′(x)<0恒成立,∴g(x)在(0,+∞)上单调减;②当a>0且△=a2﹣8≤0,即0<a≤2时,G′(x)≤0恒成立,且不恒为0,则g′(x)≤0恒成立,且不恒为0,∴g(x)在(0,+∞)上单调减;③当a>0且△=a2﹣8>0,即a>2时,G(x)=0有两个实数根:x1=,x2=,且∴x1>x2>0,∴当0<x<x2或x>x1时,G(x)<0,g′(x)<0;当x2<x<x1时,G (x)>0,g′(x)>0;∴g(x)在(0,)和(,+∞)上单调减,在(,)上单调增.∴综上:当a≤2时,g(x)在(0,+∞)上单调减;当a>2时,g(x)在(0,)和(,+∞)上单调减,在(,)上单调增.…(7分)(3)h(x)=ax﹣lnx+x2,,问题即为判断h′(x0)的符号.∵函数h(x)的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,∴,两式相减得:a(x1﹣x1)﹣(lnx1﹣lnx2)+(﹣)=0,∴a=﹣(x1+x2)…(9分)∴h′(x0)=h′(λx1+μx2)=a﹣+2(λx1+μx2)=+(2λ﹣1)(x1﹣x2)﹣,∵μ≥λ>0λ+μ=1,∴2λ﹣1≤0,∵0<x1<x2,∴(2λ﹣1)(x1﹣x2)≥0…(11分)研究:﹣的符号,即判断ln﹣的符号.令t=,t∈(0,1),ln﹣=lnt﹣,设H(t)=lnt﹣,t∈(0,1),∵μ≥λ>0,0<t<1∴t﹣1<0,λ2t﹣μ2<0∴H'(t)>0在(0,1)上恒成立∴H(t)在(0,1)上单调增∴H(t)<H(1)=0,即…(14分)∵x1﹣x2<0∴∴,即h'(x0)>0∴在点M(x0,h(x0))处的切线斜率为正.…(16分)。
扬州市2017-2018学年度第一学期期末调研测试高三数学试题(图片版)含答案
扬州市2017—2018学年度第一学期期末调研测试试题高三数学 参 考 答 案2018.2第一部分1.{}22.6-3.24.2405.946.2378.144[,25]259.1327 10. 3(1,)211.(2,3)12.1(,2]214.73 15证明:⑴在直三棱柱111ABC A B C -中,四边形11B BCC 是平行四边形,所以11//B C BC ,.………2分在ABC ∆中,,D E 分别为,AB AC 的中点,故//BC DE ,所以11//B C DE ,.………4分又11B C ⊄平面1A DE ,DE ⊂平面1A DE , 所以11//B C 平面1A DE .………7分⑵在平面11ABB A 内,过A 作1AF A D ⊥于F , 因为平面1A DE ⊥平面11A ABB ,平面1A DE 平面111AABB A D =,AF ⊂平面11A ABB ,所以AF ⊥平面1A DE , .………11分又DE ⊂平面1A DE ,所以AF DE ⊥, 在直三棱柱111ABC A B C -中,1A A ⊥平面ABC ,DE ⊂平面ABC ,所以1A A DE ⊥,因为1AF A A A = ,AF ⊂平面11A ABB ,1A A ⊂平面11A ABB ,所以DE ⊥平面11A ABB ,因为AB ⊂平面11A ABB ,所以DE AB ⊥。
.………14分注:作1AF A D ⊥时要交代在平面内作或要交代垂足点,否则扣1分16 解:⑴因为S △ABC =1sin 92AB BC B =创,又AB =6,BC =5,所以3sin 5B =,………2分又B (0,)π∈,所以4cos 5B ==±, ………3分 当cos B =45时,AC ===5分当cos B =45-时,AC ===所以AC =7分注:少一解的扣3分⑵ 由ABC ∆为锐角三角形得B 为锐角,所以AB =6,AC BC =5, 所以cosA ==又(0,)A π∈,所以sinA ==,………9分 所以12sin 2213A ==,225cos 213A =-=-, ………12分所以cos(2)cos 2cos sin 2sin 666A A A p pp +=-.………14分17. 解:⑴因为MN 与扇形弧PQ 相切于点S ,所以OS ⊥MN .在RT OSM 中,因为OS =1,∠MOS=α,所以SM =tan α,在RT OSN 中,∠NOS=23πα-,所以SN=2tan()3πα-,所以2t a 3MN παα=+-,.………4分 其中62ππα<<..………6分⑵因为62ππα<<10α->,令10t α=->,则tan 1)t α=+,所以42)MN t t =++, (8)分由基本不等式得2)MN ≥=, ………10分 当且仅当4t t =即2t =时取“=” . .………12分此时t n 3α=,由于62ππα<<,故3πα=. . .………13分答:⑴2tan tan()3MN παα=+-=,其中62ππα<<⑵当3πα=时,MN 长度的最小值为千米 .. .………14分注:第⑵问中最小值对但定义域不对的扣2分18解:⑴设椭圆2E 的方程为2212x y m m+=,代入点得2m =, 所以椭圆2E 的方程为22142x y +=………3分⑵因为椭圆1E 的离心率为2,故222a b =,所以椭圆2221:22E x y b += 又椭圆2E 与椭圆1E “相似”,且4m =,所以椭圆2221:28E x y b +=,设112200(,),(,),(,)A x y B x y P x y ,①方法一:由题意得2b =,所以椭圆221:28E x y +=,将直线:2l y kx =+, 代入椭圆221:28E x y +=得22(12)80k x kx ++=, 解得1228,012k x x k -==+,故212224,212k y y k-==+, 所以222824(,)1212k k A k k--++………5分 又2AP AB = ,即B 为AP 中点,所以2228212(,)1212k k P k k+++, ………6分代入椭圆222:232E x y +=得222228212()2()321212k k k k ++=++, 即4220430k k +-=,即22(103)(21)0k k -+=,所以10k =± 所以直线l的方程为2y x =+………8分 方法二:由题意得2b =,所以椭圆221:28E x y +=,222:232E x y += 设(,),(0,2)A x y B ,则(,4)P x y --,代入椭圆得2222282(4)32x y x y ⎧+=⎪⎨+-=⎪⎩,解得12y =,故x =………6分所以k = 所以直线l的方程为2y x =+………8分 ②方法一: 由题意得22222222200112228,22,22x y b x y b x y b +=+=+=,010112y y x x ⋅=-,即010120x x y y +=, AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩………12分 所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-= 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=所以222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=.………16分 方法二:不妨设点P 在第一象限,设直线:(0)OP y kx k =>,代入椭圆2222:28E x y b +=,解得0x =0y =,直线,OP OA 的斜率之积为12-,则直线1:2OA y x k =-,代入椭圆2221:22E x y b +=,解得1x =,则1y =AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩, 所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-= 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=所以22822b λ+-, 即222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ= 19解:(1)由(1)0g -=知,()g x 的图象直线过点(1,0)-,设切点坐标为00(,)T x y ,由'()x f x e =得切线方程是000()x x y e e x x -=- 此直线过点(1,0)-,故0000(1)x x e e x -=--,解得00x =, 所以'(0)1a f ==.………3分(2)由题意得2,(0,)xm e x x <-∈+∞恒成立, 令2(),(0,)x m x e x x =-∈+∞,则'()2x m x e x=-,再令()'()2x n x m x e x ==-,则'()2x n x e =-,故当(0,ln 2)x ∈时,'()0n x <,()n x 单调递减;当(ln 2,)x ∈+∞时,'()0n x >,()n x 单调递增, 从而()n x 在(0,)+∞上有最小值(ln 2)22ln 20n =->, 所以()m x 在(0,)+∞上单调递增,.………6分 所以(0)m m ≤,即1m ≤.………8分 注:漏掉等号的扣2分(3)若0a <,()()()x F x f x g x e ax b =-=--在(0,)+∞上单调递增,故()()()F x f x g x =-在(0,)+∞上总有零点的必要条件是(0)0F <,即1b >, ………10分 以下证明当1b >时,()()()F x f x g x =-在(0,)+∞上总有零点。
扬州市2018—2019学年度高二数学第一学期期末调研测试试题参考答案
扬州市 2021— 2021 学年度第一学期期末调研测试试题高二数学参考答案一、填空:1. x(0,) ,sin x 12. -13. 6 4.2. 5. x2 6. 327 .充分不必要8.1,1( 写成1,11,1 ,1,1也算 )9 .1210.1.11.y 5x 12.,142213.,0U 3,14,e U2..3e ,二、解答:15.解:〔 1〕假设命p真命,3m1m30 ,即m的取范是1m 3 . 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分〔 2〕假设命q真命,0,解得1m 5 .即 m1,5 .⋯⋯⋯⋯7分∵命“ p 或 q〞真命、“ p 且 q〞假命,∴p 和 q 中有且有一个正确.13m10 分假设 p 真 q 假,3,解得 m;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯m1或m5假设 p 假 q 真,m1或 m 311或 3 m 5.⋯⋯⋯⋯⋯⋯ 13 3,解得m分1m 53所以,上所述:m 的取范1, 13,5.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分316. 解:〔1〕由100a0.001 1 ,解得a⋯⋯4分〔 2 〕余在900,1000 之的率0.1 ,故可估余不低于900元的客大3000 0.1 300 (人)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分〔 3〕客人均失的估:650750 0.4 8500.25 950 0.1 765 (元)⋯⋯⋯⋯⋯⋯⋯14 分(注 :假设有列式 ,没有前面文字明 ,必需要答 ,否扣 1 分 )17.解: (1)解:假直 l 定点 ( a, b) ,ka b42k0,即 k(a 2) b 40关于 k R 恒成立,⋯⋯⋯ 2 分a 2 0 a 2 ⋯⋯⋯ 4 分b4 ,b,4所以直 l 定点,定点坐 (2, 4) ⋯⋯⋯ 6 分(2) 点 A( 2,0), B(1,0) , 点 P(x, y) ,PA 2 ( x 2) 2 y 2 , PB 2(x 1)2 y 2 ,PA 2PB ,PA 2 4PB 2,( x 2)2 y 24[( x 1)2 y 2 ]所以点 P(x, y) 的 迹方程 ( x 2) 2 y 24 ,⋯⋯⋯ 10 分又点 P(x, y) 在直 l : kx y 4 2k 0 上,所以直 l : kx y4 2k 0 与 ( x 2)2y 24 有公共点,⋯⋯⋯ 12 分心到直 的距离d , d| 2k 0 4 2k |r 2 ,k21解得 数 k 的范 k3 或 k3 .⋯⋯⋯ 14 分18.解 : (1) 在直角AO 2 M 中, AM 12sin =6 2 , O 2 M 12cos =12cos =6 2 ,44 AD12 2 12 , AB 2AM=12 2⋯⋯⋯ 2 分 所以 S AB AD=12 2(12 2+12)=288+144 2〔平方米〕⋯⋯⋯ 3 分答:矩形 ABCD 的面 S 288+144 2 平方米 .⋯⋯⋯ 4 分(2) 在直角AO 2 M 中, AM12sin , O 2 M 12cos , AD 24cos12 , 所以矩形 ABCD 的面 S24sin (24cos12) 288(2sin cos sin ) ,⋯⋯⋯ 8 分0 < q ?p⋯⋯⋯ 10 分3令 f () 2sin cossin , 0 < q ? p,3f '() 2cos2cos4cos 2cos2 ,⋯⋯⋯ 12 分令 f '() 0 ,得 cos33 1. cos33 1,且 0 < q 0 ? p ,883列表如下:0, 0( 0 , )3f '( )f ()↗极大↘所以当0 ,f ( ) 最大 , 即 S 最大.此 cos33 1⋯⋯⋯⋯⋯⋯ 15 分8答:当 cos 为33 1, 泉 ABCD 的面 S 最大⋯⋯⋯⋯⋯⋯ 16 分819. 解:(1)由 意得 :2a 22,c2a2所以 a2, c 1, ba 2 c 22 11⋯⋯⋯ 2 分 故 方程x 2 y 2 1,⋯⋯⋯ 4 分2(2) ① P( x 0 , y 0 ),( x 00, y 0 0) ,由 M(0,m) ,可得 P( x 0 ,2m), Q(x 0 , 2m)所以直PM 的斜率 k2m m m2m m 3m x 0x 0 ,直 QM 的斜率 k '.⋯⋯ 6 分x 0x 0此k1,所以k定1 . ⋯⋯⋯ 8 分k3k3② A( x 1, y 1 ), B(x 2 , y 2 ) ,直 PA 的方程 y kxm ,直 QB 的方程y3kx m .y kx m222立x 2,整理得〔2k+1〕x 4kmx 2m20 ,y 2 1216k 2 m 2 8(m 2 1)(2k 21)) 02m 22,可得 x 1由x 0 x 1 2m 22〔2k21〕x 0 ,2k 2 1y 1kx 1 m k2m 2 2m1〕x 0〔2k 2同理 x2m 22 , y3kxm3k2m 2 2m .⋯⋯⋯ 10 分〔18k 21〕x 0222〔18k 2 1〕 x 0所以 x 1x 232k 2 (m 21), y 1y 23k 2m 22k 2m 22,(2k 2 1)( 18k 21〕x 0 1〕x 01〕x 0〔18k 2〔2k 2 y 1 y 2 2k( m 2 1) 24k 2 4 8k(m 21)6k 2 1 ,( 2k 2 1)( 18k 21〕x 0( 2k 2 1)( 18k 2 1〕x 0所以 k ABy 1 y 2 6k 2 1 1(6k 1 ) ,⋯⋯⋯ 12 分x 1 x 24k4 k由 m 0, x 00 ,可知 k0 ,所以 6k 1 6 ,当且 当 k62 取得等号 .k6由P( x 0 ,2m) , m0, x 00 在C: x 2 y 21 上 得 x 02 8m 2 ,2kmmx 02 8m2此2 m 6,即 m7 , ⋯⋯⋯ 14 分8m 2 67由0 得, m 22k 2 1 ,所以 k6 , m7 符号 意 .67所 以 直AB 的 斜 率 的 最 小, 直PA的 方 程y6 x7 . ⋯⋯⋯ 16 分67②法 2:同上可得 x 12m 2 2 ; x 2 2m 2 2 ⋯⋯⋯ 10 分〔2k 2 1〕x 〔18k 2 0 1〕x因 kAB y 1 y 2 ,y 1kx m, y23kx mx 1 x 2 12k2m 223k2m 2 2kxm3kx mx 1 3kx 22〕2 〕 x 0〔〔所以 k AB122k1 x 018k1x 1 x 2x 1 x 22m222m 22〔 2〕 〔18 2 〕 x 02k 1 x 0 k 1k3k222〔〕〔〕 6k 1112k118k1(6k)114k4k〔 2〕〔 2 〕⋯⋯⋯12 分下面同解法 1.1( x 1) ln x11ln x20. 解:〔Ⅰ〕f ( x) x1)2x1)2,⋯⋯⋯⋯ 2 分( x( xf (1) 1 ,f (x) 在 x 1 的切 方程yf (1)1( x 1) ,22即 x 2 y 1⋯⋯⋯⋯ 4 分〔2〕( x) m ln x x ,( m 0 ),令(x)m1 0 ,得 xm ,x在区在区( 0,m 上), ( x) 0 ,函数x (m ,上, (x ) 0 x) ,函数是增函数;是减函数 ;⋯⋯⋯⋯ 6 分故当 0 <m时1 , (在x )1上,递2减x m , a x ( ) (1)1.当 1 <m 2时 , x(先)增后减 故 , x m (a x )m ( )mml n m .当m 2时 ,(x 在) 1, 上2递增此时,x m (a x )⋯⋯⋯⋯ 10 分( 2 ) m l n 2 - 2.11ln x1x(3) f ( x),令g( x) 1( xln x ,1)2xg ( x)1 1 , 函数 g (x)x 21 xg(e 2 )10 ,所以存在唯一的 x 0e 211ln x在(0,)上 减,g(1) 2 0,x(1, e 2 ) ,⋯⋯⋯⋯ 12 分当 x(0, x 0 ) , f ( x)0 ,当 x ( x 0 , ) , f ( x) 0 ,所以函数f ( x) 的 增区 是 (0, x 0 ) , 减区是(x 0 ,) ,其中 x 0(1, e 2 ) ,所以函数f ( x) 有极大 .⋯⋯⋯⋯ 14 分函数 f ( x) 的极大 是 f ( x 0 )ln x,由 f (x 0 ) 0 ,得 11 ln x 0 0,x 01x 01 1所以f (x 0 )ln x 0 x 0 1 ,因 x 0 (1, e 2 ) ,所以 11 ,即 f ( x 0 ) 1,x 0 1 x 0 1 x 0x 0所以 f ( x) 的极大 小于 1.⋯⋯⋯⋯ 16 分。
江苏省扬州市2017-2018学年高二上学期期末数学试卷 Word版含解析
2017-2018学年江苏省扬州市高二(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.“∀x∈R,x2+x+1>0”的否定是.2.某工厂生产A、B、C 三种不同型号的产品,产量之比为2:3:5.现用分层抽样的方法抽取1个容量为n的样本,若样本中A种型号的产品有15件,则样本容量n=.3.在区间[0,4]上任取一个实数x,则x>2的概率是.4.根据如图所示的伪代码,如果输入x的值为0,则输出结果y为.5.若f(x)=5sinx,则=.6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.7.如图,该程序运行后输出的y值为.8.一个圆锥筒的底面半径为3cm,其母线长为5cm,则这个圆锥筒的体积为cm3.9.若双曲线的左右焦点分别为F1,F2,P为双曲线上一点,PF1=3,则PF2=.10.设l,m是两条不同的直线,α,β是两个不重合的平面,给出下列四个:①若α∥β,l⊥α,则l⊥β;②若l∥m,l⊂α,m⊂β,则α∥β;③若m⊥α,l⊥m,则l∥α;④若l∥α,l⊥β,则α⊥β.其中真的序号有.(写出所有正确的序号)11.已知抛物线y2=4x的准线恰好是双曲线=1的左准线,则双曲线的渐近线方程为.12.已知可导函数f(x)(x∈R)的导函数f′(x)满足f(x)<f′(x),则不等式f(x)≥f(2016)e x﹣2016的解集是.13.若椭圆的中心为坐标原点,长轴长为4,一条准线方程为x=﹣4,则该椭圆被直线y=x+1截得的弦长为.14.若a>0,b>0,且函数f(x)=ae x+(b2﹣3)x在x=0处取得极值,则ab的最大值等于.二、解答题:(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.某班40名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.(学生成绩都在[50,100]之间)(1)求频率分布直方图中a的值;(2)估算该班级的平均分;(3)若规定成绩达到80分及以上为优秀等级,从该班级40名学生中任选一人,求此人成绩为优秀等级的概率.16.如图,在四面体ABCD中,AB⊥CD,AB⊥AD.M,N,Q分别为棱AD,BD,AC的中点.(1)求证:CD∥平面MNQ;(2)求证:平面MNQ⊥平面ACD.17.已知p:“存在x∈R,x2﹣2x+m≤0”,q:“曲线表示焦点在x轴上的椭圆”,r:t<m<t+1(1)若“p且q”是真,求m的取值范围;(2)若q是r的必要不充分条件,求t的取值范围.18.已知函数f(x)=﹣x3+3x2+9x+a.(1)当a=﹣2时,求f(x)在x=2处的切线方程;(2)若f(x)在区间[﹣2,2]上的最大值为22,求它在该区间上的最小值.19.椭圆E:+=1(a>b>0)经过点(1,),且离心率为,过点P的动直线l与椭圆相交于A,B两点.(1)求椭圆E的方程;(2)若椭圆E的右焦点是P,其右准线与x轴交于点Q,直线AQ的斜率为k1,直线BQ的斜率为k2,求证:k1+k2=0;(3)设点P(t,0)是椭圆E的长轴上某一点(不为长轴顶点及坐标原点),是否存在与点P不同的定点Q,使得=恒成立?若存在,求出点Q的坐标;若不存在,说明理由.20.已知函数f(x)=lnx﹣,g(x)=x﹣1.(1)求函数f(x)的单调递减区间;(2)若关于x的方程f(x)﹣g(x)+a=0在区间(,e)上有两个不等的根,求实数a的取值范围;(3)若存在x0>1,当x∈(1,x0)时,恒有f(x)>kg(x),求实数k的取值范围.2015-2016学年江苏省扬州市高二(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.“∀x∈R,x2+x+1>0”的否定是∃x∈R,x2+x+1≤0.【考点】的否定.【分析】欲写出的否定,必须同时改变两个地方:①:“∀”;②:“>”即可,据此分析选项可得答案.【解答】解:“∀x∈R,x2+x+1>0“的否定是:∃x∈R,x2+x+1≤0.故答案为:∃x∈R,x2+x+1≤0.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称的否定是全称,“存在”对应“任意”.2.