第5章机器人控制系统 ppt课件

合集下载

《机器人控制》PPT课件

《机器人控制》PPT课件

同样可得活塞位移X与配油器输入信号(位移误 差信号)U间的关系为:
编辑ppt
29
5.l机器人的基本控制原则
5.1.2伺服控制系统举例 2.电一液压伺服控制系统
据式(5.5)、(5.6)和图5.4可得系统的传递 函数:
编辑ppt
30
5.l机器人的基本控制原则
5.1.2伺服控制系统举例 2.电一液压伺服控制系统 当采用力矩电动机作为位移给定元件时
编辑ppt
43
5.2 机器人的位置控制
机器人为连杆式机械手,其动态特性具有高度的非线性。 要控制这种由马达驱动的操作机器人,用适当的数学方 程式来表示其运动是十分重要的。这种数学表达式就是 数学模型,或简称模型。控制机器人运动的计算机,运 用这种数学模型来预测和控制将要进行的运动过程。
式中,1很小而又可以忽略时
编辑ppt
31
5.l机器人的基本控制原则
5.1.2伺服控制系统举例
3.滑阀控制液压传动系统 图5.5表示出一个简单的滑阀控制液压传动系统 的结构框图。其中所用的控制阀为四通滑阀。
编辑ppt
32
5.l机器人的基本控制原则
5.1.2伺服控制系统举例 3.滑阀控制液压传动系统
5.1.2伺服控制系统举例
3.滑阀控制液压传动系统
式中,c=k1n为闭环系统的自然角振荡频率;
c k1 为闭环系统的阻尼系数:2 1 为k1闭环系统
的第二时间常数;另一时间常数为1。
式(5.25)即为所求闭环系统的传递函数。从此式 可见,此闭环系统为一等价三阶系统。我们往往把 它简化为一个一阶环节与一个二阶环节串联的系统。 这样,便于对系统进行分析与研究。
13
PID控制器参数整定的一般规律

《机器人的控制系统》课件

《机器人的控制系统》课件

自主导航
通过路径规划和导航算法,实现无人机的自主飞行和自动巡航。
THANKS
功能
机器人控制系统的主要功能包括感知 、决策、执行和反馈,使机器人能够 自主或半自主地完成复杂任务。
机器人控制系统的组成与分类
组成
机器人控制系统通常由感知系统、决策系统、执行系统和反馈系统等组成。
分类
根据控制方式和结构,机器人控制系统可分为集中式、分布式和混合式控制系 统。
机器人控制系统的历史与发展
历史
机器人控制系统的发展可以追溯到20世纪50年代,随着计算 机技术、传感器技术和算法的发展,机器人控制系统的性能 和功能不断得到提升。
发展
未来机器人控制系统的发展将更加注重智能化、自主化和协 同化,同时随着技术的进步,机器人控制系统将更加广泛地 应用于各个领域。
02
机器人感知系统
感知系统的组成与功能
《机器人的控制系统》ppt课件
$number {01}
目录
• 机器人控制系统概述 • 机器人感知系统 • 机器人运动控制系统 • 机器人智能决策系统 • 机器人控制系统实例分析
01
机器人控制系统概述
机器人控制系统的定义与功能
定义
机器人控制系统是用于指导机器人完 成预设任务的一系列软硬件设备和算 法。
组成
智能决策系统由感知、决策和执行三个部分 组成。感知部分负责收集环境信息,决策部 分根据感知信息进行决策,执行部分则根据 决策结果控制机器人行动。
功能
智能决策系统的主要功能是使机器人能够自 主地适应环境变化,进行有效的任务规划和 行动决策,提高机器人的自主性和智能化水 平。
决策算法与实现
决策算法
感知系统的组成

《机器人控制系统》课件

《机器人控制系统》课件

总结词
人机交互技术是实现人与机器人之间有 效沟通的重要手段。
VS
详细描述
人机交互技术涉及机器人的语音识别、自 然语言处理、手势识别和视觉识别等技术 。通过人机交互技术,机器人可以理解人 类的指令和需求,并作出相应的响应。这 有助于提高机器人的可用性和用户体验, 使其更好地适应人类生活和工作。
PART 03
PART 05
机器人控制系统的实例分 析
工业机器人的实例分析
01
02
03
工业机器人概述
工业机器人是一种自动化 设备,可以在生产线上执 行重复性任务,提高生产 效率和产品质量。
工业机器人应用
工业机器人在汽车制造、 电子制造、物流等领域广 泛应用,例如焊接、装配 、搬运等。
工业机器人实例
ABB、KUKA、FANUC等 是全球知名的工业机器人 品牌,其产品在制造业中 广泛应用。
功能
机器人控制系统具有多种功能,包括感知、决策、执行、学习等,这些功能共 同协作,使机器人能够完成各种复杂的任务。
机器人控制系统的基本组成
感知模块
负责接收来自传感器和 其他输入设备的信息, 以便了解机器人周围的
环境和状态。
决策模块
根据感知模块提供的信 息,进行决策和规划, 确定机器人的行动方案