某工厂生产A、B、C 三种不同型号的产品,产量之比为2:3:5.现用分层抽样的方法抽取1个容量为n的样本,若样本中A种型号的产品有15件,则样本容量n=75.【考点】分层抽样方法.【分析】设出样本容量,根据在抽样过程中每个个体被抽到的概率相等得到比例式,解出方程中的变量n,即为要求的样本容量【解答】解:设出样本容量为n,∵由题意知产品的数量之比依次为2:3:5,∴=,∴n=75,故答案为:75【点评】抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.3.在区间[0,4]上任取一个实数x,则x>2的概率是.【考点】几何概型.【分析】根据几何概型计算公式,用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,可得答案.【解答】解:数集(2,4]的长度为2,数集[0,4]的长度为4,∴在区间[0,4]上任取一个实数x,则x>2的概率为=,故答案为:.【点评】本题考查了几何概型的概率计算,思路是先求得试验的全部构成的长度和构成事件的区域长度,再求比值.4.根据如图所示的伪代码,如果输入x的值为0,则输出结果y为5.【考点】伪代码.【分析】模拟执行程序,可得程序的功能是计算并输出y=的值,当x=0,满足条件x≥0,即可求得y的值.【解答】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x=0,满足条件x≥0,y=5.故答案为:5.【点评】本题主要考查了伪代码和算法的应用,模拟执行程序,得程序的功能是解题的关键,属于基本知识的考查.5.若f(x)=5sinx,则=0.【考点】导数的运算.【分析】利用导数计算公式得出解:f′(x)=5cosx,代入计算即可.【解答】解:∵f(x)=5sinx,∴f′(x)=5cosx,∴则′=0.故答案为;0【点评】本题考查了导数的概念,运算,属于计算题,难度不大,准确计算即可.6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.【考点】互斥事件的概率加法公式.【分析】利用列举法求出甲、乙两人各抽取1张的基本事件的个数和两人都中奖包含的基本事件的个数,由此能求出两人都中奖的概率.【解答】解:设一、二等奖各用A,B表示,另1张无奖用C表示,甲、乙两人各抽取1张的基本事件有AB,AC,BA,BC,CA,CB共6个,其中两人都中奖的有AB,BA共2个,故所求的概率P=.故答案为:.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意列举法的合理运用.7.如图,该程序运行后输出的y值为32.【考点】程序框图.【分析】根据题意,模拟该程序的运行过程,得出程序运行后输出的y值.【解答】解:模拟该程序的运行过程,如下;n=1,n≤3,n=1+2=3,y=23=8;n≤3,n=3+2=5,y=25=32;n>3,终止循环,输出y=32.故答案为:32.【点评】本题考查了程序语言的应用问题,解题时应模拟程序的运行过程,是基础题目.8.一个圆锥筒的底面半径为3cm,其母线长为5cm,则这个圆锥筒的体积为12πcm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】求出圆锥的高,代入圆锥的体积公式即可求出.【解答】解:圆锥的高h==4,∴圆锥的体积V=×π×32×4=12π.故答案为:12π.【点评】本题考查了圆锥的结构特征,体积计算,属于基础题.9.若双曲线的左右焦点分别为F1,F2,P为双曲线上一点,PF1=3,则PF2=7.【考点】双曲线的简单性质.【分析】求出双曲线的a=2,运用双曲线的定义,可得||PF1|﹣|PF2||=2a,解方程即可得到所求距离.【解答】解:双曲线的a=2,由双曲线的定义可得||PF1|﹣|PF2||=2a=4,即有|3﹣|PF2||=4,解得|PF2|=7(﹣1舍去).故答案为:7.【点评】本题考查双曲线的定义和方程,注意定义法的运用,考查运算能力,属于基础题.10.设l,m是两条不同的直线,α,β是两个不重合的平面,给出下列四个:①若α∥β,l⊥α,则l⊥β;②若l∥m,l⊂α,m⊂β,则α∥β;③若m⊥α,l⊥m,则l∥α;④若l∥α,l⊥β,则α⊥β.其中真的序号有①④.(写出所有正确的序号)【考点】空间中直线与平面之间的位置关系.【分析】在①中,由直线与平面垂直的判定定理得l⊥β;在②中,α与β相交或平行;在③中,l∥α或l⊂α;在④中,由面面垂直的判定定理得α⊥β.【解答】解:由l,m是两条不同的直线,α,β是两个不重合的平面,知:在①中,若α∥β,l⊥α,则由直线与平面垂直的判定定理得l⊥β,故①正确;在②中,若l∥m,l⊂α,m⊂β,则α与β相交或平行,故②错误;在③中,若m⊥α,l⊥m,则l∥α或l⊂α,故③错误;在④中,若l∥α,l⊥β,则由面面垂直的判定定理得α⊥β,故④正确.故答案为:①④.【点评】本题考查真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.11.已知抛物线y2=4x的准线恰好是双曲线=1的左准线,则双曲线的渐近线方程为y=±x.【考点】双曲线的简单性质.【分析】求出抛物线的准线方程,双曲线的左准线方程,由题意可得a的方程,解方程可得a,即可得到所求渐近线方程.【解答】解:抛物线y2=4x的准线为x=﹣,双曲线=1的左准线为x=﹣,由题意可得=﹣=﹣,解得a=±2,可得双曲线的方程为x2﹣y2=4,即有渐近线的方程为y=±x.故答案为:y=±x.【点评】本题考查双曲线的渐近线方程的求法,注意运用抛物线的准线方程,考查运算能力,属于基础题.12.已知可导函数f(x)(x∈R)的导函数f′(x)满足f(x)<f′(x),则不等式f(x)≥f(2016)e x﹣2016的解集是[2016,+∞).【考点】利用导数研究函数的单调性;导数的运算.【分析】构造函数g(x)=,求出g′(x),得到g(x)在R递增,从而求出不等式的解集.【解答】解:由f(x)≥f(2016)e x﹣2016,得:≥,令g(x)=,g′(x)=,∵f(x)<f′(x),∴g′(x)>0,∴g(x)在R递增,∴x≥2016,故答案为:[2016,+∞).【点评】本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)=是解题的关键,本题是一道中档题.13.若椭圆的中心为坐标原点,长轴长为4,一条准线方程为x=﹣4,则该椭圆被直线y=x+1截得的弦长.【考点】椭圆的简单性质.【分析】设椭圆的方程为+=1(a>b>0),由题意,利用椭圆性质求出椭圆的方程为=1,由此能求出该椭圆被直线y=x+1截得的弦长.【解答】解:设椭圆的方程为+=1(a>b>0),由题意,椭圆的焦点在x轴上,且2a=4,=4,解得a=2,c=1,∴b2=a2﹣c2=3,∴椭圆的方程为=1,联立,得7x2+8x﹣8=0,设直线y=x+1与椭圆交于A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=﹣,∴该椭圆被直线y=x+1截得的弦长为:|AB|==.故答案为:.【点评】本题考查椭圆弦长的求法,是中档题,解题时要认真审题,注意椭圆的简单性质和椭圆弦长公式的合理运用.14.若a>0,b>0,且函数f(x)=ae x+(b2﹣3)x在x=0处取得极值,则ab的最大值等于2.【考点】利用导数研究函数的极值.【分析】求导数f′(x),据题意便有f′(0)=a+b2﹣3=0,从而得出a=3﹣b2,从而ab=﹣b3+3b,并且根据a>0,b>0,可求出,并设g(b)=﹣b3+3b,求导数,根据导数符号便可判断出g(b)在b=1时取得最大值,这样即可求出ab的最大值.【解答】解:f′(x)=ae x+b2﹣3;∵f(x)在x=0处取得极值;∴f′(0)=a+b2﹣3=0;∴a=3﹣b2;∴ab=(3﹣b2)b=﹣b3+3b;∵a>0,b>0;∴3﹣b2>0;∴;设g(b)=﹣b3+3b,g′(b)=﹣3b2+3=3(1﹣b2);∴b∈(0,1)时,g′(b)>0,b时,g′(b)<0;∴b=1时,g(b)取最大值2;即ab的最大值为2.故答案为:2.【点评】考查函数极值的概念,以及根据导数符号判断函数极值和最值的方法及过程,清楚函数在极值点处的导数为0,注意正确求导.二、解答题:(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.某班40名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.(学生成绩都在[50,100]之间)(1)求频率分布直方图中a的值;(2)估算该班级的平均分;(3)若规定成绩达到80分及以上为优秀等级,从该班级40名学生中任选一人,求此人成绩为优秀等级的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)根据频率和为1,列出方程,求出a的值;(2)利用组中值,即可估算该班级的平均分;(3)根据成绩为优秀等级有16人,即可求出从该班级40名学生中任选一人,此人成绩为优秀等级的概率.【解答】解:(1)由题(2a+2a+3a+6a+7a)×10=1,∴20a×10=1,﹣﹣﹣﹣﹣﹣﹣﹣(2分)∴a=0.005,﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)该班级的平均分为=76.5;(3)成绩为优秀等级有16人,∴从该班级40名学生中任选一人,此人成绩为优秀等级的概率为=0.4【点评】本题考查了频率分布直方图的应用问题,也考查了概率的计算,是基础题目.16.如图,在四面体ABCD中,AB⊥CD,AB⊥AD.M,N,Q分别为棱AD,BD,AC的中点.(1)求证:CD∥平面MNQ;(2)求证:平面MNQ⊥平面ACD.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)利用M,Q分别为棱AD,AC的中点,证明MQ∥CD,即可证明CD∥平面MNQ;(2)证明MN⊥平面ACD,即可证明平面MNQ⊥平面ACD.【解答】证明:(1)因为M,Q分别为棱AD,AC的中点,所以MQ∥CD,…(3分)又CD⊄平面MNQ,MQ⊂平面MNQ,故CD∥平面MNQ.…(7分)(2)因为M,N分别为棱AD,BD的中点,所以MN∥AB,又AB⊥CD,AB⊥AD,故MN⊥AD,MN⊥CD.…(9分)因为AD∩CD=D,AD,CD⊂平面ACD,所以MN⊥平面ACD又MN⊂平面MNQ,所以平面MNQ⊥平面ACD.…(14分)【点评】本题考查线面平行,平面与平面垂直,考查学生分析解决问题的能力,属于中档题.17.已知p:“存在x∈R,x2﹣2x+m≤0”,q:“曲线表示焦点在x轴上的椭圆”,r:t<m<t+1(1)若“p且q”是真,求m的取值范围;(2)若q是r的必要不充分条件,求t的取值范围.【考点】必要条件、充分条件与充要条件的判断;复合的真假.【分析】(1)若p为真:△≥0;若q为真:则,若“p且q”是真,求其交集即可得出;(2)由q是r的必要不充分条件,则可得(t,t+1)⊊(﹣1,2),解出即可得出.【解答】解:(1)若p为真:△=4﹣4m≥0﹣﹣﹣﹣﹣﹣﹣﹣(1分)解得m≤1﹣﹣﹣﹣﹣﹣﹣﹣(2分)若q为真:则﹣﹣﹣﹣﹣﹣(3分)解得﹣1<m<2﹣﹣﹣﹣﹣﹣﹣﹣(4分)若“p且q”是真,则﹣﹣﹣﹣﹣﹣﹣﹣(6分)解得﹣1<m≤1﹣﹣﹣﹣﹣﹣﹣﹣(7分)(2)由q是r的必要不充分条件,则可得(t,t+1)⊊(﹣1,2)﹣﹣﹣﹣﹣﹣﹣(11分)即(等号不同时成立)﹣﹣﹣﹣﹣﹣﹣(13分)解得﹣1≤t≤1﹣﹣﹣﹣﹣﹣﹣﹣(15分)【点评】本题考查了简易逻辑的判定方法、一元二次不等式的解集与判别式的关系、不等式的性质,考查了推理能力与计算能力,属于中档题.18.已知函数f(x)=﹣x3+3x2+9x+a.(1)当a=﹣2时,求f(x)在x=2处的切线方程;(2)若f(x)在区间[﹣2,2]上的最大值为22,求它在该区间上的最小值.【考点】函数的最值及其几何意义;利用导数研究曲线上某点切线方程.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程可得切线的方程;(2)求得导数,求得极值点,求出单调区间,可得f(x)的最值,解方程可得a=0,进而得到最小值.【解答】解:(1)f(x)的导数为f′(x)=﹣3x2+6x+9,可得切线的斜率为f′(2)=9,切点为(2,20),所以f(x)在x=2处的切线方程为y﹣20=9(x﹣2),即9x﹣y+2=0.(2)令f′(x)=﹣3x2+6x+9=0,得x=3(舍)或x=﹣1,当x∈(﹣2,﹣1)时,f'(x)<0,所以f(x)在x∈(﹣2,﹣1)时单调递减,当x∈(﹣1,2)时f'(x)>0,所以f(x)在x∈(﹣1,2)时单调递增,又f(﹣2)=2+a,f(2)=22+a,所以f(2)>f(﹣2).因此f(2)和f(﹣1)分别是f(x)在区间[﹣2,2]上的最大值和最小值,于是有22+a=22,解得a=0.故f(x)=﹣x3+3x2+9x,因此f(﹣1)=﹣5,即函数f(x)在区间[﹣2,2]上的最小值为﹣5.【点评】本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查运算能力,属于中档题.19.椭圆E:+=1(a>b>0)经过点(1,),且离心率为,过点P的动直线l与椭圆相交于A,B两点.(1)求椭圆E的方程;(2)若椭圆E的右焦点是P,其右准线与x轴交于点Q,直线AQ的斜率为k1,直线BQ的斜率为k2,求证:k1+k2=0;(3)设点P(t,0)是椭圆E的长轴上某一点(不为长轴顶点及坐标原点),是否存在与点P不同的定点Q,使得=恒成立?若存在,求出点Q的坐标;若不存在,说明理由.【考点】椭圆的简单性质.【分析】(1)由椭圆E:+=1(a>b>0)经过点(1,),且离心率为,利用椭圆简单性质列出方程组,求出a,b,由此能求出椭圆E的方程.(2)设A(x1,y1),B(x2,y2),则,由此利用点差法能证明k1+k2=0.(3)当直线l与y轴平行时,Q点的坐标为(x0,0);当直线l与y轴垂直时,Q点坐标只可能为,再证明对任意直线l,均有即可.【解答】解:(1)∵椭圆E:+=1(a>b>0)经过点(1,),且离心率为,∴,解得a=2,b=1.∴椭圆E的方程为.(4分)证明:(2)设A(x1,y1),B(x2,y2),则.由题意P(1,0),Q(2,0),∵.∴,若y1=y2,则k1=k2=0,结论成立.(此处不交代扣1分)若y1≠y2,则x1y2+x2y1=2(y1+y2),∴.(10分)备注:本题用相似三角形有关知识证明同样给分,用韦达定理解决也相应给分.解:(3)当直线l与y轴平行时,设直线l与椭圆相交于C,D两点,如果存在定点Q满足条件,则有,即QC=QD,∴Q在x轴上,可设Q点的坐标为(x0,0).当直线l与y轴垂直时,设直线与椭圆相交于M,N两点,则M,N的坐标分别为,由,有,解得.∴若存在不同于点P不同的定点Q满足条件,则Q点坐标只可能为.(12分)下面证明:对任意直线l,均有.记直线AQ的斜率为k1,直线BQ的斜率为k2,设A(x1,y1),B(x2,y2),则.由题意,∵.∴若y1=y2,则k1=k2=0.∴.点B于x轴对称的点B'的坐标为(﹣x2,y2).∴k Q A=k QB′,∴Q,A,B'三点共线.∴.∴对任意直线l,均有.(16分)【点评】本题考查椭圆方程的求法,考查k1+k2=0的证明,考查是否存在与点P不同的定点Q,使得=恒成立的判断与证明,是中档题,解题时要认真审题,注意椭圆性质、椭圆与直线位置关系的合理运用.20.已知函数f(x)=lnx﹣,g(x)=x﹣1.(1)求函数f(x)的单调递减区间;(2)若关于x的方程f(x)﹣g(x)+a=0在区间(,e)上有两个不等的根,求实数a的取值范围;(3)若存在x0>1,当x∈(1,x0)时,恒有f(x)>kg(x),求实数k的取值范围.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(1)求出导数,由导数小于0,可得减区间,注意定义域;(2)由题意可得﹣a=lnx﹣﹣(x﹣1)在(,e)上有两个实根,令h(x)=lnx﹣﹣(x﹣1),求出导数,求得单调区间、极值和最值,可得a的范围;(3)由题意可得当x∈(1,x0)时,f(x)的图象恒在直线y=k(x﹣1)的上方,求出f(x)的单调区间,画出它们的图象,由直线和曲线相切,求得k,再由直线旋转可得k的范围.【解答】解:(1)函数f(x)=lnx﹣的导数为f′(x)=﹣(x﹣1)=,(x>0),由f′(x)<0,可得x>,即有f(x)的单调减区间为(,+∞);(2)由题意可得﹣a=lnx﹣﹣(x﹣1)在(,e)上有两个实根,令h(x)=lnx﹣﹣(x﹣1),h′(x)=﹣(x﹣1)﹣1=,即有h(x)在(,1)递增,(1,e)递减,且h(1)=0,h()=﹣(1﹣)2﹣>h(e)=2﹣e﹣(e﹣1)2,由题意可得﹣(1﹣)2﹣<﹣a<0,解得0<a<(1﹣)2+;(3)由题意可得当x∈(1,x0)时,f(x)的图象恒在直线y=k(x﹣1)的上方,由f′(x)=﹣(x﹣1)=,(x>0),可得f(x)的增区间为(1,)减区间为(,+∞);直线y=k(x﹣1)为过定点(1,0)的直线.画出它们的图象,当直线与曲线y=f(x)相切时,切点为(1,0),可得k=f′(1)=1﹣(1﹣1)=1,通过直线绕着定点(1,0)旋转,可得k的取值范围是k≤1.【点评】本题考查导数的运用:求单调区间和极值、最值,考查函数方程的转化思想,以及不等式恒成立问题的解法,属于中档题.。
2017年江苏省扬州市高二(上)期末数学试卷(含答案解析).doc
2016-2017学年江苏省扬州市高二(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)命题“∃x>0,”的否定为.2.(5分)根据如图所示的伪代码,最后输出的S的值为.3.(5分)如图,四边形ABCD是一个5×4的方格纸,向此四边形内抛撒一粒小豆子,则小豆子恰好落在阴影部分内的概率为.4.(5分)抛物线y2=4x上横坐标为3的点P到焦点F的距离为.5.(5分)将参加环保知识竞赛的学生成绩整理后画出的频率分布直方图如图所示,则图中a的值为.6.(5分)函数的图象在x=1处的切线方程为.7.(5分)若双曲线的一条渐近线方程为,则m=.8.(5分)“a=3”是“直线2x+ay+1=0和直线(a﹣1)x+3y﹣2=0平行”的条件.(填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”)9.(5分)已知函数,若函数g(x)=f(x)﹣m有3个零点,则m的取值范围是.10.(5分)圆心在x轴上且与直线l:y=2x+1切于点P(0,1)的圆C的标准方程为.11.(5分)函数f(x)的定义域为R,且f(﹣3)=1,f'(x)>2,则不等式f (x)<2x+7的解集为.12.(5分)若直线与圆x2+y2=1没有公共点,则此直线倾斜角α的取值范围是.13.(5分)已知函数(a>0).若存在x0,使得f(x0)≥0成立,则a的最小值为.14.(5分)如图,椭圆的右焦点为F,过F的直线交椭圆于A,B两点,点C是点A关于原点O的对称点,若CF⊥AB且CF=AB,则椭圆的离心率为.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(14分)已知命题p:∀x∈R,x2+1≥m;命题q:方程表示双曲线.(1)若命题p为真命题,求实数m的取值范围;(2)若命题“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.16.(14分)某学校为了解学生的学习、生活等情况,决定召开一次学生座谈会.此学校各年级人数情况如表:(1)若按年级用分层抽样的方法抽取n 个人,其中高二年级22人,高三年级20人,再从这n 个人中随机抽取出1人,此人为高三年级的概率为,求x 、y的值.(2)若按性别用分层抽样的方法在高三年级抽取一个容量为5的样本,从这5人中任取2人,求至少有1人是男生的概率.17.(14分)在平面直角坐标系xOy 中,椭圆的左焦点为F (﹣1,0),左顶点为A ,上、下顶点分别为B ,C .(1)若直线BF 经过AC 中点M ,求椭圆E 的标准方程;(2)若直线BF 的斜率为1,BF 与椭圆的另一交点为D ,求点D 到椭圆E 右准线的距离.18.(16分)某公园内直线道路旁有一半径为10米的半圆形荒地(圆心O 在道路上,AB 为直径),现要在荒地的基础上改造出一处景观.在半圆上取一点C ,道路上B 点的右边取一点D ,使OC 垂直于CD ,且OD 的长不超过20米.在扇形区域AOC 内种植花卉,三角形区域OCD 内铺设草皮.已知种植花卉的费用每平方米为200元,铺设草皮的费用每平方米为100元.(1)设∠COD=x (单位:弧度),将总费用y 表示为x 的函数式,并指出x 的取值范围;(2)当x 为何值时,总费用最低?并求出最低费用.19.(16分)若圆C :x 2+y 2+Dx +Ey +F=0的半径为r ,圆心C 到直线l :Dx +Ey +F=0的距离为d ,其中D 2+E 2=F 2,且F >0.(1)求F 的取值范围;(2)求d2﹣r2的值;(3)是否存在定圆M既与直线l相切又与圆C相离?若存在,请写出定圆M的方程,并给出证明;若不存在,请说明理由.20.(16分)已知函数f(x)=lnx﹣a(x﹣1),g(x)=e x,其中e为自然对数的底数.(1)当a=1时,求函数y=f(x)的单调区间;(2)求函数y=f(x)在区间[1,e]上的值域;(3)若a>0,过原点分别作曲线y=f(x)、y=g(x)的切线l1、l2,且两切线的斜率互为倒数,求证:.2016-2017学年江苏省扬州市高二(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)命题“∃x>0,”的否定为∀x>0,.【解答】解:命题是特称命题,则命题的否定是全称命题,即∀x>0,,故答案为:∀x>0,2.(5分)根据如图所示的伪代码,最后输出的S的值为15.【解答】解:分析程序中各变量、各语句的作用,根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S=1+2+3+4+5的值;∵S=1+2+3+4+5=15,故输出的S值为15.故答案为:15.3.(5分)如图,四边形ABCD是一个5×4的方格纸,向此四边形内抛撒一粒小豆子,则小豆子恰好落在阴影部分内的概率为.【解答】解:由四边形ABCD是一个5×4的方格纸,知基本事件总数n=5×4=20个小方格,小豆子恰好落在阴影部分内包含怕小方格的个数m=4,∴小豆子恰好落在阴影部分内的概率p=.故答案为:.4.(5分)抛物线y2=4x上横坐标为3的点P到焦点F的距离为4.【解答】解:物线y2=4x上横坐标为3的点P到焦点F的距离为,就是这点到抛物线的准线的距离.抛物线的准线方程为:x=﹣1,所以抛物线y2=4x上横坐标为3的点P到焦点F的距离为=3﹣(﹣1)=4.故答案为:45.(5分)将参加环保知识竞赛的学生成绩整理后画出的频率分布直方图如图所示,则图中a的值为0.028.【解答】解:根据频率和为1,得(0.006+0.01+a+0.034+0.022)×10=1,解得a=0.028.故答案为:0.028.6.(5分)函数的图象在x=1处的切线方程为y=x+1.【解答】解:f′(x)=2x﹣,f(1)=2,f′(1)=1,故切线方程是:y﹣2=x﹣1,即:y=x+1,故答案为:y=x+1.7.(5分)若双曲线的一条渐近线方程为,则m=.【解答】解:双曲线的渐近线方程为y=±,由一条渐近线方程为,可得m=,故答案为:.8.(5分)“a=3”是“直线2x+ay+1=0和直线(a﹣1)x+3y﹣2=0平行”的充分不必要条件.(填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”)【解答】解:a=3时,2x+3y+1=0和2x+3y﹣2=0平行,是充分条件,若直线2x+ay+1=0和直线(a﹣1)x+3y﹣2=0平行,则=≠﹣,解得:a=3或a=﹣2,不是必要条件,故答案为:充分不必要.9.(5分)已知函数,若函数g(x)=f(x)﹣m有3个零点,则m的取值范围是(﹣,0).【解答】解:函数g(x)=f(x)﹣m有3个零点,即为f(x)=m有3个不同实数根.当x≥0时,f(x)=﹣2x≤0;当x<0时,f(x)=xe x,导数f′(x)=(1+x)e x,当﹣1<x<0时,f′(x)>0,f(x)递增;当x<﹣1时,f′(x)<0,f(x)递减.可得f(x)在x<0时由最小值,且为﹣.画出f(x)的图象,可得当﹣<m<0,函数f(x)和直线y=m有3个交点,函数g(x)=f(x)﹣m有3个零点.故答案为:(﹣,0).10.(5分)圆心在x轴上且与直线l:y=2x+1切于点P(0,1)的圆C的标准方程为(x﹣2)2+y2=5.【解答】解:设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∵圆心在x轴上,∴b=0,(1)∵与直线l:y=2x+1切于点P(0,1),∴=﹣,(2),由(1)、(2),得a=2,b=0,又∵P点在圆上,代入圆的方程得r2=5,∴所求圆的标准方程为(x﹣2)2+y2=5.故答案为(x﹣2)2+y2=5.11.(5分)函数f(x)的定义域为R,且f(﹣3)=1,f'(x)>2,则不等式f (x)<2x+7的解集为(﹣∞,﹣3).【解答】解:设F(x)=f(x)﹣(2x+7)=f(x)﹣2x﹣7,则F′(x)=f′(x)﹣2,∵f′(x)>2,∴F′(x)=f′(x)﹣2>0,∴F(x)=f(x)﹣2x﹣7在R上递增,∵f(﹣3)=1,∴F(﹣3)=f(﹣3)﹣2×(﹣3)﹣7=0,∵f(x)<2x+7,∴F(x)=f(x)﹣2x﹣7<0,∴x<﹣3,故答案为:(﹣∞,﹣3).12.(5分)若直线与圆x2+y2=1没有公共点,则此直线倾斜角α的取值范围是[0,)∪(,π).【解答】解:∵直线与圆x2+y2=1没有公共点,∴>1,∴k∈(﹣1,1),∴α∈[0,)∪(,π).故答案为:[0,)∪(,π).13.(5分)已知函数(a>0).若存在x0,使得f(x0)≥0成立,则a的最小值为16.【解答】解:若存在x0,使得f(x0)≥0成立,即存在x0∈(0,],使得≥0时成立,即存在x0∈(0,],使得﹣3x4+ax3﹣a2≥0成立,则函数g(x)=﹣3x4+ax3﹣a2(a>0)的x∈(0,]最大值大于等于0,∵g′(x)=﹣12x3+3ax2当x∈(0,)时,g′(x)>0当x∈(,]时,g′(x)<0当x=时,函数f(x)取最大值a﹣4,故a﹣4≥0,解得:a≥16,故答案为:1614.(5分)如图,椭圆的右焦点为F,过F的直线交椭圆于A,B两点,点C是点A关于原点O的对称点,若CF⊥AB且CF=AB,则椭圆的离心率为.【解答】解:作另一焦点F′,连接AF′和BF′和CF′,则四边形FAF′C为平行四边形,∴AF′=CF=AB,且AF′⊥AB,则三角形ABF′为等腰直角三角形,设AF′=AB=x,则,即,∴,在三角形AFF′中由勾股定理得(AF′)2+(AF)2=(2c)2,∴.则e=.故答案为:.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(14分)已知命题p:∀x∈R,x2+1≥m;命题q:方程表示双曲线.(1)若命题p为真命题,求实数m的取值范围;(2)若命题“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.【解答】解:(1)对于任意x∈R,x2+1≥1,若命题p为真命题,则(x2+1)min≥m,所以m≤1;…(5分)(2)若命题q为真命题,则(m﹣2)(m+2)<0,所以﹣2<m<2,…(8分)因为命题“p∨q”为真命题,“p∧q”为假命题,则p,q至少有一个假命题,所以p,q一个为真命题,一个为假命题.…(10分)当命题p为真命题,命题q 为假命题时,,则m≤﹣2,当命题p为假命题,命题q 为真命题时,,则1<m<2,综上,m≤﹣2或1<m<2.…(14分)16.(14分)某学校为了解学生的学习、生活等情况,决定召开一次学生座谈会.此学校各年级人数情况如表:(1)若按年级用分层抽样的方法抽取n个人,其中高二年级22人,高三年级20人,再从这n个人中随机抽取出1人,此人为高三年级的概率为,求x、y 的值.(2)若按性别用分层抽样的方法在高三年级抽取一个容量为5的样本,从这5人中任取2人,求至少有1人是男生的概率.【解答】解:(1)依题意得:,解得n=66.…(2分)所以高一年级被抽取的人数为66﹣22﹣20=24.所以,解得x=680,y=490.…(6分)(2)若用分层抽样的方法在高三年级抽取一个容量为5的样本,设抽取男生的人数为m,则,解得m=2,所以应抽取男生2人,女生3人,分别记作A1、A2;B1、B2、B3.…(8分)记“从中任取2人,至少有1人是男生”为事件A.从中任取2人的所有基本事件共10个:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中至少有1人为男生的基本事件有7个:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3).所以从中从中任取2人,至少有1人是男生的概率为.…(13分)∴至少有1人是男生的概率.…(14分)17.(14分)在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.【解答】解:(1)由题意,A(﹣a,0),B(0,b),C(0,﹣b),又F(﹣1,0),∴c=1,直线BF:y=bx+b.∵M为AC的中点,∴,代入直线BF:y=bx+b,得a=3,由a2=b2+c2=b2+1,得b2=8,∴椭圆E的标准方程是;(2)∵直线BF的斜率为1,则,∴椭圆,又直线BF :y=x +1,联立,解得x=0(舍),或,∵右准线的方程为x=2, ∴点D 到右准线的距离为.18.(16分)某公园内直线道路旁有一半径为10米的半圆形荒地(圆心O 在道路上,AB 为直径),现要在荒地的基础上改造出一处景观.在半圆上取一点C ,道路上B 点的右边取一点D ,使OC 垂直于CD ,且OD 的长不超过20米.在扇形区域AOC 内种植花卉,三角形区域OCD 内铺设草皮.已知种植花卉的费用每平方米为200元,铺设草皮的费用每平方米为100元.(1)设∠COD=x (单位:弧度),将总费用y 表示为x 的函数式,并指出x 的取值范围;(2)当x 为何值时,总费用最低?并求出最低费用.【解答】解:(1)因为扇形AOC 的半径为10 m ,∠AOC=π﹣x (rad ), 所以扇形AOC 的面积为,;…(3分)在Rt △COD 中,OC=10,CD=10tanx , 所以△COD 的面积为S △COD =•OC •CD=50tanx ;…(5分)所以y=100S △COD +200S 扇形AOC =5000(tanx +2π﹣2x ),;…(8分)(注:没有x 的范围,扣1分) (2)设,则,,令f'(x)=0,解得,…(11分)从而当时,f'(x)<0;当,f′(x)>0;因此f(x)在区间上单调递减;在区间上单调递增;当时,f(x)取得最小值,且;…(14分)所以y的最小值为(5000+7500π)元;…(15分)答:当时,改造景观的费用最低,最低费用为(5000+7500π)元.…(16分)19.(16分)若圆C:x2+y2+Dx+Ey+F=0的半径为r,圆心C到直线l:Dx+Ey+F=0的距离为d,其中D2+E2=F2,且F>0.(1)求F的取值范围;(2)求d2﹣r2的值;(3)是否存在定圆M既与直线l相切又与圆C相离?若存在,请写出定圆M的方程,并给出证明;若不存在,请说明理由.【解答】解:(1)方程x2+y2+Dx+Ey+F=0表示圆,则D2+E2>4F,又D2+E2=F2,且F>0,所以中F2>4F,且F>0,解得F>4;…(3分)(2)圆C:x2+y2+Dx+Ey+F=0的圆心为C(﹣,﹣),半径r==,圆心C到直线l的距离为d==||,所以d2﹣r2=﹣=1;…(8分)(3)存在定圆M:x2+y2=1满足题意,下证之:…(10分)1°因为M(0,0)到直线l的距离为=1=R,所以圆M与直线l相切;2°因为CM==,且R+1=+1,而>+1,即>,即4>0,故CM>R+1,所以圆M与圆C相离;由1°、2°得,存在定圆M:x2+y2=1满足题意.…(16分)20.(16分)已知函数f(x)=lnx﹣a(x﹣1),g(x)=e x,其中e为自然对数的底数.(1)当a=1时,求函数y=f(x)的单调区间;(2)求函数y=f(x)在区间[1,e]上的值域;(3)若a>0,过原点分别作曲线y=f(x)、y=g(x)的切线l1、l2,且两切线的斜率互为倒数,求证:.【解答】解:(1)当a=1时,f(x)=lnx﹣x+1,定义域为(0,+∞),.令f'(x)>0,得增区间为(0,1);令f'(x)<0,得减区间为(1,+∞).…(2分)(2).当时,f'(x)≥0,f(x)在[1,e]上为增函数,故f(1)≤f(x)≤f(e),从而f(x)的值域为[0,1+a﹣ae];当a≥1时,f'(x)≤0,f(x)在[1,e]上为减函数,故f(e)≤f(x)≤f(1),从而f(x)的值域为[1+a﹣ae,0];当时,时f'(x)>0,f(x)递增;时f'(x)<0,f(x)递减故f(x)的最大值为;最小值为f(1)与f(e)中更小的一个,当时f(e)≥f(1),最小值为f(1)=0;当时,f(e)<f(1),最小值为f(e)=1+a﹣ae.综上所述,当时,值域为[0,1+a﹣ae];当时,值域为[0,﹣lna﹣1+a];当时,值域为[1+a﹣ae,﹣lna﹣1+a];当a≥1时,值域为[1+a﹣ae,0].…(8分)(3)设切线l2对应切点为,切线方程为,将(0,0)代入,解得x0=1,,从而.设l1与曲线y=f(x)的切点为(x1,lnx1﹣a(x1﹣1)),,得①切线l1方程为,将(0,0)代入,得②将①代入②,得.令,则,m(x)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.若x1∈(0,1),由,,则.而在上单调递减,故;若x1∈(1,+∞),因m(x)在区间(1,+∞)上单调增,且m(e)=0,所以,与题设a>0矛盾,故不可能.综上所述,.…(16分)。
江苏省扬州市2017-2018学年度第一学期期末调研测试高三数学试题 及答案解析
2017—2018学年度第一学期期末检测试题高三数学第一部分一、填空题(本大题共14个小题,每小题5分,共70分.请将答案填写在答题卷相应的位置上)1.若集合{|13}A x x=<<,{0,1,2,3}B=,则A B=.2.若复数(2)(13)a i i-+(i是虚数单位)是纯虚数,则实数a的值为.3.若数据31,37,33,a,35的平均数是34,则这组数据的标准差是.4.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在7078()kg的人数为.5.运行下边的流程图,输出的结果是.6.从2名男生2名女生中任选两人,则恰有一男一女的概率为.7.若圆锥的侧面展开图的面积为3π且圆心角为23π的扇形,则此圆锥的体积为 .8.若实数x ,y 满足433412x y x y ≤⎧⎪≤⎨⎪+≥⎩,则22x y +的取值范围是 .9.已知各项都是正数的等比数列{}n a 的前n 项和为n S ,若44a ,3a ,56a 成等差数列,且2323a a =,则3S = .10.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的渐近线与圆22650x y y +-+=没有交点,则双曲线离心率的取值范围是 .11.已知函数14()sin 2xx f x x x -=-+,则关于x 的不等式2(1)(57)0f x f x -+-<的解集为 .12.已知正ABC ∆的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足1AP AQ ⋅=,则CQ 的最大值为 .13.已知函数12log (1)1,[1,]()21,(,]x x k f x x x k a -+-∈-⎧⎪=⎨⎪--∈⎩,若存在实数k 使得该函数的值域为[2,0]-,则实数a 的取值范围是 .14.已知正实数x ,y 满足22541x xy y +-=,则22128x xy y +-的最小值为 .二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.如图,在直三棱柱111ABC A B C -中,D ,E 分别为AB ,AC 的中点.(1)证明:11//B C 平面1A DE ;(2)若平面1A DE ⊥平面11ABB A ,证明:AB DE ⊥. 16.已知在ABC ∆中,6AB =,5BC =,且ABC ∆的面积为9. (1)求AC ;(2)当ABC ∆为锐角三角形时,求cos(2)6A π+的值.17.如图,射线OA 和OB 均为笔直的公路,扇形OPQ 区域(含边界)是一蔬菜种植园,其中P 、Q 分别在射线OA 和OB 上.经测量得,扇形OPQ 的圆心角(即POQ ∠)为23π、半径为1千米.为了方便菜农经营,打算在扇形OPQ 区域外修建一条公路MN ,分别与射线OA 、OB 交于M 、N 两点,并要求MN 与扇形弧PQ相切于点S .设POS α∠=(单位:弧度),假设所有公路的宽度均忽略不计.(1)试将公路MN 的长度表示为α的函数,并写出α的取值范围; (2)试确定α的值,使得公路MN 的长度最小,并求出其最小值.18.已知椭圆1E :22221(0)x y a b a b+=>>,若椭圆2E :22221(0,1)x y a b m ma mb+=>>>,则称椭圆2E 与椭圆1E “相似”.(1)求经过点,且与椭圆1E :2212x y += “相似”的椭圆2E 的方程;(2)若4m =,椭圆1E的离心率为2,P 在椭圆2E 上,过P 的直线l 交椭圆1E 于A ,B 两点,且AP AB λ=.①若B 的坐标为(0,2),且2λ=,求直线l 的方程;②若直线OP ,OA 的斜率之积为12-,求实数λ的值.19.已知函数()x f x e =,()g x ax b =+,,a b R ∈.(1)若(1)0g -=,且函数()g x 的图象是函数()f x 图象的一条切线,求实数a 的值;(2)若不等式2()f x x m >+对任意(0,)x ∈+∞恒成立,求实数m 的取值范围; (3)若对任意实数a ,函数()()()F x f x g x =-在(0,)+∞上总有零点,求实数b 的取值范围.20.已知各项都是正数的数列{}n a 的前n 项和为n S ,且22n n n S a a =+,数列{}n b 满足112b =,12n n n nbb b a +=+. (1)求数列{}n a 、{}n b 的通项公式; (2)设数列{}nc 满足2n n nb c S +=,求和12n c c c ++⋅⋅⋅+; (3)是否存在正整数p ,q ,()r p q r <<,使得p b ,q b ,r b 成等差数列?若存在,求出所有满足要求的p ,q ,r ,若不存在,说明理由.第二部分(加试部分)21. B .选修4-2:矩阵与变换已知x ,y R ∈,若点(1,1)M 在矩阵23x y ⎡⎤=⎢⎥⎣⎦A 对应的变换作用下得到点(3,5)N ,求矩阵A 的逆矩阵1A -.21. C .选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程是:2x m y ⎧=⎪⎪⎨⎪=⎪⎩(t 是参数,m 是常数).以O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为6cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于P 、Q 两点,且2PQ =,求实数m 的值. 22.扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.(1)求6名大学生中至少有1名被分配到甲学校实习的概率;(2)设X ,Y 分别表示分配到甲、乙两所中学的大学生人数,记X Y ξ=-,求随机变量ξ的分布列和数学期望.23.二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,n S 是所有n 位二进制数构成的集合,对于n a ,n n b S ∈,(,)n n M a b 表示n a 和n b 对应位置上数字不同的位置个数.例如当3100a =,3101b =时33(,)1M a b =,当3100a =,3111b =时33(,)2M a b =.(1)令510000a =,求所有满足55b S ∈,且55(,)2M a b =的5b 的个数; (2)给定(2)n a n ≥,对于集合n S 中的所有n b ,求(,)n n M a b 的和.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案第一部分一、填空题 1.{}2 2.6-3. 24. 2405.946.23 7. 38.144[,25]25 9.1327 10.3(1,)211.(2,3) 12.12 13. 1(,2]214. 73二、解答题15证明:⑴在直三棱柱111ABC A B C -中,四边形11B BCC 是平行四边形,所以11//B C BC ,在ABC ∆中,,D E 分别为,AB AC 的中点,故//BC DE ,所以11//B C DE , 又11B C ⊄平面1A DE ,DE ⊂平面1A DE , 所以11//B C 平面1A DE .⑵在平面11ABB A 内,过A 作1AF A D ⊥于F ,因为平面1A DE ⊥平面11A ABB ,平面1A DE 平面111A ABB A D=,AF ⊂平面11A ABB ,所以AF ⊥平面1A DE ,又DE ⊂平面1A DE ,所以AF DE ⊥,在直三棱柱111ABC A B C -中,1A A ⊥平面ABC ,DE ⊂平面ABC ,所以1A A DE ⊥, 因为1AF A A A= ,AF ⊂平面11A ABB ,1A A ⊂平面11A ABB ,所以DE ⊥平面11A ABB ,因为AB ⊂平面11A ABB ,所以DE AB ⊥.注:作1AF A D ⊥时要交代在平面内作或要交代垂足点,否则扣1分16 解:⑴因为S △ABC =1sin 92AB BC B =创,又AB=6,BC=5,所以3sin 5B =,又B (0,)π∈,所以4cos 5B ==±,当cosB=45时,AC == 当cosB=45-时,AC ===所以AC =注:少一解的扣3分⑵ 由ABC ∆为锐角三角形得B 为锐角,所以AB=6,,BC=5, 所以cosA ==又(0,)A π∈,所以sinA ==, 所以12sin 2213A ==,225cos 213A =-=-,所以cos(2)cos 2cos sin 2sin 666A A A p p p +=-.17. 解:⑴因为MN 与扇形弧PQ 相切于点S ,所以OS ⊥MN. 在RT OSM 中,因为OS=1,∠MOS=α,所以SM=tan α, 在RT OSN 中,∠NOS=23πα-,所以SN=2tan()3πα-,所以2tan tan()3MN παα=+-=,其中62ππα<<.⑵ 因为62ππα<<,所以10α->,令10t α=->,则tan 1)t α=+,所以42)MN t t=++,由基本不等式得2)MN ≥=, 当且仅当4t t=即2t =时取“=”.此时tan α=62ππα<<,故3πα=.答:⑴2tan tan()3MN παα=+-=,其中62ππα<<.⑵当3πα=时,MN 长度的最小值为.注:第⑵问中最小值对但定义域不对的扣2分.18解:⑴设椭圆2E 的方程为2212x y m m +=,代入点得2m =, 所以椭圆2E 的方程为22142x y +=.⑵因为椭圆1E 的离心率为2,故222a b =,所以椭圆2221:22E x y b +=, 又椭圆2E 与椭圆1E “相似”,且4m =,所以椭圆2221:28E x y b +=, 设112200(,),(,),(,)A x y B x y P x y ,①方法一:由题意得2b =,所以椭圆221:28E x y +=,将直线:2l y kx =+, 代入椭圆221:28E x y +=得22(12)80k x kx ++=,解得1228,012kx x k -==+,故212224,212k y y k -==+, 所以222824(,)1212k k A k k--++, 又2AP AB = ,即B 为AP 中点,所以2228212(,)1212k k P k k+++, 代入椭圆222:232E x y +=得222228212()2()321212k k k k ++=++,即4220430k k +-=,即22(103)(21)0k k -+=,所以10k =±,所以直线l 的方程为2y x =+. 方法二:由题意得2b =,所以椭圆221:28E x y +=,222:232E x y +=, 设(,),(0,2)A x y B ,则(,4)P x y --,代入椭圆得2222282(4)32x y x y ⎧+=⎪⎨+-=⎪⎩,解得12y =,故x =所以k =所以直线l 的方程为2y x =+.②方法一: 由题意得22222222200112228,22,22x y b x y b x y b +=+=+=,010112y y x x ⋅=-,即010120x x y y +=, AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩, 所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=. 方法二:不妨设点P 在第一象限,设直线:(0)O P y k x k =>,代入椭圆2222:28E x y b +=,解得0x =0y =,直线,O P O A的斜率之积为12-,则直线1:2O Ay x k=-,代入椭圆2221:22E x y b+=,解得1x =1y =,AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩,所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以2222282(((1)22b b b λλλ+-++-⋅=,即222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=.19解:(1)由(1)0g -=知,()g x 的图象直线过点(1,0)-,设切点坐标为00(,)T x y ,由'()x f x e =得切线方程是000()x x y e e x x -=-, 此直线过点(1,0)-,故000(1)x x e e x -=--,解得00x =,所以'(0)1a f ==.(2)由题意得2,(0,)x m e x x <-∈+∞恒成立, 令2(),(0,)x m x e x x =-∈+∞,则'()2x m x e x =-,再令()'()xn x m x e x ==-,则'()2xn x e =-,故当(0,ln 2)x ∈时,'()0n x <,()n x 单调递减;当(ln 2,)x ∈+∞时,'()0n x >,()n x 单调递增,从而()n x 在(0,)+∞上有最小值(ln 2)22ln 20n =->, 所以()m x 在(0,)+∞上单调递增, 所以(0)m m ≤,即1m ≤. 注:漏掉等号的扣2分.(3)若0a <,()()()x F x f x g x e ax b =-=--在(0,)+∞上单调递增, 故()()()F x f x g x =-在(0,)+∞上总有零点的必要条件是(0)0F <,即1b >, 以下证明当1b >时,()()()F x f x g x =-在(0,)+∞上总有零点. ①若0a <,由于(0)10F b =-<,()()0b baa b b F e a b e a a---=---=>,且()F x 在(0,)+∞上连续,故()F x 在(0,)ba-上必有零点; ②若0a ≥,(0)10F b =-<,由(2)知221x e x x >+>在(0,)x ∈+∞上恒成立, 取0x a b=+,则0()()a b F x F a b e a a b b +=+=-+-22()(1)0a b a ab b ab b b >+---=+->,由于(0)10F b =-<,()0F a b +>,且()F x 在(0,)+∞上连续, 故()F x 在(0,)a b +上必有零点, 综上得:实数b 的取值范围是(1,)+∞.20. 解:(1)22n n n S a a =+①,21112n n n S a a +++=+②,②-①得:221112n n n n n a a a a a +++=-+-,即11()(1)0n n n n a a a a +++--=, 因为{}n a 是正数数列,所以110n n a a +--=,即11n n a a +-=, 所以{}n a 是等差数列,其中公差为1, 在22n n n S a a =+中,令1n =,得11a =, 所以n a n =, 由12nn n nb b b a +=+得1112n n b b n n +=⋅+, 所以数列{}n b n 是等比数列,其中首项为12,公比为12,所以1(),22n n n n b nb n ==即. 注:也可累乘求{}n b 的通项. (2)2212()2n n n n b n c S n n +++==+,裂项得1112(1)2n n n c n n +=-⋅+, 所以121112(1)2n n c c c n ++++=-+ , (3)假设存在正整数,,()p q r p q r <<,使得,,p q r b b b 成等差数列,则2p r q b b b +=,即2222p r q p r q+=, 因为11111222n n n n n n n nb b ++++--=-=,所以数列{}n b 从第二项起单调递减, 当1p =时,12222r q r q+=,若2q =,则122r r =,此时无解; 若3q =,则124r r =,因为{}n b 从第二项起递减,故4r =,所以1,3,4p q r ===符合要求, 若4q ≥,则1142q b b b b ≥≥,即12q b b ≥,不符合要求,此时无解; 当2p ≥时,一定有1q p -=,否则若2q p -≥,则2442221p p qP b b p b b p p+≥==≥++,即2p q b b ≥,矛盾, 所以1q p -=,此时122r pr =,令1r p m -=+,则12m r +=,所以121m p m +=--,12m q m +=-,综上得:存在1,3,4p q r ===或121m p m +=--,12m q m +=-,12m r +=满足要求.第二部分(加试部分)答案21.A .解:因为1315⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A ,即213315x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即2335x y +=⎧⎨+=⎩,解得12x y =⎧⎨=⎩, 所以2132⎡⎤=⎢⎥⎣⎦A , 法1:设1a b c d -⎡⎤=⎢⎥⎣⎦A ,则121103201a b c d -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA ,即2132020321a c a c b d b d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩, 解得2132a b c d =⎧⎪=-⎪⎨=-⎪⎪=⎩,所以12132--⎡⎤=⎢⎥-⎣⎦A . 法2:因为1db a b ad bc ad bc c d c a ad bcad bc --⎡⎤⎢⎥⎡⎤--=⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥--⎣⎦,且21det()2213132==⨯-⨯=A , 所以1121213232---⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦A . 注:法2中没有交待逆矩阵公式而直接写结果的扣2分.B .解:(1)因为直线l 的参数方程是: 2x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数), 所以直线l 的普通方程为0x y m --=.因为曲线C 的极坐标方程为6cos ρθ=,故26cos ρρθ= ,所以226x y x += 所以曲线C 的直角坐标方程是22(3)9x y -+=.(2)设圆心到直线l 的距离为d,则d ==又d ==所以34m -=,即 1m =-或7m =.22.解:⑴记 “6名大学生中至少有1名被分配到甲学校实习” 为事件A ,则6163()=1264P A =-. 答:6名大学生中至少有1名被分配到甲学校实习的概率为6364. ⑵ξ所有可能取值是0,2,4,6,记“6名学生中恰有i 名被分到甲学校实习”为事件i A (01,6i = ,,),则3363365(0)()216C C P P A ξ====,2442646224246615(2)()()()2232C C C C P P A A P A P A ξ==+=+=+=,155165611515663(4)()()()2216C C C C P P A A P A P A ξ==+=+=+=,066066660606661(6)()()()2232C C C C P P A A P A P A ξ==+=+=+=,所以随机变量ξ的概率分布为:所以随机变量ξ的数学期望()024+6163216328E ξ=⨯+⨯+⨯⨯=.答:随机变量ξ的数学期望15()8E ξ=. 23.解(1)因为55(,)2M a b =,所以5b 为5位数且与5a 有2项不同,又因为首项为1,故5a 与5b 在后四项中有两项不同,所以5b 的个数为246C =.(2)当(,)n n M a b =0时,n b 的个数为01n C -; 当(,)n n M a b =1时,n b 的个数为11n C -, 当(,)n n M a b =2时,n b 的个数为21n C -,………当(,)n 1n n M a b =-时,n b 的个数为11n n C --,设(,)n n M a b 的和为S , 则01211111012(1)n n n n n S C C C n C -----=++++- , 倒序得12101111(1)210n n n n n S n C C C C -----=-++++ ,倒序相加得01111112(1)[](1)2n n n n n S n C C C n -----=-++=-⋅ ,即2(1)2n S n -=-⋅, 所以(,)n n M a b 的和为2(1)2n n --⋅.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案2018.2第一部分1.2.3.4.5.6.7.8.9. 10.11.12.13.14.15证明:⑴在直三棱柱中,四边形是平行四边形,所以,.………2分在中,分别为的中点,故,所以, (4)分又平面,平面,所以平面.………7分⑵在平面内,过作于,因为平面平面,平面平面,平面,所以平面,.………11分又平面,所以,在直三棱柱中,平面,平面,所以,因为,平面,平面,所以平面,因为平面,所以。
2016-2017学年江苏省扬州市高二(上)期末数学试卷及参考答案与解析
2016-2017学年江苏省扬州市高二(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)命题“∃x>0,”的否定为.2.(5分)根据如图所示的伪代码,最后输出的S的值为.3.(5分)如图,四边形ABCD是一个5×4的方格纸,向此四边形内抛撒一粒小豆子,则小豆子恰好落在阴影部分内的概率为.4.(5分)抛物线y2=4x上横坐标为3的点P到焦点F的距离为.5.(5分)将参加环保知识竞赛的学生成绩整理后画出的频率分布直方图如图所示,则图中a的值为.6.(5分)函数的图象在x=1处的切线方程为.7.(5分)若双曲线的一条渐近线方程为,则m=.8.(5分)“a=3”是“直线2x+ay+1=0和直线(a﹣1)x+3y﹣2=0平行”的条件.(填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”)9.(5分)已知函数,若函数g(x)=f(x)﹣m有3个零点,则m的取值范围是.10.(5分)圆心在x轴上且与直线l:y=2x+1切于点P(0,1)的圆C的标准方程为.11.(5分)函数f(x)的定义域为R,且f(﹣3)=1,f'(x)>2,则不等式f(x)<2x+7的解集为.12.(5分)若直线与圆x2+y2=1没有公共点,则此直线倾斜角α的取值范围是.13.(5分)已知函数(a>0).若存在x0,使得f(x0)≥0成立,则a 的最小值为.14.(5分)如图,椭圆的右焦点为F,过F的直线交椭圆于A,B两点,点C是点A关于原点O的对称点,若CF⊥AB且CF=AB,则椭圆的离心率为.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(14分)已知命题p:∀x∈R,x2+1≥m;命题q:方程表示双曲线.(1)若命题p为真命题,求实数m的取值范围;(2)若命题“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.16.(14分)某学校为了解学生的学习、生活等情况,决定召开一次学生座谈会.此学校各年级人数情况如表:(1)若按年级用分层抽样的方法抽取n个人,其中高二年级22人,高三年级20人,再从这n个人中随机抽取出1人,此人为高三年级的概率为,求x、y的值.(2)若按性别用分层抽样的方法在高三年级抽取一个容量为5的样本,从这5人中任取2人,求至少有1人是男生的概率.17.(14分)在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.18.(16分)某公园内直线道路旁有一半径为10米的半圆形荒地(圆心O在道路上,AB为直径),现要在荒地的基础上改造出一处景观.在半圆上取一点C,道路上B 点的右边取一点D,使OC垂直于CD,且OD的长不超过20米.在扇形区域AOC 内种植花卉,三角形区域OCD内铺设草皮.已知种植花卉的费用每平方米为200元,铺设草皮的费用每平方米为100元.(1)设∠COD=x(单位:弧度),将总费用y表示为x的函数式,并指出x的取值范围;(2)当x为何值时,总费用最低?并求出最低费用.19.(16分)若圆C:x2+y2+Dx+Ey+F=0的半径为r,圆心C到直线l:Dx+Ey+F=0的距离为d,其中D2+E2=F2,且F>0.(1)求F的取值范围;(2)求d2﹣r2的值;(3)是否存在定圆M既与直线l相切又与圆C相离?若存在,请写出定圆M的方程,并给出证明;若不存在,请说明理由.20.(16分)已知函数f(x)=lnx﹣a(x﹣1),g(x)=e x,其中e为自然对数的底数.(1)当a=1时,求函数y=f(x)的单调区间;(2)求函数y=f(x)在区间[1,e]上的值域;(3)若a>0,过原点分别作曲线y=f(x)、y=g(x)的切线l1、l2,且两切线的斜率互为倒数,求证:.2016-2017学年江苏省扬州市高二(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)命题“∃x>0,”的否定为∀x>0,.【解答】解:命题是特称命题,则命题的否定是全称命题,即∀x>0,,故答案为:∀x>0,2.(5分)根据如图所示的伪代码,最后输出的S的值为15.【解答】解:分析程序中各变量、各语句的作用,根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S=1+2+3+4+5的值;∵S=1+2+3+4+5=15,故输出的S值为15.故答案为:15.3.(5分)如图,四边形ABCD是一个5×4的方格纸,向此四边形内抛撒一粒小豆子,则小豆子恰好落在阴影部分内的概率为.【解答】解:由四边形ABCD是一个5×4的方格纸,知基本事件总数n=5×4=20个小方格,小豆子恰好落在阴影部分内包含怕小方格的个数m=4,∴小豆子恰好落在阴影部分内的概率p=.故答案为:.4.(5分)抛物线y2=4x上横坐标为3的点P到焦点F的距离为4.【解答】解:物线y2=4x上横坐标为3的点P到焦点F的距离为,就是这点到抛物线的准线的距离.抛物线的准线方程为:x=﹣1,所以抛物线y2=4x上横坐标为3的点P到焦点F的距离为=3﹣(﹣1)=4.故答案为:45.(5分)将参加环保知识竞赛的学生成绩整理后画出的频率分布直方图如图所示,则图中a的值为0.028.【解答】解:根据频率和为1,得(0.006+0.01+a+0.034+0.022)×10=1,解得a=0.028.故答案为:0.028.6.(5分)函数的图象在x=1处的切线方程为y=x+1.【解答】解:f′(x)=2x﹣,f(1)=2,f′(1)=1,故切线方程是:y﹣2=x﹣1,即:y=x+1,故答案为:y=x+1.7.(5分)若双曲线的一条渐近线方程为,则m=.【解答】解:双曲线的渐近线方程为y=±,由一条渐近线方程为,可得m=,故答案为:.8.(5分)“a=3”是“直线2x+ay+1=0和直线(a﹣1)x+3y﹣2=0平行”的充分不必要条件.(填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”)【解答】解:a=3时,2x+3y+1=0和2x+3y﹣2=0平行,是充分条件,若直线2x+ay+1=0和直线(a﹣1)x+3y﹣2=0平行,则=≠﹣,解得:a=3或a=﹣2,不是必要条件,故答案为:充分不必要.9.(5分)已知函数,若函数g(x)=f(x)﹣m有3个零点,则m的取值范围是(﹣,0).【解答】解:函数g(x)=f(x)﹣m有3个零点,即为f(x)=m有3个不同实数根.当x≥0时,f(x)=﹣2x≤0;当x<0时,f(x)=xe x,导数f′(x)=(1+x)e x,当﹣1<x<0时,f′(x)>0,f(x)递增;当x<﹣1时,f′(x)<0,f(x)递减.可得f(x)在x<0时由最小值,且为﹣.画出f(x)的图象,可得当﹣<m<0,函数f(x)和直线y=m有3个交点,函数g(x)=f(x)﹣m有3个零点.故答案为:(﹣,0).10.(5分)圆心在x轴上且与直线l:y=2x+1切于点P(0,1)的圆C的标准方程为(x ﹣2)2+y2=5.【解答】解:设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∵圆心在x轴上,∴b=0,(1)∵与直线l:y=2x+1切于点P(0,1),∴=﹣,(2),由(1)、(2),得a=2,b=0,又∵P点在圆上,代入圆的方程得r2=5,∴所求圆的标准方程为(x﹣2)2+y2=5.故答案为(x﹣2)2+y2=5.11.(5分)函数f(x)的定义域为R,且f(﹣3)=1,f'(x)>2,则不等式f(x)<2x+7的解集为(﹣∞,﹣3).【解答】解:设F(x)=f(x)﹣(2x+7)=f(x)﹣2x﹣7,则F′(x)=f′(x)﹣2,∵f′(x)>2,∴F′(x)=f′(x)﹣2>0,∴F(x)=f(x)﹣2x﹣7在R上递增,∵f(﹣3)=1,∴F(﹣3)=f(﹣3)﹣2×(﹣3)﹣7=0,∵f(x)<2x+7,∴F(x)=f(x)﹣2x﹣7<0,∴x<﹣3,故答案为:(﹣∞,﹣3).12.(5分)若直线与圆x2+y2=1没有公共点,则此直线倾斜角α的取值范围是[0,)∪(,π).【解答】解:∵直线与圆x2+y2=1没有公共点,∴>1,∴k∈(﹣1,1),∴α∈[0,)∪(,π).故答案为:[0,)∪(,π).13.(5分)已知函数(a>0).若存在x0,使得f(x0)≥0成立,则a 的最小值为16.【解答】解:若存在x0,使得f(x0)≥0成立,即存在x0∈(0,],使得≥0时成立,即存在x0∈(0,],使得﹣3x4+ax3﹣a2≥0成立,则函数g(x)=﹣3x4+ax3﹣a2(a>0)的x∈(0,]最大值大于等于0,∵g′(x)=﹣12x3+3ax2当x∈(0,)时,g′(x)>0当x∈(,]时,g′(x)<0当x=时,函数f(x)取最大值a﹣4,故a﹣4≥0,解得:a≥16,故答案为:1614.(5分)如图,椭圆的右焦点为F,过F的直线交椭圆于A,B两点,点C是点A关于原点O的对称点,若CF⊥AB且CF=AB,则椭圆的离心率为.【解答】解:作另一焦点F′,连接AF′和BF′和CF′,则四边形FAF′C为平行四边形,∴AF′=CF=AB,且AF′⊥AB,则三角形ABF′为等腰直角三角形,设AF′=AB=x,则,即,∴,在三角形AFF′中由勾股定理得(AF′)2+(AF)2=(2c)2,∴.则e=.故答案为:.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(14分)已知命题p:∀x∈R,x2+1≥m;命题q :方程表示双曲线.(1)若命题p为真命题,求实数m的取值范围;(2)若命题“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.【解答】解:(1)对于任意x∈R,x2+1≥1,若命题p为真命题,则(x2+1)min≥m,所以m≤1;…(5分)(2)若命题q为真命题,则(m﹣2)(m+2)<0,所以﹣2<m<2,…(8分)因为命题“p∨q”为真命题,“p∧q”为假命题,则p,q至少有一个假命题,所以p,q一个为真命题,一个为假命题.…(10分)当命题p为真命题,命题q 为假命题时,,则m≤﹣2,当命题p为假命题,命题q 为真命题时,,则1<m<2,综上,m≤﹣2或1<m<2.…(14分)16.(14分)某学校为了解学生的学习、生活等情况,决定召开一次学生座谈会.此学校各年级人数情况如表:(1)若按年级用分层抽样的方法抽取n个人,其中高二年级22人,高三年级20人,再从这n个人中随机抽取出1人,此人为高三年级的概率为,求x、y的值.(2)若按性别用分层抽样的方法在高三年级抽取一个容量为5的样本,从这5人中任取2人,求至少有1人是男生的概率.【解答】解:(1)依题意得:,解得n=66.…(2分)所以高一年级被抽取的人数为66﹣22﹣20=24.所以,解得x=680,y=490.…(6分)(2)若用分层抽样的方法在高三年级抽取一个容量为5的样本,设抽取男生的人数为m,则,解得m=2,所以应抽取男生2人,女生3人,分别记作A1、A2;B1、B2、B3.…(8分)记“从中任取2人,至少有1人是男生”为事件A.从中任取2人的所有基本事件共10个:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中至少有1人为男生的基本事件有7个:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3).所以从中从中任取2人,至少有1人是男生的概率为.…(13分)∴至少有1人是男生的概率.…(14分)17.(14分)在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.【解答】解:(1)由题意,A(﹣a,0),B(0,b),C(0,﹣b),又F(﹣1,0),∴c=1,直线BF:y=bx+b.∵M为AC的中点,∴,代入直线BF:y=bx+b,得a=3,由a2=b2+c2=b2+1,得b2=8,∴椭圆E的标准方程是;(2)∵直线BF的斜率为1,则,∴椭圆,又直线BF :y=x +1,联立,解得x=0(舍),或,∵右准线的方程为x=2, ∴点D 到右准线的距离为.18.(16分)某公园内直线道路旁有一半径为10米的半圆形荒地(圆心O 在道路上,AB 为直径),现要在荒地的基础上改造出一处景观.在半圆上取一点C ,道路上B 点的右边取一点D ,使OC 垂直于CD ,且OD 的长不超过20米.在扇形区域AOC 内种植花卉,三角形区域OCD 内铺设草皮.已知种植花卉的费用每平方米为200元,铺设草皮的费用每平方米为100元.(1)设∠COD=x(单位:弧度),将总费用y 表示为x 的函数式,并指出x 的取值范围;(2)当x 为何值时,总费用最低?并求出最低费用.【解答】解:(1)因为扇形AOC 的半径为10 m ,∠AOC=π﹣x(rad), 所以扇形AOC 的面积为,;…(3分)在Rt △COD 中,OC=10,CD=10tanx , 所以△COD 的面积为S △COD =•OC•CD=50tanx ;…(5分)所以y=100S △COD +200S 扇形AOC =5000(tanx +2π﹣2x),;…(8分)(注:没有x 的范围,扣1分) (2)设,则,,令f'(x)=0,解得,…(11分)从而当时,f'(x)<0;当,f′(x)>0;因此f(x)在区间上单调递减;在区间上单调递增;当时,f(x)取得最小值,且;…(14分)所以y的最小值为(5000+7500π)元;…(15分)答:当时,改造景观的费用最低,最低费用为(5000+7500π)元. …(16分)19.(16分)若圆C:x2+y2+Dx+Ey+F=0的半径为r,圆心C到直线l:Dx+Ey+F=0的距离为d,其中D2+E2=F2,且F>0.(1)求F的取值范围;(2)求d2﹣r2的值;(3)是否存在定圆M既与直线l相切又与圆C相离?若存在,请写出定圆M的方程,并给出证明;若不存在,请说明理由.【解答】解:(1)方程x2+y2+Dx+Ey+F=0表示圆,则D2+E2>4F,又D2+E2=F2,且F>0,所以中F2>4F,且F>0,解得F>4;…(3分)(2)圆C:x2+y2+Dx+Ey+F=0的圆心为C(﹣,﹣),半径r==,圆心C到直线l的距离为d==||,所以d2﹣r2=﹣=1;…(8分)(3)存在定圆M:x2+y2=1满足题意,下证之:…(10分)1°因为M(0,0)到直线l的距离为=1=R,所以圆M与直线l相切;2°因为CM==,且R+1=+1,而>+1,即>,即4>0,故CM>R+1,所以圆M与圆C相离;由1°、2°得,存在定圆M:x2+y2=1满足题意. …(16分)20.(16分)已知函数f(x)=lnx﹣a(x﹣1),g(x)=e x,其中e为自然对数的底数.(1)当a=1时,求函数y=f(x)的单调区间;(2)求函数y=f(x)在区间[1,e]上的值域;(3)若a>0,过原点分别作曲线y=f(x)、y=g(x)的切线l1、l2,且两切线的斜率互为倒数,求证:.【解答】解:(1)当a=1时,f(x)=lnx﹣x+1,定义域为(0,+∞),.令f'(x)>0,得增区间为(0,1);令f'(x)<0,得减区间为(1,+∞).…(2分) (2).当时,f'(x)≥0,f(x)在[1,e]上为增函数,故f(1)≤f(x)≤f(e),从而f(x)的值域为[0,1+a﹣ae];当a≥1时,f'(x)≤0,f(x)在[1,e]上为减函数,故f(e)≤f(x)≤f(1),从而f(x)的值域为[1+a﹣ae,0];当时,时f'(x)>0,f(x)递增;时f'(x)<0,f(x)递减故f(x)的最大值为;最小值为f(1)与f(e)中更小的一个,当时f(e)≥f(1),最小值为f(1)=0;当时,f(e)<f(1),最小值为f(e)=1+a﹣ae.综上所述,当时,值域为[0,1+a﹣ae];当时,值域为[0,﹣lna﹣1+a];当时,值域为[1+a﹣ae,﹣lna﹣1+a];当a≥1时,值域为[1+a﹣ae,0]. …(8分)(3)设切线l2对应切点为,切线方程为,将(0,0)代入,解得x0=1,,从而.设l1与曲线y=f(x)的切点为(x1,lnx1﹣a(x1﹣1)),,得①切线l1方程为,将(0,0)代入,得②将①代入②,得.令,则,m(x)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.若x1∈(0,1),由,,则.而在上单调递减,故;若x1∈(1,+∞),因m(x)在区间(1,+∞)上单调增,且m(e)=0,所以,与题设a>0矛盾,故不可能.综上所述,.…(16分)。
江苏省扬州中学2017-2018学年高二上学期期末考试数学答案
扬州市2017—2018学年度第一学期期末检测试题 高 二 数 学 参 考 答 案 2018.11.x ∀∈R ,210x -≥ 2.1- 3.(1,0) 4.y x = 5. 14π-6.45 7.1158.(,4)-∞ 9.4 10.221y x -= 11.(,2)-∞ 12.[1,5] 13.1215.解:(1)p 真:椭圆2215x y a+=的焦点在x 轴上 ∴05a << …………5分(2)∵“p 或q ”为真命题、“p 且q ”为假命题 ∴p 真q 假或p 假q 真………………7分q 真:∵关于x 的不等式23230x ax ++≥在R 上恒成立∴2(2)4330a ∆=-⨯⨯≤,解得:33a -≤≤ ……………………11分 ∴0533a a a <<⎧⎨<->⎩或或0533a a a ≤≥⎧⎨-≤≤⎩或 解得:35a <<或30a -≤≤∴实数a 的取值范围是35a <<或30a -≤≤. ……………………14分 16.解:(1)①22;②14;③0.28; ……………………3分 (2)650.20750.44850.28950.0877.4⨯+⨯+⨯+⨯=; ……………………8分 (3)记“甲同学被抽取到”为事件A ,设四名学生为甲、乙、丙、丁,则总的基本事件为: 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,共6个基本事件;满足事件A 的基本事件:甲乙、 甲丙、甲丁,共3个基本事件,则1()2P A =……………………13分 答:此次数学史初赛的平均成绩为77.4,甲同学被抽取到的概率为12.……………………14分 17.解:(1)设(0,)C m ,0m >∵直线4390x y --=圆C 相切,且圆C 的半径为3∴|39|35m --=,解得2m =或8m =- ∵0m > ∴2m = ……………………5分 ∴圆C 的方程为:22(2)9x y +-=; ……………………7分 (2)若直线AB 的斜率不存在,则直线:1AB x =∴AB =,不符合题意,舍; 若直线AB 的斜率存在,设AB :(1)y k x =-∵4AB = ∴点C 到直线:0AB kx y k --==化简得:24410k k -+= ∴12k =……………………9分 联立方程:221(1)2(2)9y x x y ⎧=-⎪⎨⎪+-=⎩,消去y 得:2510110x x --=∴12115x x =- ……14分18.解:(1)当1a =时,22(1)1xe M x x x =>-+,∴222(1)(2)'(1)x x x e M x x --=-+……………………3分 列表得:…………………6分∴M 在(1,2)上单调减,在(2,)+∞上单调增 ∴M 在2x =时取最小值;……………………8分(2)∵222(1)(2)'(0)(1)xa x x e M a x x --=>-+ 根据(1)知:M 在(1,2)上单调减,在(2,)+∞上单调增 ∵确保恰好..3年不需要进行保护 ∴43444(1)22(3)72(4)13M e e ae M e ae M e ⎧=≤⎪⎪⎪=≤⎨⎪⎪=>⎪⎩,解得:13722e a <≤ 答:实数a 的取值范围为137(,]22e. ……………………16分19.解:(1)∵椭圆的右准线方程为2x = ∴22a c = ∴a = ∴21,2c a == ∴21b = ∴椭圆的方程为:2212x y+=; ………………6分(2)方法(一)设点00(,)P x y ,则220012x y +=,((0,1)A B ,即220022x y +=.当00x=时,(0,1)P -,则(0,0)M ,(0,1)N -∴2AM BN ⋅==分 ∵点P 异于点A ∴0x ≠当0x ≠00x ≠时,设直线AP方程为:y x =,它与y 轴交于点N直线BP方程为:0011y y x x -=+,它与x轴交于点00(,0)1x M y --∴000|1x AM y =-=-,|1BN ==…………12分∴0||AM BN ⋅==== ……………………16分方法(二)若直线BP 斜率不存在,则直线BP 方程为:0x =,此时(0,1)P -,则(0,0)M ,(0,1)N -∴2AM BN ⋅==………………8分 若直线BP 斜率存在,设直线BP 方程为:1y kx =+,且0k ≠∴1(,0)M k-且1||AM k =-= ………………10分 则联立方程:22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 得:22(21)40k x kx ++=,解得: 10x =或22421k x k =-+, 即点222421(,)2121k k P k k -+-++ ∵点P 异于点A∴k ≠∴2222121421APk k k k k -++===-++∴直线AP的方程为:y x =+,则(0,N且|1BN == ………………14分∴||AM BN ⋅=⨯= ………………16分 20.解:(1)当1a =时,()ln f x x x =- ∴()11'1x f x-=-=,令()'0f x =,则1x =,列表得:∴()f x 有极小值()11f =,无极大值; ……………………3分 (2)()2ln g x ax x x =--,0x >∴()2121'2x ax g x a x x x-+-=--=,设2()21G x x ax =-+-①当0a ≤时,()0G x <恒成立,即()'0g x <恒成立,∴()g x 在(0,)+∞上单调减;②当0a >且280a ∆=-≤,即0a <≤()'0G x ≤恒成立,且不恒为0,则()'0g x ≤恒成立,且不恒为0,∴()g x 在(0,)+∞上单调减; ③当0a >且280a ∆=->,即a >时,()0G x =有两个实数根:12x x =,且121210,022a x x x x +=>=>∴120x x >> ∴当20x x <<或1x x >时,()0G x <,'()0g x <;当21x x x <<时,()0G x >,'()0g x >;∴()g x在和)+∞上单调减,在上单调增.∴综上:当a ≤时,()g x 在(0,)+∞上单调减;当a >时,()g x在和)+∞上单调减,在上单调增. ……………………7分(3)2()ln h x ax x x =-+,1'()2h x a x x=-+,问题即为判断0'()h x 的符号. ∵函数2()()h x f x x =+的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<∴21112222ln 0ln 0ax x x ax x x ⎧-+=⎪⎨-+=⎪⎩ 两式相减得:22121212()(ln ln )()0a x x x x x x ---+-=∴121212ln ln ()x x a x x x x -=-+- ……………………9分∴01212121'()'()2()h x h x x a x x x x =+=-+++λμλμλμ121212121212121212ln ln ln ln 11()2()(21)()x x x x x x x x x x x x x x x x x x --=-+-++=+----+-+λμλλμλμ∵0≥>μλ且1+=λμ ∴210-≤λ ∵120x x << ∴12(21)()0x x --≥λ………………11分 研究:121212ln ln 1x x x x x x ---+λμ的符号,即判断112212ln x x x x x x --+λμ的符号.令12,(0,1)x t t x =∈,1122121ln ln x x x t t x x x t ---=-++λμλμ,设1()ln ,(0,1)t H t t t t -=-∈+λμ∴2222221()(1)11(21)'()()()()t t t t H t t t t t t t +--+-+=-=-=+++λμλλλμμλμλμλμ方法(一)设222()(21)F t t t =+-+λλμμ,其对称轴为:2221212(1)1211222t ----===+≥λμλλλλλλ∴()F t 在(0,1)上单调减,则222()(1)21()10F t F >=+-+=+-=λλμμλμ,即'()0H t >在(0,1)上恒成立 ∴()H t 在(0,1)上单调增 ∴()(1)0H t H <=,即112212ln 0x x x x x x --<+λμ ……………14分∵120x x -< ∴121212ln ln 10x x x x x x -->-+λμ∴12121212ln ln 1(21)()0x x x x x x x x -+--->-+λλμ,即0'()0h x >∴在点00(,())M x h x 处的切线斜率为正. ……………………16分方法(二)2222222(21)(1)()'()()()t t t t H t t t t t +-+--==++λλμμλμλμλμ ∵0≥>μλ,01t << ∴2210,0t t -<-<λμ ∴'()0H t >在(0,1)上恒成立 ∴()H t 在(0,1)上单调增 ∴()(1)0H t H <=,即112212ln 0x x x x x x --<+λμ ……………14分 ∵120x x -< ∴121212ln ln 10x x x x x x -->-+λμ∴12121212ln ln 1(21)()0x x x x x x x x -+--->-+λλμ,即0'()0h x >∴在点00(,())M x h x 处的切线斜率为正. ……………………16分。
最新扬州市-高二上期末数学试题及答案
扬州市2017—2018学年度第一学期期末检测试题高 二 数 学2018.1(满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.命题“x ∃∈R ,210x -<”的否定是 ▲ . 2.直线210x y ++=在y 轴上的截距为 ▲ . 3.抛物线24y x =的焦点坐标为 ▲ .5.在边长为2的正方形内随机取一点,取到的点到正方形中心的距离大于1的概率为 ▲ . 6.某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为n 的样本.已知从高三学生中抽取的人数为10,那么n = ▲ . 7.执行如图所示的程序框图,输出的s 值为 ▲ .8.已知函数ln(4)y x =-的定义域为A ,集合{|}B x x a =>,若x A ∈是x B ∈的充分不必要条件,则实数a 的取值范围为 ▲ .9. 已知椭圆22:1x y C +=上的点M 到右焦点的距离为2,则点M 到左准线的距离为 ▲ .11.已知函数()f x 的定义域为R ,'()f x 是()f x 的导函数,且(2)3f =,'()1f x <,则不等式()1f x x >+的解集为 ▲ .12.已知(4,0)A ,(1,0)B ,动点P 满足2PA PB =.设点P 到点(3,0)C -的距离为d ,则d 的取值范围为 ▲ .13.斜率为13直线l 经过椭圆22221(0)x y a b a b +=>>的左顶点A ,且与椭圆交于另一个点B ,若在y轴上存在点C 使得ABC △是以点C 为直角顶点的等腰直角三角形,则该椭圆的离心率 为 ▲ . 14. 已知函数2()|3|f x x x a =-在[0,2]x ∈的值域为[0,4]m ,则实数m 的最小值为 ▲ . 二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本题满分14分)已知命题p :“椭圆2215x y a+=的焦点在x 轴上”;命题q :“关于x 的不等式23230x ax ++≥在R 上恒成立”.(1)若命题p 为真命题,求实数a 的取值范围;(2) 若命题“p 或q ”为真命题、“p 且q ”为假命题,求实数a 的取值范围. 16.(本题满分14分)为了让学生更多地了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音” 的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如(1)填充上述表中的空格(在解答中直接写出对应空格序号的答案); (2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩;(3)甲同学的初赛成绩在[90,100],学校为了宣传班级的学习经验,随机抽取分数在[90,100]的4位同学中的两位同学到学校其他班级介绍,求甲同学被抽取到的概率.17.(本题满分14分)已知圆C 的半径为3,圆心在y 轴正半轴上,直线4390x y --=圆C 相切. (1)求圆C 的方程;(2)过点(1,0)Q 的直线l 与圆C 交于不同的两点1122(,),(,)A x y B x y 且4AB =,求12x x 的值. 18.(本题满分16分)某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量y (万只)与时间x (年)(其中*x N ∈)的关系为2x y e =.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值21ayM x x =-+(其中a 为常数,且0a >)来进行生态环境分析. (1)当1a =时,求比值M 取最小值时x 的值; (2)经过调查,环保部门发现:当比值M 不超过4e 时不需要进行环境防护.为确保恰好..3年不需要进行保护,求实数a 的取值范围.(e 为自然对数的底, 2.71828e =L )19.(本题满分16分)已知椭圆:E 22221(0)x y a b a b+=>>的右准线方程为2x =,椭圆的左顶点为A ,上顶点为B ,点P 为椭圆上异于,A B 任意一点.(1)求椭圆的方程;(2)若直线BP 与x 轴交于点M ,直线AP 与y 轴交于点N ,求证:AM BN ⋅为定值. 20.(本题满分16分)已知:函数()ln f x ax x =-. (1)当1a =时,求函数()y f x =的极值;(2)若函数()()2g x f x x =-,讨论()y g x =的单调性;(3)若函数2()()h x f x x =+的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<.设012x x x λμ=+,其中常数λ、μ满足条件1λμ+=,且0≥>μλ.试判断在点00(,())M x h x 处的切线斜率的正负,并说明理由.扬州市2017—2018学年度第一学期期末检测试题高 二 数 学 参 考 答 案 2018.11.x ∀∈R ,210x -≥ 2.1- 3.(1,0) 4.y x = 5. 14π-6.45 7.1158.(,4)-∞ 9.4 10.221y x -= 11.(,2)-∞ 12.[1,5] 1314.1215.解:(1)p 真:椭圆2215x y a+=的焦点在x 轴上 ∴05a << …………5分(2)∵“p 或q ”为真命题、“p 且q ”为假命题 ∴p 真q 假或p 假q 真………………7分q 真:∵关于x 的不等式23230x ax ++≥在R 上恒成立∴2(2)4330a ∆=-⨯⨯≤,解得:33a -≤≤ ……………………11分 ∴0533a a a <<⎧⎨<->⎩或或0533a a a ≤≥⎧⎨-≤≤⎩或 解得:35a <<或30a -≤≤∴实数a 的取值范围是35a <<或30a -≤≤. ……………………14分 16.解:(1)①22;②14;③0.28; ……………………3分 (2)650.20750.44850.28950.0877.4⨯+⨯+⨯+⨯=; ……………………8分 (3)记“甲同学被抽取到”为事件A ,设四名学生为甲、乙、丙、丁,则总的基本事件为: 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,共6个基本事件;满足事件A 的基本事件:甲乙、甲丙、甲丁,共3个基本事件,则1()2P A = ……………………13分答:此次数学史初赛的平均成绩为77.4,甲同学被抽取到的概率为12.……………………14分 17.解:(1)设(0,)C m ,0m >∵直线4390x y --=圆C 相切,且圆C 的半径为3 ∴|39|35m --=,解得2m =或8m =- ∵0m > ∴2m = ……………………5分 ∴圆C 的方程为:22(2)9x y +-=; ……………………7分 (2)若直线AB 的斜率不存在,则直线:1AB x =∴AB = 若直线AB 的斜率存在,设AB :(1)y k x =-∵4AB = ∴点C 到直线:0AB kx y k --==化简得:24410k k -+= ∴12k =……………………9分 联立方程:221(1)2(2)9y x x y ⎧=-⎪⎨⎪+-=⎩,消去y 得:2510110x x --=∴12115x x =- ……14分18.解:(1)当1a =时,22(1)1xe M x x x =>-+,∴222(1)(2)'(1)x x x e M x x --=-+……………………3分列表得:…………………6分∴M 在(1,2)上单调减,在(2,)+∞上单调增 ∴M 在2x =时取最小值;……………………8分(2)∵222(1)(2)'(0)(1)xa x x e M a x x --=>-+ 根据(1)知:M 在(1,2)上单调减,在(2,)+∞上单调增 ∵确保恰好..3年不需要进行保护 ∴43444(1)22(3)72(4)13M e e ae M e ae M e ⎧=≤⎪⎪⎪=≤⎨⎪⎪=>⎪⎩,解得:13722e a<≤答:实数a 的取值范围为137(,]22e. ……………………16分19.解:(1)∵椭圆的右准线方程为2x = ∴22a c =∴a = ∴21,2c a == ∴21b = ∴椭圆的方程为:2212x y +=;………………6分(2)方法(一)设点00(,)P x y ,则220012x y +=,((0,1)A B ,即220022x y +=. 当00x =时,(0,1)P -,则(0,0)M ,(0,1)N -∴2AM BN ⋅=分∵点P 异于点A ∴0x ≠当0x ≠00x ≠时,设直线AP 方程为:y x =,它与y 轴交于点N直线BP 方程为:0011y y x x -=+,它与x 轴交于点00(,0)1x M y --∴000||1x AM y =-=-,|1BN ==…………12分∴22000||(1)x AM BN y --⋅==-||== ……………………16分方法(二)若直线BP 斜率不存在,则直线BP 方程为:0x =,此时(0,1)P -,则(0,0)M ,(0,1)N -∴2AM BN ⋅= ………………8分若直线BP 斜率存在,设直线BP 方程为:1y kx =+,且0k ≠∴1(,0)M k-且1|AM k =-= ………………10分 则联立方程:22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 得:22(21)40k x kx ++=,解得: 10x =或22421k x k =-+,即点222421(,)2121k k P k k -+-++ ∵点P 异于点A∴k ≠∴22222121421APk k k k k -++===-+∴直线AP的方程为:y x =+,则(0,N且|1|BN == ………………14分∴1|||AM BN k -⋅=⨯= ………………16分20.解:(1)当1a =时,()ln f x x x =- ∴()11'1x f x-=-=,令()'0f x =,则1x =,列表得:∴()f x 有极小值()11f =,无极大值; ……………………3分 (2)()2ln g x ax x x =--,0x >∴()2121'2x ax g x a x x x-+-=--=,设2()21G x x ax =-+-①当0a ≤时,()0G x <恒成立,即()'0g x <恒成立,∴()g x 在(0,)+∞上单调减;②当0a >且280a ∆=-≤,即0a <≤()'0G x ≤恒成立,且不恒为0,则()'0g x ≤恒成立,且不恒为0,∴()g x 在(0,)+∞上单调减; ③当0a >且280a ∆=->,即a >()0G x =有两个实数根:12x x =121210,022a x x x x +=>=>∴120x x>> ∴当20x x <<或1x x >时,()0G x <,'()0g x <;当21x x x <<时,()0G x>,'()0g x >; ∴()g x在和)+∞上单调减,在上单调增.∴综上:当a ≤时,()g x 在(0,)+∞上单调减;当a >时,()g x 在和)+∞上单调减,在上单调增. ……………………7分(3)2()ln h x ax x x =-+,1'()2h x a x x=-+,问题即为判断0'()h x 的符号. ∵函数2()()h x f x x =+的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<∴21112222ln 0ln 0ax x x ax x x ⎧-+=⎪⎨-+=⎪⎩ 两式相减得:22121212()(ln ln )()0a x x x x x x ---+-=∴121212ln ln ()x x a x x x x -=-+- ……………………9分∴01212121'()'()2()h x h x x a x x x x =+=-+++λμλμλμ121212121212121212ln ln ln ln 11()2()(21)()x x x x x x x x x x x x x x x x x x --=-+-++=+----+-+λμλλμλμ ∵0≥>μλ且1+=λμ ∴210-≤λ ∵120x x << ∴12(21)()0x x --≥λ………………11分 研究:121212ln ln 1x x x x x x ---+λμ的符号,即判断112212ln x x x x x x --+λμ的符号. 令12,(0,1)x t t x =∈,1122121ln ln x x x t t x x x t ---=-++λμλμ,设1()ln ,(0,1)t H t t t t -=-∈+λμ∴2222221()(1)11(21)'()()()()t t t t H t t t t t t t +--+-+=-=-=+++λμλλλμμλμλμλμ方法(一)设222()(21)F t t t =+-+λλμμ,其对称轴为:2221212(1)1211222t ----===+≥λμλλλλλλ∴()F t 在(0,1)上单调减,则222()(1)21()10F t F >=+-+=+-=λλμμλμ,即'()0H t >在(0,1)上恒成立 ∴()H t 在(0,1)上单调增 ∴()(1)0H t H <=,即112212ln 0x x xx x x --<+λμ ……………14分 ∵120x x -< ∴121212ln ln 10x x x x x x -->-+λμ∴12121212ln ln 1(21)()0x x x x x x x x -+--->-+λλμ,即0'()0h x >∴在点00(,())M x h x 处的切线斜率为正. ……………………16分方法(二)2222222(21)(1)()'()()()t t t t H t t t t t +-+--==++λλμμλμλμλμ ∵0≥>μλ,01t << ∴2210,0t t -<-<λμ ∴'()0H t >在(0,1)上恒成立 ∴()H t 在(0,1)上单调增 ∴()(1)0H t H <=,即112212ln 0x x xx x x --<+λμ ……………14分 ∵120x x -< ∴121212ln ln 10x x x x x x -->-+λμ∴12121212ln ln 1(21)()0x x x x x x x x -+--->-+λλμ,即0'()0h x >∴在点00(,())M x h x 处的切线斜率为正. ……………………16分。
江苏省扬州中学2017-2018学年高二上学期期末数学考试试卷带答案
江苏省扬州中学2017-2018学年高二上学期期末考试试卷(满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“x ∃∈R ,210x -<”的否定是 ▲ . 2.直线210x y ++=在y 轴上的截距为 ▲ . 3.抛物线24y x =的焦点坐标为 ▲ .4.曲线2sin y x x =-在(0,0)处的切线方程为 ▲ .5.在边长为2的正方形内随机取一点,取到的点到正方形中心的距离大于1的概率为 ▲ . 6.某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为n 的样本.已知从高三学生中抽取的人数为10,那么n = ▲ .7.执行如图所示的程序框图,输出的s 值为 ▲ .8.已知函数ln(4)y x =-的定义域为A ,集合{|}B x x a =>,若x A ∈是x B ∈的充分不必要条件,则实数a 的取值范围为 ▲ .9. 已知椭圆22:143x y C +=上的点M 到右焦点的距离为2,则点M 到左准线的距离为▲ .10.已知双曲线的渐近线方程为y x =±,且过点(1,2),则双曲线的标准方程为 ▲ . 11.已知函数()f x 的定义域为R ,'()f x 是()f x 的导函数,且(2)3f =,'()1f x <,则不等 式()1f x x >+的解集为 ▲ .12.已知(4,0)A ,(1,0)B ,动点P 满足2PA PB =.设点P 到点(3,0)C -的距离为d ,则d 的 取值范围为 ▲ .13.斜率为13直线l 经过椭圆22221(0)x y a b a b +=>>的左顶点A ,且与椭圆交于另一个点B ,若在y 轴上存在点C 使得ABC △是以点C 为直角顶点的等腰直角三角形,则该椭圆的离心 率为 ▲ .14. 已知函数2()|3|f x x x a =-在[0,2]x ∈的值域为[0,4]m ,则实数m 的最小值为 ▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分14分)已知命题p :“椭圆2215x y a+=的焦点在x 轴上”;命题q :“关于x 的不等式23230x ax ++≥在R 上恒成立”.(1)若命题p 为真命题,求实数a 的取值范围;(2) 若命题“p 或q ”为真命题、“p 且q ”为假命题,求实数a 的取值范围.16.(本题满分14分)为了让学生更多地了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:序号 分数段 人数 频率 1 [60,70) 10 0.20 2 [70,80) ① 0.44 3 [80,90) ② ③ 4[90,100]4 0.08 合计501(1)填充上述表中的空格(在解答中直接写出对应空格序号的答案); (2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩;(3)甲同学的初赛成绩在[90,100],学校为了宣传班级的学习经验,随机抽取分数在[90,100]的4位同学中的两位同学到学校其他班级介绍,求甲同学被抽取到的概率.17.(本题满分14分)已知圆C 的半径为3,圆心在y 轴正半轴上,直线4390x y --=圆C 相切. (1)求圆C 的方程;(2)过点(1,0)Q 的直线l 与圆C 交于不同的两点1122(,),(,)A x y B x y 且4AB =,求12x x 的值.18.(本题满分16分)某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量y (万只)与时间x (年)(其中*x N ∈)的关系为2x y e =.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值21ayM x x =-+(其中a 为常数,且0a >)来进行生态环境分析.(1)当1a =时,求比值M 取最小值时x 的值;(2)经过调查,环保部门发现:当比值M 不超过4e 时不需要进行环境防护.为确保恰好..3年不需要进行保护,求实数a 的取值范围.(e 为自然对数的底, 2.71828e =)19.(本题满分16分)已知椭圆:E 22221(0)x y a b a b+=>>的右准线方程为2x =,又离心率为22,椭圆的左顶点为A ,上顶点为B ,点P 为椭圆上异于,A B 任意一点. (1)求椭圆的方程;(2)若直线BP 与x 轴交于点M ,直线AP 与y 轴交于点N ,求证:AM BN ⋅为定值.20.(本题满分16分)已知:函数()ln f x ax x =-.(1)当1a =时,求函数()y f x =的极值;(2)若函数()()2g x f x x =-,讨论()y g x =的单调性;(3)若函数2()()h x f x x =+的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<.设 012x x x λμ=+,其中常数λ、μ满足条件1λμ+=,且0≥>μλ.试判断在点00(,())M x h x 处 的切线斜率的正负,并说明理由.参考答案1.x ∀∈R ,210x -≥ 2.1- 3.(1,0) 4.y x = 5. 14π-6.45 7.1158.(,4)-∞ 9.4 10.221y x -= 11.(,2)-∞ 12.[1,5] 13.6314.1215.解:(1)p 真:椭圆2215x y a+=的焦点在x 轴上 ∴05a << …………5分(2)∵“p 或q ”为真命题、“p 且q ”为假命题 ∴p 真q 假或p 假q 真………………7分q 真:∵关于x 的不等式23230x ax ++≥在R 上恒成立∴2(2)4330a ∆=-⨯⨯≤,解得:33a -≤≤ ……………………11分 ∴0533a a a <<⎧⎨<->⎩或或0533a a a ≤≥⎧⎨-≤≤⎩或 解得:35a <<或30a -≤≤ ∴实数a 的取值范围是35a <<或30a -≤≤. …………………14分 16.解:(1)①22;②14;③0.28; …3分 (2)650.20750.44850.28950.0877.4⨯+⨯+⨯+⨯=; …………8分 (3)记“甲同学被抽取到”为事件A ,设四名学生为甲、乙、丙、丁,则总的基本事件为: 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,共6个基本事件;满足事件A 的基本事件:甲乙、甲丙、甲丁,共3个基本事件,则1()2P A =……………………13分 答:此次数学史初赛的平均成绩为77.4,甲同学被抽取到的概率为12.……………14分 17.解:(1)设(0,)C m ,0m >∵直线4390x y --=圆C 相切,且圆C 的半径为3∴|39|35m --=,解得2m =或8m =- ∵0m > ∴2m = ……………………5分 ∴圆C 的方程为:22(2)9x y +-=; ……………………7分 (2)若直线AB 的斜率不存在,则直线:1AB x =∴42AB =,不符合题意,舍; 若直线AB 的斜率存在,设AB :(1)y k x =-∵4AB = ∴点C 到直线:0AB kx y k --=的距离为5,即2|2|51k k --=+,化简得:24410k k -+= ∴12k =……………………9分 联立方程:221(1)2(2)9y x x y ⎧=-⎪⎨⎪+-=⎩,消去y 得:2510110x x --=∴12115x x =- ……14分18.解:(1)当1a =时,22(1)1xe M x x x =>-+,∴222(1)(2)'(1)x x x e M x x --=-+……………3分 列表得:x(1,2) 2 (2,)+∞()'f x-0 +()f x单调减极小值单调增……………6分∴M 在(1,2)上单调减,在(2,)+∞上单调增 ∴M 在2x =时取最小值;…………………8分 (2)∵222(1)(2)'(0)(1)xa x x e M a x x --=>-+ 根据(1)知:M 在(1,2)上单调减,在(2,)+∞上单调增∵确保恰好..3年不需要进行保护 ∴43444(1)22(3)72(4)13M e e ae M e ae M e ⎧=≤⎪⎪⎪=≤⎨⎪⎪=>⎪⎩,解得:13722e a <≤ 答:实数a 的取值范围为137(,]22e. ……………………16分19.解:(1)∵椭圆的右准线方程为2x = ∴22a c = ∵离心率为22∴2a c = ∴21,2c a == ∴21b = ∴椭圆的方程为:2212x y +=; ………………6分(2)方法(一)设点00(,)P x y ,则220012x y +=,(2,0),(0,1)A B -,即220022x y +=. 当00x =时,(0,1)P -,则(0,0)M ,(0,1)N - ∴2222AM BN ⋅=⨯=………8分 ∵点P 异于点A ∴02x ≠-当02x ≠-且00x ≠时,设直线AP 方程为:00(2)2y y x x =++,它与y 轴交于点002(0,)2y N x +直线BP 方程为:0011y y x x -=+,它与x 轴交于点00(,0)1x M y --∴0000022|2|||11x y x AM y y --=-+=--,00000222|1|||22y x y BN x x +-=-=++……12分 ∴220000000000000000(22)(22)2222422||||(1)(2)22y x x y x y x y x y AM BN y x x y x y --+-+++--⋅=⋅=-+-+- 000000002222422||2222x y x y x y x y ++--==-+-为定值.……………………16分 方法(二)若直线BP 斜率不存在,则直线BP 方程为:0x =,此时(0,1)P -,则(0,0)M , (0,1)N - ∴2222AM BN ⋅=⨯= ………………8分若直线BP 斜率存在,设直线BP 方程为:1y kx =+,且0k ≠∴1(,0)M k-且 121|2|||k AM k k -=-+= ……………10分 则联立方程:22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 得:22(21)40k x kx ++=,解得: 10x =或22421k x k =-+, 即点222421(,)2121k k P k k -+-++ ∵点P 异于点A ∴22k ≠∴2222221212121422422(21)221APk k k k k k k k k k -+-+++===--+--++ ∴直线AP 的方程为:21(2)2(21)k y x k +=-+-,则21(0,)21k N k +--且2122|1|||2121k k BN k k +=+=-- ………………14分∴2122||||2221k kAM BN k k -⋅=⨯=-为定值. ……………16分20.解:(1)当1a =时,()ln f x x x =- ∴()11'1x f x x x-=-=,令()'0f x =,则1x =,列表得:x(0,1) 1 (1,)+∞()'f x-0 +()f x单调减极小值单调增∴()f x 有极小值()11f =,无极大值; ………………3分(2)()2ln g x ax x x =--,0x >∴()2121'2x ax g x a x x x-+-=--=,设2()21G x x a x =-+-①当0a ≤时,()0G x <恒成立,即()'0g x <恒成立,∴()g x 在(0,)+∞上单调减; ②当0a >且280a ∆=-≤,即022a <≤时,()'0G x ≤恒成立,且不恒为0,则()'0g x ≤恒成立,且不恒为0,∴()g x 在(0,)+∞上单调减; ③当0a >且280a ∆=->,即22a >时,()0G x =有两个实数根:221288,44a a a a x x +---==,且121210,022a x x x x +=>=> ∴120x x >> ∴当20x x <<或1x x >时,()0G x <,'()0g x <;当21x x x <<时,()0G x >,'()0g x >;∴()g x 在28(0,)4a a --和28(,)4a a +-+∞上单调减,在2288()44a a a a --+-,上单调增.∴综上:当22a ≤时,()g x 在(0,)+∞上单调减;当22a >时,()g x 在28(0,)4a a --和28(,)4a a +-+∞上单调减,在2288()44a a a a --+-,上单调增.……………7分(3)2()ln h x ax x x =-+,1'()2h x a x x=-+,问题即为判断0'()h x 的符号. ∵函数2()()h x f x x =+的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<∴21112222ln 0ln 0ax x x ax x x ⎧-+=⎪⎨-+=⎪⎩ 两式相减得:22121212()(ln ln )()0a x x x x x x ---+-=∴121212ln ln ()x x a x x x x -=-+- ………………9分∴01212121'()'()2()h x h x x a x x x x =+=-+++λμλμλμ121212121212121212ln ln ln ln 11()2()(21)()x x x x x x x x x x x x x x x x x x --=-+-++=+----+-+λμλλμλμ∵0≥>μλ且1+=λμ ∴210-≤λ∵120x x << ∴12(21)()0x x --≥λ………………11分 研究:121212ln ln 1x x x x x x ---+λμ的符号,即判断112212ln x x x x x x --+λμ的符号.令12,(0,1)x t t x =∈,1122121ln ln x x x t t x x x t ---=-++λμλμ,设1()ln ,(0,1)t H t t t t -=-∈+λμ∴2222221()(1)11(21)'()()()()t t t t H t t t t t t t +--+-+=-=-=+++λμλλλμμλμλμλμ方法(一)设222()(21)F t t t =+-+λλμμ,其对称轴为:2221212(1)1211222t ----===+≥λμλλλλλλ∴()F t 在(0,1)上单调减,则222()(1)21()10F t F >=+-+=+-=λλμμλμ,即'()0H t >在(0,1)上恒成立 ∴()H t 在(0,1)上单调增 ∴()(1)0H t H <=,即112212ln0x x x x x x --<+λμ ……………14分 ∵120x x -< ∴121212ln ln 10x x x x x x -->-+λμ∴12121212ln ln 1(21)()0x x x x x x x x -+--->-+λλμ,即0'()0h x >∴在点00(,())M x h x 处的切线斜率为正. ………………16分方法(二)2222222(21)(1)()'()()()t t t t H t t t t t +-+--==++λλμμλμλμλμ∵0≥>μλ,01t << ∴2210,0t t -<-<λμ ∴'()0H t >在(0,1)上恒成立 ∴()H t 在(0,1)上单调增 ∴()(1)0H t H <=,即112212ln 0x x x x x x --<+λμ ……………14分 ∵120x x -< ∴121212ln ln 10x x x x x x -->-+λμ∴12121212ln ln 1(21)()0x x x x x x x x -+--->-+λλμ,即0'()0h x > ∴在点00(,())M x h x 处的切线斜率为正. ……………16分。
【真题】2017-2018年江苏省扬州市高三(上)期末数学试卷与答案
2017-2018学年江苏省扬州市高三(上)期末数学试卷一、填空题1.(3分)若集合A={x|1<x<3},B={0,1,2,3},则A∩B=.2.(3分)若复数(a﹣2i)(1+3i)是纯虚数,则实数a的值为.3.(3分)若数据31,37,33,a,35的平均数是34,则这组数据的标准差为.4.(3分)为了了解某学校男生的身体发育情况,随机调查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图,根据此图估计该校2000名男生中体重在70﹣80kg的人数为.5.(3分)运行如图的流程图,输出的结果是.6.(3分)从两名男生2名女生中任选两人,则恰有一男一女的概率为.7.(3分)若圆锥的侧面展开图是面积为3π且圆心角为的扇形,则此圆锥的体积为.8.(3分)若实数x,y满足,则x2+y2的取值范围是9.(3分)已知各项都是正数的等比数列{a n}的前n项和为S n,若4a4,a3,6a5成等差数列,且a3=3a22,则S3=10.(3分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的渐近线与圆x2+y2﹣6y+5=0没有焦点,则双曲线离心率的取值范围是.11.(3分)已知函数f(x)=sinx﹣x+,则关于x的不等式f(1﹣x2)+f(5x ﹣7)<0的解集为.12.(3分)已知正△ABC的边长为2,点P为线段AB中垂线上任意一点,Q为射线AP上一点,且满足•=1,则||的最大值为.13.(3分)已知函数,若存在实数k使得该函数的值域为[﹣2,0],则实数a的取值范围是.14.(3分)已知正实数x,y满足5x2+4xy﹣y2=1,则12x2+8xy﹣y2的最小值为二、解答题15.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,AC的中点,(1)证明:B1C1∥平面A1DE;(2)若平面A1DE⊥平面ABB1A1,证明:AB⊥DE.16.已知在△ABC中,AB=6,BC=5,且△ABC的面积为9.(1)求AC;(2)当△ABC为锐角三角形时,求的值.17.如图,射线OA和OB均为笔直的公路,扇形OPQ区域(含边界)是一蔬菜种植园,其中P、Q分别在射线OA和OB上.经测量得,扇形OPQ的圆心角(即∠POQ)为、半径为1千米.为了方便菜农经营,打算在扇形OPQ 区域外修建一条公路MN,分别与射线OA、OB交于M、N两点,并要求MN 与扇形弧相切于点S.设∠POS=α(单位:弧度),假设所有公路的宽度均忽略不计.(1)试将公路MN的长度表示为α的函数,并写出α的取值范围:(2)试确定α的值,使得公路MN的长度最小,并求出其最小值.18.已知椭圆E1:+=1(a>b>0),若椭圆E2:+=1(a>b>0,m>1),则称椭圆E2与椭圆E1“相似”.(1)求经过点(,1),且与椭圆E1:+y2=1“相似”的椭圆E2的方程;(2)若m=4,椭圆E1的离心率为,P在椭圆E2上,过P的直线l交椭圆E1于A,B两点,且,①若B的坐标为(0,2),且λ=2,求直线l的方程;②若直线OP,OA的斜率之积为,求实数λ的值.19.已知函数f(x)=e x,g(x)=ax+b,a,b∈R.(1)若g(﹣1)=0,且函数g(x)的图象是函数f(x)图象的一条切线,求实数a的值;(2)若不等式f(x)>x2+m对任意x∈(0,+∞)恒成立,求实数m的取值范围;(3)若对任意实数a,函数F(x)=f(x)﹣g(x)在(0,+∞)上总有零点.,实数b的取值范围.20.已知各项都是正数的数列{a n}的前n项和为S n,且2S n=a n2+a n,数列{b n}满足b1=,2b n+1=b n+.(1)求数列{a n}、{b n}的通项公式;(2)设数列{c n}满足c n=,求和c1+c2+…+c n;(3)是否存在正整数p,q,r(p<q<r),使得b p,b q,b r成等差数列?若存在,求出所有满足要求的p,q,r,若不存在,请说明理由.第二部分(加试部分)21.已知x,y∈R,若点M (1,1)在矩阵A=对应变换作用下得到点N (3,5),求矩阵A的逆矩阵A﹣1.22.在直角坐标系xOy中,直线l的参数方程是:(t是参数,m是常数).以O为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C相交于P,Q两点,且|PQ|=2,求实数m的值.23.扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.(1)求6名大学生至少有1名被分配到甲校学习的概率;(2)设X,Y分别表示分配到甲、乙两所中学的大学生人数,记ξ=|X﹣Y|,求随机变量ξ的分布列和数学期望值E(ξ).24.二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,S n是所有n位二进制数构成的集合,对于a n,b n∈S n,M(a n,b n)表示a n和b n对应位置上数字不同的位置个数.例如当a3=100,b3=101时M(a3,b3)=1,当a3=100,b3=111时M(a3,b3)=2,(1)令a5=10000,求所有满足b5∈S5,且M(a5,b5)=2的b5的个数;(2)给定a n(n≥2),对于集合S n中所有b n,求M(a n,b n)的和.2017-2018学年江苏省扬州市高三(上)期末数学试卷参考答案与试题解析一、填空题1.(3分)若集合A={x|1<x<3},B={0,1,2,3},则A∩B={2} .【解答】解:集合A={x|1<x<3},B={0,1,2,3},则A∩B={2}.故答案为:{2}.2.(3分)若复数(a﹣2i)(1+3i)是纯虚数,则实数a的值为﹣6.【解答】解:∵(a﹣2i)(1+3i)=(a+6)+(3a﹣2)i是纯虚数,∴,即a=﹣6.故答案为:﹣6.3.(3分)若数据31,37,33,a,35的平均数是34,则这组数据的标准差为2.【解答】解:数据31,37,33,a,35的平均数是34,∴31+37+33+a+35=34×5,解得a=34,∴这组数据的方差为:s2=×[(31﹣34)2+(37﹣34)2+(33﹣34)2+(34﹣34)2+(35﹣34)2]=4,∴标准差为2.故答案为:2.4.(3分)为了了解某学校男生的身体发育情况,随机调查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图,根据此图估计该校2000名男生中体重在70﹣80kg的人数为240.【解答】解:由频率分布直方图知,体重在70﹣80kg内的频率为(0.02+0.01)×4=0.12,则2000名男生中体重在70﹣80kg的人数为2000×0.12=240.故答案为:240.5.(3分)运行如图的流程图,输出的结果是94.【解答】解:模拟程序的运行,可得a=3执行循环体,a=3×3+1=10不满足条件a>50,执行循环体,a=3×10+1=31不满足条件a>50,执行循环体,a=3×31+1=94此时,满足条件a>50,退出循环,输出a的值为94.故答案为:94.6.(3分)从两名男生2名女生中任选两人,则恰有一男一女的概率为.【解答】解:从两名男生2名女生中任选两人,基本事件总数n==6,恰有一男一女包含的基本事件个数m==4,则恰有一男一女的概率为p==.故答案为:.7.(3分)若圆锥的侧面展开图是面积为3π且圆心角为的扇形,则此圆锥的体积为.【解答】解:设圆锥的底面半径为r,母线长为R,则:R2×=3π,2πr=R,解得:R=3,r=1.∴此圆锥的体积V=π×r2×==.故答案为:.8.(3分)若实数x,y满足,则x2+y2的取值范围是[,25] 【解答】解:实数x,y满足的可行域如图的阴影部分:x2+y2的几何意义是可行域内的点与坐标原点的连线的距离的平方,由图形可知最小值为OB的平方,最大值为OA的平方,≤x2+y2≤,可得≤x2+y2≤25.故答案为:[,25].9.(3分)已知各项都是正数的等比数列{a n}的前n项和为S n,若4a4,a3,6a5成等差数列,且a3=3a22,则S3=【解答】解:各项都是正数的等比数列{a n}的公比设为q(q>0),前n项和为S n,4a4,a3,6a5成等差数列,可得2a3=4a4+6a5,即为2a 1q2=4a1q3+6a1q4,即3q2+2q﹣1=0,解得q=(﹣1舍去),a3=3a22,即为a1q2=3a12q2,可得a1=,则S3===.故答案为:.10.(3分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的渐近线与圆x2+y2﹣6y+5=0没有焦点,则双曲线离心率的取值范围是.【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣3)2=4没有公共点,∴圆心到渐近线的距离大于半径,即>2,∴9a2>4c2,由e=<.∴1<e<.故答案为:.11.(3分)已知函数f(x)=sinx﹣x+,则关于x的不等式f(1﹣x2)+f(5x ﹣7)<0的解集为(2,3).【解答】解:函数f(x)=sinx﹣x+=sinx﹣x+2﹣x﹣2x,∴f(﹣x)=﹣sinx+x+2x﹣2﹣x=f(x),∴f(x)为奇函数,∵f′(x)=cosx﹣1﹣2﹣x ln2﹣2x ln2=cosx﹣1﹣ln2(2﹣x+2x),cosx﹣1<0,2﹣x+2x>0,ln2>0,∴f′(x)<0恒成立,∴f(x)单调递减,∵f(1﹣x2)+f(5x﹣7)<0,∴f(1﹣x2)<﹣f(5x﹣7)=f(7﹣5x)∴1﹣x2>7﹣5x,即x2﹣5x+6<0,解得2<x<3,故答案为(2,3).12.(3分)已知正△ABC的边长为2,点P为线段AB中垂线上任意一点,Q为射线AP上一点,且满足•=1,则||的最大值为.【解答】解:以AB所在直线为x轴,AB的中点为坐标原点,AB的垂线为y轴,建立直角坐标系O﹣xy,可得A(﹣1,0),C(0,),设P(0,t),可得=(1,t),设=n,可得Q(n﹣1,nt),由•=1,可得n(1+t2)=1,即n=,则2=(n﹣1)2+(nt﹣)2=(﹣1)2+(﹣)2=4﹣,由y=,可得yt2﹣2t+y﹣1=0,当y=0时,t=﹣成立;当y≠0时,△=12﹣4y(y﹣1)≥0,解得≤y≤,则4﹣的最大值为4﹣=.即有||的最大值为,故答案为:.13.(3分)已知函数,若存在实数k使得该函数的值域为[﹣2,0],则实数a的取值范围是(,2] .【解答】解:当﹣1≤x≤k时,函数f(x)=log(1﹣x)﹣1为增函数,且在区间左端点处有f(﹣1)=﹣2,令f(x)=0,解得x=,令f(x)=﹣2|x﹣1|=﹣2,解得x=2,∵f(x)的值域为[﹣2,0],∴k≤2,当k≤x≤a时,f(x)=﹣2|x﹣1|=,∴f(x)在[k,]单调递增,[1,a]上单调递减,在[,1]上单调递增,从而当x=1时,函数有最大值,即为f(1)=0,函数在右端点的函数值为f(2)=﹣2,∵f(x)的值域为[﹣2,0],∴<a≤2,故答案为:(,2].14.(3分)已知正实数x,y满足5x2+4xy﹣y2=1,则12x2+8xy﹣y2的最小值为【解答】解:∵5x2+4xy﹣y2=(5x﹣y)(x+y)=1,设5x﹣y=m,x+y=n,(m>0,n>0),可得x=,y=,∴12x2+8xy﹣y2==(m2+9n2)+≥×2+=,当且仅当m=3n,即x=2y时,上式取得等号,故12x2+8xy﹣y2的最小值为,故答案为:.二、解答题15.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,AC的中点,(1)证明:B1C1∥平面A1DE;(2)若平面A1DE⊥平面ABB1A1,证明:AB⊥DE.【解答】证明:(1)在直三棱柱ABC﹣A1B1C1中,四边形B1BCC1是平行四边形,所以B1C1∥BC……(2分)在△ABC中,D,E分别为AB,AC的中点,故BC∥DE,所以B1C1∥DE,.………(4分)又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE.………(7分)(2)在平面ABB1A1内,过A作AF⊥A1D于F,因为平面A1DE⊥平面A1ABB1,平面A1DE∩平面A1ABB1=A1D,AF⊂平面A1ABB1,所以AF⊥平面A1DE,.………(11分)又DE⊂平面A1DE,所以AF⊥DE,在直三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,DE⊂平面ABC,所以A1A⊥DE,因为AF∩A1A=A,AF⊂平面A1ABB1,A1A⊂平面A1ABB1,所以DE⊥平面A1ABB1,因为AB⊂平面A1ABB1,所以DE⊥AB..………(14分)注:作AF⊥A1D时要交代在平面内作或要交代垂足点,否则扣(1分)16.已知在△ABC中,AB=6,BC=5,且△ABC的面积为9.(1)求AC;(2)当△ABC为锐角三角形时,求的值.=,又AB=6,BC=5,所以,………【解答】解:(1)因为S△ABC(2分)又B∈(0,π),所以,………(3分)当cosB=时,………(5分)当cosB=时,所以或.………(7分)注:少一解的扣(3分)(2)由△ABC为锐角三角形得B为锐角,所以AB=6,AC=,BC=5,所以,又A∈(0,π),所以,………(9分)所以,,………(12分)所以.………(14分)17.如图,射线OA和OB均为笔直的公路,扇形OPQ区域(含边界)是一蔬菜种植园,其中P、Q分别在射线OA和OB上.经测量得,扇形OPQ的圆心角(即∠POQ)为、半径为1千米.为了方便菜农经营,打算在扇形OPQ 区域外修建一条公路MN,分别与射线OA、OB交于M、N两点,并要求MN 与扇形弧相切于点S.设∠POS=α(单位:弧度),假设所有公路的宽度均忽略不计.(1)试将公路MN的长度表示为α的函数,并写出α的取值范围:(2)试确定α的值,使得公路MN的长度最小,并求出其最小值.【解答】解:(1)因为MN与扇形弧PQ相切于点S,所以OS⊥MN.在RT△OSM中,因为OS=1,∠MOS=α,所以SM=tanα,在RT△OSN中,∠NOS=,所以SN=,所以,其中,(2)因为,所以,令,则,所以,由基本不等式得,当且仅当即t=2时取“=”此时,由于,故答:(1),其中(2)当时,MN长度的最小值为千米18.已知椭圆E1:+=1(a>b>0),若椭圆E2:+=1(a>b>0,m>1),则称椭圆E2与椭圆E1“相似”.(1)求经过点(,1),且与椭圆E1:+y2=1“相似”的椭圆E2的方程;(2)若m=4,椭圆E1的离心率为,P在椭圆E2上,过P的直线l交椭圆E1于A,B两点,且,①若B的坐标为(0,2),且λ=2,求直线l的方程;②若直线OP,OA的斜率之积为,求实数λ的值.【解答】解:(1)设椭圆E2的方程为,代入点得m=2,所以椭圆E2的方程为;(2)因为椭圆E1的离心率为,故c2=a2,a2=2b2,所以椭圆,又椭圆E2与椭圆E1“相似”,且m=4,所以椭圆E2:x2+2y2=8b2,设A(x1,y1),B(x2,y2),P(x0,y0),①方法一:由题意得b=2,所以椭圆,将直线l:y=kx+2,代入椭圆得(1+2k2)x2+8kx=0,解得,故,所以,B(0,2),又,即B为AP中点,所以,代入椭圆得,即20k4+4k2﹣3=0,即(10k2﹣3)(2k2+1)=0,所以,所以直线l的方程为;方法二:由题意得b=2,所以椭圆,,设A(x,y),B(0,2),则P(﹣x,4﹣y),代入椭圆得,解得,故,所以,所以直线l的方程为.②方法一:由题意得,,即x0x1+2y0y1=0,,则(x0﹣x1,y0﹣y1)=λ(x2﹣x1,y2﹣y1),解得,所以,则,,所以8b2+(λ﹣1)2•2b2=2λ2b2,即4+(λ﹣1)2=λ2,所以.方法二:不妨设点P在第一象限,设直线OP:y=kx(k>0),代入椭圆,解得,则,直线OP,OA的斜率之积为,则直线,代入椭圆,解得,则,则(x0﹣x1,y0﹣y1)=λ(x2﹣x1,y2﹣y1),解得,所以,则,,所以,即8b2+(λ﹣1)2•2b2=2λ2b2,即4+(λ﹣1)2=λ2,所以.19.已知函数f(x)=e x,g(x)=ax+b,a,b∈R.(1)若g(﹣1)=0,且函数g(x)的图象是函数f(x)图象的一条切线,求实数a的值;(2)若不等式f(x)>x2+m对任意x∈(0,+∞)恒成立,求实数m的取值范围;(3)若对任意实数a,函数F(x)=f(x)﹣g(x)在(0,+∞)上总有零点.,实数b的取值范围.【解答】解:(1)根据题意,函数g(x)的图象是函数f(x)图象的一条切线,设切点坐标为(m,e m),g(x)=ax+b,若g(﹣1)=0,则g(﹣1)=a×(﹣1)+b=b﹣a=0,即a=b,则g(x)=a(x+1),f(x)=e x,则f′(x)=e x,又由切点为(m,e m),则切线斜率k=f′(m)=e m,切线的方程为y﹣e m=e m(x ﹣m),变形可得y=e m(x﹣m+1),分析可得,解可得m=0,a=1,故a=1;(2)根据题意,设h(x)=f(x)﹣x2﹣m=e x﹣x2﹣m,若不等式f(x)>x2+m对任意x∈(0,+∞)恒成立,则h(x)=e x﹣x2﹣m>0在(0,+∞)上恒成立,h′(x)=e x﹣2x,h′′(x)=e x﹣2,令h′′(x)=0,即e x﹣2=0可得x=ln2,分析可得,在(0,ln2)上,h′′(x)<0,h′(x)=e x﹣2x为减函数,在(ln2,+∞)上,h′′(x)>0,h′(x)=e x﹣2x为增函数,则h′(x)的最小值为h′(ln2)=e ln2﹣2ln2=2﹣2ln2=2(1﹣ln2)>0,即h′(x)≥h′(ln2)>0,x∈(0,+∞)即函数h(x)在(0,+∞)上为增函数,若h(x)=e x﹣x2﹣m>0在(0,+∞)上恒成立,则有h(0)=e0﹣m=1﹣m≥0,解可得m≤1,故m的取值范围是(﹣∞,1];(3)根据题意,函数F(x)=f(x)﹣g(x)=e x﹣ax﹣b,其导数F′(x)=e x﹣a,分2种情况讨论:①,a≤0,F′(x)>0,函数F(x)在R上为增函数,若函数F(x)=f(x)﹣g(x)在(0,+∞)上总有零点,必有F(0)=e0﹣b=1﹣b<0,解可得:b>1,②,a>0时,令F′(x)=e x﹣a=0,即e x=a,解可得x=lna,分析可得:在(0,lna)上,F′(x)=e x﹣a<0,函数F(x)为减函数,在(lna,+∞)上,F′(x)=e x﹣a>0,函数F(x)为增函数,则函数F(x)在(0,+∞)的最小值为F(lna),且F(lna)=e lna﹣a(lna)﹣b=a (1﹣lna)﹣b,若函数F(x)=f(x)﹣g(x)在(0,+∞)上总有零点,必有F(lna)=a(1﹣lna)﹣b<0,则有b>a(1﹣lna),令t=a(1﹣lna),则t′=﹣lna,分析可得,在(0,1)上,t′=﹣lna>0,t=a(1﹣lna)为增函数,在(1,+∞)上,t′=﹣lna<0,t=a(1﹣lna)为减函数,则a=1,t有最大值1,则有b>1,综合可得:b>1.20.已知各项都是正数的数列{a n}的前n项和为S n,且2S n=a n2+a n,数列{b n}满足b1=,2b n+1=b n+.(1)求数列{a n}、{b n}的通项公式;(2)设数列{c n}满足c n=,求和c1+c2+…+c n;(3)是否存在正整数p,q,r(p<q<r),使得b p,b q,b r成等差数列?若存在,求出所有满足要求的p,q,r,若不存在,请说明理由.【解答】解:(1)①,②,②﹣①得:,即(a n+1+a n)(a n+1﹣a n﹣1)=0,因为{a n}是正数数列,所以a n+1﹣a n﹣1=0,即a n+1﹣a n=1,所以{a n}是等差数列,其中公差为1,在中,令n=1,得a1=1所以a n=n;由得,所以数列是等比数列,其中首项为,公比为,所以;(2),裂项得,所以;(3)假设存在正整数p,q,r(p<q<r),使得b p,b q,b r成等差数列,则b p+b r=2b q,即,因为,所以数列{b n}从第二项起单调递减,当p=1时,,若q=2,则,此时无解;若q=3,则,因为{b n}从第二项起递减,故r=4,所以p=1,q=3,r=4符合要求;若q≥4,则,即b1≥2b q,不符合要求,此时无解;当p≥2时,一定有q﹣p=1,否则若q﹣p≥2,则,即b p≥2b q,矛盾,所以q﹣p=1,此时,令r﹣p=m+1,则r=2m+1,所以p=2m+1﹣m﹣1,q=2m+1﹣m,综上得:存在p=1,q=3,r=4或p=2m+1﹣m﹣1,q=2m+1﹣m,r=2m+1满足要求.第二部分(加试部分)21.已知x,y∈R,若点M (1,1)在矩阵A=对应变换作用下得到点N (3,5),求矩阵A的逆矩阵A﹣1.【解答】解:因为,即,即,解得,所以,……(5分)法1:设,则,即,……(7分)解得,所以.……(10分)法2:因为,且,所以.……(10分)注:法2中没有交待逆矩阵公式而直接写结果的扣2分.22.在直角坐标系xOy中,直线l的参数方程是:(t是参数,m是常数).以O为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C相交于P,Q两点,且|PQ|=2,求实数m的值.【解答】解:(1)因为直线l的参数方程是:(t是参数),所以直线l的普通方程为x﹣y﹣m=0.因为曲线C的极坐标方程为ρ=6cosθ,故ρ2=6ρcosθ,所以x2+y2=6x所以曲线C的直角坐标方程是(x﹣3)2+y2=9(2)设圆心到直线l的距离为d,则,又,所以|3﹣m|=4,即m=﹣1或m=7.23.扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.(1)求6名大学生至少有1名被分配到甲校学习的概率;(2)设X,Y分别表示分配到甲、乙两所中学的大学生人数,记ξ=|X﹣Y|,求随机变量ξ的分布列和数学期望值E(ξ).【解答】解:(1)记“6名大学生中至少有1名被分配到甲学校实习”为事件A,则.答:6名大学生中至少有1名被分配到甲学校实习的概率为……(3分)(2)ξ所有可能取值是0,2,4,6,记“6名学生中恰有i名被分到甲学校实习”为事件A i(i=0,1,…,6),则,,,,……(7分)所以随机变量ξ的概率分布为:所以随机变量ξ的数学期望.……(9分)答:随机变量ξ的数学期望.……(10分)24.二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,S n是所有n位二进制数构成的集合,对于a n,b n∈S n,M(a n,b n)表示a n和b n对应位置上数字不同的位置个数.例如当a3=100,b3=101时M(a3,b3)=1,当a3=100,b3=111时M(a3,b3)=2,(1)令a5=10000,求所有满足b5∈S5,且M(a5,b5)=2的b5的个数;(2)给定a n(n≥2),对于集合S n中所有b n,求M(a n,b n)的和.【解答】解:(1)因为M(a5,b5)=2,所以b5为5位数且与a5有2项不同,又因为首项为1,故a5与b5在后四项中有两项不同,所以b5的个数为.……(3分)(2)当M(a n,b n)=0时,b n的个数为;当M(a n,b n)=1时,b n的个数为,当M(a n,b n)=2时,b n的个数为,………当M(a n,b n)=n﹣1时,b n的个数为,设M(a n,b n)的和为S,则,.……(6分)倒序得,倒序相加得,即S=(n﹣1)•2n﹣2,所以M(a n,b n)的和为(n﹣1)•2n﹣2.……(9分)赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p = xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O -=f(p) f(q) ()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-0xx<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-0x。
江苏省扬州市2018~2019学年度高二第一学期期末调研测试数学试题 及参考答案解析
扬州市2018—2019学年度第一学期期末调研测试试题高二数学2019.01一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“,”的否定是________.【参考答案】,【试题解析】【分析】根据全称命题“”的否定为特称命题“”即可得结果.因为“”的否定是“”,“,”的否定是“,”,故答案为,.本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.2.已知直线过点,则直线的斜率为________.【参考答案】-1【试题解析】【分析】直接根据直线的斜率公式计算斜率的值即可.因为直线过点,所以直线的斜率为,故答案为.本题主要考查了直线的斜率公式,意在考查对基本公式的掌握与应用,属于基础题.3.一质点的运动方程为(位移单位:;时间单位:),则该质点在时的瞬时速度为________ .【参考答案】6【试题解析】【分析】先求质点的运动方程为的导函数,再求得秒时的导函数值,即可得到所求的瞬时速度.质点的运动方程为,所以该质点在秒的瞬时速度为,故答案为6.本题主要考查了导数的物理意义,属于基础题,导数在物理的应用,是近几年高考的热点,利用数学知识解决物理问题,在高考试卷中的份量在逐年加重,对此类题解题规律应好好把握. 4.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为, 若用分层抽样的方法抽取个城市,则丙组中应抽取的城市数为________个. 【参考答案】2【试题解析】【分析】根据抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,即可得到结果.城市有甲、乙、丙三组,对应的城市数分别为4 ,12,8.本市共有城市数24 ,用分层抽样的方法从中抽取一个容量为6的样本,每个个体被抽到的概率是,丙组中对应的城市数8,则丙组中应抽取的城市数为,故答案为2.本题主要考查分层抽样的应用以及古典概型概率公式的应用,属于基础题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.5.在平面直角坐标系中,抛物线的准线方程为________.【参考答案】【试题解析】【分析】直接利用抛物线的标准方程求得,再利用准线为可得结果.抛物线的开口向右,,所以抛物线的准线方程,即,故答案为.本题考查抛物线的方程与准线方程,意在考查对基础知识的掌握情况,属于基础题.6.执行如图所示的伪代码,若输出的的值为,则输入的的值是________.【参考答案】3【试题解析】【分析】分析出算法的功能是求分段函数的值,根据输出的值为10 ,分别求出当时和当时的值即可.由程序语句知:算法的功能是求的值,当时,,解得(或 ,不合題意舍去);当时,,解得 ,舍去,综上,的值为3,故答案为3 .本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.7.若,则“”是“直线:与:垂直”的________条件.(注:在“充要”、“既不充分也不必要”、“充分不必要”、“ 必要不充分”中选填一个)【参考答案】充分不必要【试题解析】两直线垂直等价于 ,即或 ,再根据充分条件与必要条件的定义判断即可.“直线与垂直” 等价于,即或,又易知:“”与“或”的充分不必要条件,即“”是直线与垂直的充分不必要条件,故答案为充分不必要.本题考查了两直线垂直的性质以及充分条件与必要条件的定义,属于简单题.判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.8.函数的单调递减区间为________.【参考答案】(写成,,也算对)【试题解析】【分析】由,知,由能求出的单调递减区间.,,由,得,的单调递减区间为,故答案为.本题主要考查利用导数研究函数的单调性,属于基础题.利用导数求函数的单调区间的步骤:求出,在定义域内,分别令求得的范围,可得函数增区间;求得的范围,可得函数的减区间.9.已知椭圆左焦点为,左准线为,若过且垂直于轴的弦长等于点到的距离,则椭圆的离心率是________.【参考答案】【试题解析】先求出过且垂直于轴的弦长和点到的距离,由过且垂直于轴的弦长等于点到的距离,建立方程,再利用的关系求出的值.过且垂直于轴的弦长等于,点到的距离,因为过且垂直于轴的弦长等于点到的距离,所以,即,故答案为.本题主要考查椭圆的方程与离心率,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.10.有一个质地均匀的正四面体木块个面分别标有数字.将此木块在水平桌面上抛两次,则两次看不到的数字都大于的概率为__________.【参考答案】【试题解析】由题意得,将此木块在水平桌面上抛两次看不到的数字共有种情况,其中两次看不到的数字都大于的情况有,共4种.由古典概型概率公式可得所求概率为.答案:11.在平面直角坐标系xOy中,已知双曲线的一个焦点为(3,0),则双曲线的渐近线方程为_______.【参考答案】【试题解析】【分析】利用双曲线的一个焦点为(3,0),即可求出m的值,然后求解渐近线方程.∵双曲线的一个焦点为(3,0),∴m+m+1=9,∴m=4,双曲线方程化为:,可得渐近线方程:y=±x.故答案为:y=±x.本题考查双曲线的简单性质,考查学生的计算能力,是基本知识的考查.12.已知可导函数的定义域为,,其导函数满足,则不等式的解集为________.【参考答案】【试题解析】【分析】先构造函数,根据可得函数在上单调递增函数,结合不等式,变形得到,根据单调性解之即可.不等式,令,因为,所以则,函数在上单调递增函数,,即,根据函数在上单调递增函数可知,故答案为.本题主要考查抽象函数的单调性以及函数的求导法则,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.13.已知圆,为圆上的两个动点,且,为弦的中点.直线上有两个动点,且.当在圆上运动时, 恒为锐角,则线段中点的横坐标取值范围为________.【参考答案】【试题解析】【分析】由已知可得,在以为圆心,以2为半径的圆上, 把在圆上运动恒为锐角转化为以为圆心,以2为半径的圆与以为圆心,以1为半径的圆外离求解.圆的半径为为弦的中点,,的轨迹是以为圆心,以2为半径的圆,设中点为,,且当在圆上运动时,恒为锐角,则以为圆心以2为半径的圆与以为圆心以1为半径的圆外离,则,即,解得或,线段中点的横坐标取值范围为,故答案为.本题考查直线与圆位置关系、圆与圆的位置关系的应用,考查数学转化思想方法,属于中档题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将问题转化为圆与圆的位置关系是解题的关键.14.函数在上单调递增,则实数的取值范围是_________.【参考答案】【试题解析】【分析】分段去绝对值,求出函数的导数,根据函数的单调性得到关于的不等式组,求解后再取并集得结果.,当时,,要使在上单调递增,则在上恒成立,即;当时,,要使在上单调递增,则在上恒成立,即,综上,实数的取值范囿是,故答案为.本题考查利用导数研究函数的单调性,考查数学转化思想方法,以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.已知为实数.命题:方程表示双曲线;命题:对任意,恒成立.(1)若命题为真命题,求实数的取值范围;(2)若命题“或”为真命题、“且”为假命题,求实数的取值范围.【参考答案】(1)(2)【试题解析】【分析】(1)由真可得,解不等式即可得到所求范围;(2)由真可得判别式小于0 ,解得的范国,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.(1)若命题为真命题,则,即的取值范围是.(2)若命题为真命题,则,解得.即.∵命题“或”为真命题、“且”为假命题,∴和中有且仅有一个正确.若真假,则,解得;若假真,则,解得或.所以,综上所述:的取值范围为.本题通过判断或命题、且命题真假,综合考查双曲线的方程以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.16.某商场亲子游乐场由于经营管理不善突然倒闭.在进行资产清算时发现有3000名客户办理的充值会员卡上还有余额.为了了解客户充值卡上的余额情况,从中抽取了300名客户的充值卡余额进行统计.其中余额分组区间为,,,,,其频率分布直方图如图所示,请你解答下列问题:(1)求的值;(2)求余额不低于元的客户大约为多少人?(3)根据频率分布直方图,估计客户人均损失多少?(用组中值代替各组数据的平均值).【参考答案】(1)(2)300人(3)765元【试题解析】【分析】(1)由频率分布直方图中小矩形的面积之和为1,能求出的值;(2) 由直方图的性质求得余额在之间的频率为,由此能估计余额不低于900元的客户数量;(3)利用频率分布直方图中每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值,能求出客户人均损失的估计值.(1)由,解得.(2)余额在之间的频率为0.1,故可估计余额不低于900元的客户大约为(人).(3)客户人均损失的估计值为:(元).本题主要考查频率分布直方图的应用,属于中档题.直方图的主要性质有:(1)直方图中各矩形的面积之和为;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.17.在平面直角坐标系中,直线,.(1)直线是否过定点?若过定点,求出该定点坐标,若不过定点,请说明理由;(2)已知点,若直线上存在点满足条件,求实数的取值范围.【参考答案】(1)过定点,定点坐标为;(2)或.【试题解析】【分析】(1) 假设直线过定点,则关于恒成立,利用即可结果;(2)直线上存在点,求得 ,故点在以为圆心,2为半径的圆上,根据题意,该圆和直线有交点,即圆心到直线的距离小于或等于半径,由此求得实数的取值范围.(1)假设直线过定点,则,即关于恒成立,∴,∴,所以直线过定点,定点坐标为(2)已知点,,设点,则,,∵,∴,∴所以点的轨迹方程为圆,又点在直线:上,所以直线:与圆有公共点,设圆心到直线的距离为,则,解得实数的范围为或.本题主要考查直线过定点问题以及直线与圆的位置关系,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.18.2019年扬州市政府打算在如图所示的某“葫芦”形花坛中建一喷泉,该花坛的边界是两个半径为12米的圆弧围成,两圆心、之间的距离为米.在花坛中建矩形喷泉,四个顶点,,,均在圆弧上,于点.设.当时,求喷泉的面积;(2)求为何值时,可使喷泉的面积最大?.【参考答案】(1)平方米(2)【试题解析】【分析】(1)利用直角三角形的性质求出,即可求出喷泉的面积; (2)要构造矩形的面积关于角的函数,需要利用三角函数把矩形的长和宽用角表示出来,进而利用矩形的面积公式表示面积,然后利用导数求函数的最值,在求解时要注意角的取值范围.(1)在直角中,,,则,所以(平方米)答:矩形的面积为平方米.(2)在直角中,,,则,所以矩形的面积,令,,则,令,得.设,且列表如下:所以当时,最大,即最大.此时答:当为时,喷泉的面积最大本题主要考查三角函数的应用以及利用导数求最值,属于中档题.求函数极值与最值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.19.已知椭圆的长轴长为,离心率为.(1)求椭圆的方程;(2)过动点的直线交轴于点,交椭圆于点,(在第一象限),且是线段的中点.过点作轴的垂线交椭圆于另一点,延长交椭圆于点.①设直线、的斜率分别为,证明为定值;②求直线斜率取最小值时,直线的方程.【参考答案】(1)(2)①详见解析②【试题解析】【分析】(1) 利用长轴长为,离心率为分别求出的值,再求出的值,即可求出椭圆方程;(2) ①设出的坐标,表示出直线的斜率,作比即可;②设出的坐标,分别求出的方程,联立方程组,求出直线的斜率的解析式,根据不等式的性质计算出的最小值,再求出的值即可.(1)由题意得:,所以,,故椭圆方程为.(2)①设,(,),由,可得,所以直线的斜率,直线的斜率此时,所以为定值.②设,,直线的方程为,直线的方程为.联立,整理得,由,可得,同理,.所以,,,所以,由,,可知,所以,当且仅当时取得等号.由,,在椭圆:上得,此时,即,由得,,所以时,符合题意.所以直线的斜率最小时,直线的方程为.本题主要考查椭圆的方程,椭圆的定值问题、最值问题,以及直线圆椭圆的位置关系,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.已知函数,.(1)求在处的切线方程;(2)当时,求在上的最大值;(3)求证:的极大值小于1.【参考答案】(1);(2)故当时,;当时,;当时,;(3)详见解析.【试题解析】【分析】(1)求出函数的导数,根据导数的几何意义求出切线斜率再由点斜式可得结果;(2)求出的解析式,求出,分别令可得函数增区间,令可得函数的减区间,分类讨论,根据函数的单调性可求出的最大值;(3)求出函数的导数,两次求导可判断函数的单调性,利用单调性求出函数的极值,判断即可.(1)∵,∴,∴在处的切线方程为,即,(2),(),令,得,在区间上,,函数是增函数;在区间上,,函数是减函数;故当时,在上递减,.当时,先增后减,故.当时,在上递增,此时.(3),令,,则函数在上单调递减,,,所以存在唯一的,当时,当时,,所以函数的单调递增区间是,单调递减区间是,其中,所以函数有极大值.函数的极大值是,由,得,所以,因为,所以,即,所以的极大值小于1.本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.( ,2)
12.[1,5]
6 13.
3
1 14.
2
x2 15.解:( 1) p 真:椭圆
5
y2 1 的焦点在 x 轴上
a
∴0 a 5
…………5 分
( 2)∵“ p 或 q ”为真命题、 “ p 且 q ”为假命题 ∴ p 真 q 假或 p 假 q 真 ………………7 分
q 真:∵关于 x 的不等式 3x2 2ax 3 0 在 R 上恒成立
▲ .
11.已知函数 f ( x) 的定义域为 R , f '( x) 是 f ( x) 的导函数,且 f (2) 3 , f '(x) 1 ,则不等式
f (x) x 1 的解集为
▲ .
12.已知 A(4,0) , B(1,0) ,动点 P 满足 PA 2PB .设点 P 到点 C( 3,0) 的距离为 d ,则 d 的取值
4 y0
2 2x0 y0 | 2 2 为定值.
x0 y0 x0
2 y0
2
…………………… 16 分
方法(二)若直线 BP 斜率不存在, 则直线 BP 方程为: x 0 ,此时 P(0, 1) ,则 M (0,0) ,N (0, 1)
∴ AM BN 2 2 2 2
若直线 BP 斜率存在,设直线 BP 方程为: y kx 1,且 k 0
……………………5 分
∴圆 C 的方程为: x 2 ( y 2)2 9 ;
……………………7 分
( 2)若直线 AB 的斜率不存在,则直线 AB : x 1∴ AB 4 2 ,不符合题意,舍;
若直线 AB 的斜率存在,设 AB : y k( x 1)
∵ AB 4 ∴点 C 到直线 AB : kx y k 0 的距离为 5 ,即 | 2 k | 5 , k2 1
1 ,且
0 .试判断在点 M ( x0 , h(x0 ))
扬州市 2017— 2018 学年度第一学期期末检测试题
高 二数 学 参考 答案
2018. 1
2
1. x R , x 1 0 2. 1 3. (1,0) 4. y x 5. 1 4
6. 45
7. 11 5
8. ( ,4)
9.4
10. y2 x 2 1
1(a b
0) 的右准线方程为
x
2 ,又离心率为
2 ,椭圆的左顶点为 2
A ,上顶点为 B ,点 P 为椭圆上异于 A, B 任意一点.
( 1)求椭圆的方程;
( 2)若直线 BP 与 x 轴交于点 M ,直线 AP 与 y 轴交于点 N ,求证: AM BN 为定值.
20.(本题满分 16 分) 已知:函数 f x ax lnx .
6.某校学生高一年级有 400 人,高二年级有 300 人,高三年级有 200 人,现用分层抽样的方法从
所有学生中抽取一个容量为 n 的样本.已知从高三学生中抽取的人数为
10,那么 n = ▲ .
7.执行如图所示的程序框图,输出的 s 值为
▲
.
开始
n 0, s 1
s2 s
s
n3 N
输出 s
n n1 Y
2c
2
2
∴c
2
1,a
2
∴ b2
1
∴椭圆的方程为:
x
y2 1;
2
………………6 分
2
( 2)方法(一)设点 P(x0, y0 ) ,则 x0 y02 1 , A( 2,0), B(0,1) ,即 x02 2 y02 2 . 2
当 x0 0 时, P(0, 1) ,则 M (0,0) , N (0, 1) ∴ AM BN 2 2 2 2 ………………8 分
( 1)当 a 1时,求比值 M 取最小值时 x 的值;
( 2)经过调查,环保部门发现:当比值
M
不超过
4
e 时不需要进行环境防护.为确保恰好..
3
年不
需要进行保护,求实数 a 的取值范围. ( e 为自然对数的底, e 2.71828 )
19.(本题满分 16 分)
已知椭圆
E:
x2 a2
y2 b2
k
2k 1
……………… 16 分
20.解:( 1)当 a 1时, f x x lnx ∴ f ' x 1 1 x 1 ,令 f ' x 0 ,则 x 1,列表得: xx
x
(0,1)
1
(1, )
f' x
0
fx
单调减
极小值
∴ f x 有极小值 f 1 1 ,无极大值;
单调增 ……………………3 分
( 2) g x
1.命题 “ x R, x2 1 0 ”的否定是
2.直线 2x y 1 0 在 y 轴上的截距为
▲
.
▲ .
3.抛物线 y 2 4 x 的焦点坐标为
▲ .
4.曲线 y 2x sin x 在 (0,0) 处的切线方程为
▲
.
5.在边长为 2 的正方形内随机取一点,取到的点到正方形中心的距离大于
1 的概率为 ▲ .
ax ln x x2 , x 0 ∴ g ' x
∵点 P 异于点 A ∴ x0
2
当 x0
2 且 x0 0 时,设直线 AP 方程为: y
y0 ( x
x0 2
2) ,它与 y 轴交于点 N (0, 2 y0 ) x0 2
直线 BP 方程为: y
y0
1 x
1 ,它与 x 轴交于点 M (
x0 ,0)
x0
y0 1
∴ AM | x0 y0 1
2 | | 2 y0 x0 y0 1
) 上单调增
∵确保恰.好. 3 年不需要进行保护
4
M (1) 2e e
∴ M (3)
2ae3 7
e4 ,解得: 13
a
7e
M (4) 2ae4 e4
2
2
13
答:实数 a 的取值范围为
13 (,
7e ]
.
22
…………………… 16 分
19.解:( 1)∵椭圆的右准线方程为
x
2
2
∴a
2c
∵离心率为 2 ∴ a
列表得: x
(1,2)
2
(2, )
f' x
0
fx
单调减
极小值
单调增
…………………6 分 ∴ M 在 (1,2)上单调减,在 (2, ) 上单调增 ∴ M 在 x 2 时取最小值; ……………………8 分
2a( x 1)(x 2)ex
( 2)∵ M '
(x2 x 1)2 (a 0) 根据( 1)知: M 在 (1,2) 上单调减,在 (2,
化简得:
2
4k
4k
1
0
∴k 1 2
……………………9 分
1
联立方程:
y
( x 1) 2
,消去
y
得:
2
5x
10x 11
0 ∴ x1x2
11
…… 14分
x2 ( y 2)2 9
5
18.解:( 1)当 a 1时, M
2ex
x2
x
(x 1
1) ,∴ M '
2( x 1)(x 2)ex (x2 x 1)2 ……………………3 分
18.(本题满分 16 分) 某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量
y (万只)与时
间 x (年)(其中 x N * )的关系为 y 2ex .为有效控制有害昆虫数量、保护生态环境,环保部门
通过实时监控比值 M
ay x2 x
(其中 a 为常数,且 1
a
0 )来进行生态环境分析.
①
0.44
3
[80,90)
②
③
4
[90,100]
4
0.08
合计
50
1
( 1)填充上述表中的空格(在解答中直接写出对应空格序号的答案)
;
( 2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩; ( 3)甲同学的初赛成绩在 [90,100] ,学校为了宣传班级的学习经验,随机抽取分数在
[90,100] 的 4
1
…………………… 13分
2
答:此次数学史初赛的平均成绩为
77.4 ,甲同学被抽取到的概率为
1 .…………………… 14 分 2
17.解:( 1)设 C (0,m) , m 0 ∵直线 4x 3 y 9 0 圆 C 相切,且圆 C 的半径为 3
∴ | 3m 9 | 3 ,解得 m 2 或 m 8 ∵ m 0 ∴ m 2 5
▲ .
二、解答题: (本大题共 6 道题,计 90 分 . 解答应写出必要的文字说明、证明过程或演算步骤)
15.(本题满分 14 分)
2
已知命题 p :“椭圆 x 5
2
y 1 的焦点在 x 轴上 ”;命题 q :“关于 x 的不等式 3x2 2ax 3 0 在 a
R 上恒成立 ”. ( 1)若命题 p 为真命题,求实数 a 的取值范围; ( 2) 若命题 “p 或 q ”为真命题、 “p 且 q ”为假命题,求实数
范围为
▲ .
13.斜率为
1 直线 l 经过椭圆 3
x2 a2
y2 b2
1(a b 0) 的左顶点 A ,且与椭圆交于另一个点
B ,若在 y
轴上存在点 C 使得 △ABC 是以点 C 为直角顶点的等腰直角三角形,则该椭圆的离心率
为 ▲ .
14. 已知函数 f ( x) x | x 2 3a | 在 x [0,2] 的值域为 [0,4 m] ,则实数 m 的最小值为