执行模块
安全与隐私保护
总结词
随着机器人应用的普及,安全与隐私保护成为机器人控 制系统面临的一个重要挑战。
详细描述
在机器人控制系统中,安全与隐私保护涉及到多个方面 ,如数据加密、访问控制、防止黑客攻击等。为了确保 机器人的安全和用户的隐私,需要采取一系列的安全措 施和技术手段,如加密通信、身份验证和访问控制等。 同时,还需要加强安全监管和管理,制定相关的法律法 规和技术标准,规范机器人的研发、生产和应用。

《机器人的控制系统》课件

《机器人的控制系统》课件
应用领域
了解机器人控制系统在工业自动化、医疗护理、农业与食品加工等领域的广泛应用。
机器人的控制系统技术
传感器技术
探索机器人控制系统中的传感器 技术,如摄像头、激光雷达和力 觉传感器。
数据处理与算法
研究机器人控制系统中的数据处 理和算法,以实现高效、准确的 决策与规划。
控制器设计与实现
了解机器人控制系统中的控制器 设计和实现原理,包括硬件架构 和软件编程。
探讨人机协作和智能感知在机器人控制系统中的发展和应用前景。
2 自主决策与深度学习
研究自主决策和深度学习技术对机器人控制系统的影响和潜在机会。
3 安全性与可靠性
考虑机器人控制系统的安全性和可靠性问题,以建立安全且可信赖的机器人系统。
机器人的控制系统发展
感谢大家参与本《机器人的控制系统》PPT课件。希望通过本课程的学习,您 能够深入了解机器人控制系统的技术和应用,为未来的机器人发展做出贡献。
《机器人的控制系统》 PPT课件
欢迎大家来到《机器人的控制系统》PPT课件。在本课程中,我们将深入研究 机器人控制系统的关键概念、技术和应用领域,并探讨未来的挑战和趋势。
机器人的控制系统概述
系统组成
了解机器人控制系统的基本组成,包括感知与数据采集、决策与规划、执行与控制。
技术要点
掌握机器人控制系统的关键技术,如传感器技术、数据处理与算法、控制器设计与实现。
机器人控制系统的应用领域
Байду номын сангаас
1
工业自动化
探索机器人控制系统在自动化生产线上的应用,提高生产效率和产品质量。
2
医疗护理
了解机器人控制系统在医疗领域的应用,如手术机器人和辅助护理机器人。

第5章机器人控制系统

第5章机器人控制系统
5.2.3 力(力矩)控制方式
机器人行程的速度 /时间曲线
在进行装配或抓取物体等作业时,工业机器人末端操作器与环境或作业对象
的表面接触,除了要求准确定位之外,还要求使用适度的力或力矩进行工作,这时 就要采取力 (力矩)控制方式。力(力矩)控制是对位置控制的补充,这种方式的控制 原理与位置伺服控制原理也基本相同,只不过输入量和反馈量不是位置信号,而是 力 (力矩 )信号,因此,系统中有力 (力矩)传感器。
5.1.4 工业机器人控制的特点
1) 传统的自动机械是以自身的动作为重点,而工业机器人的控制系统则更 着重本体与操作对象的相互关系。
2) 工业机器人的控制与机构运动学及动力学密切相关。
3) 每个自由度一般包含一个伺服机构,多个独立的伺服系统必须有机地协
调起来,组成一个多变量的控制系统。
4) 描述工业机器人状态和运动的数学模型是一个非线性模型,随着状态的
姿态和轨迹、操作顺序及动作的时间等。 机器人控制系统有三种结构:集中控制、主从控制和分布式控制。
5.1.1 机器人控制系统的基本功能
机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以 完成特定的工作任务,其基本功能如下:
(1)记忆功能 ( 2)示教功能 ( 3)与外围设备联系功能 ( 4)坐标设置功能 ( 5)人机接口 ( 6)传感器接口 ( 7)位置伺服功能
第八页,编辑于星期二:二十点 二十一分。
5.2 工业机器人控制的分类
工业机器人控制结构的选择,是由工业机器人所执行的任务决定的,对不 同类型的机器人已经发展了不同的控制综合方法。工业机器人控制的分类,
没有统一的标准。
? 按运动坐标控制的方式来分:有关节空间运动控制、直角坐标空间 运动控制

第5章-机器人控制

第5章-机器人控制

5.4 机器人的智能控制
–4.遗传算法
•遗传算法(Genetic Algorithm)是模拟达尔文生物进 化论的自然选择和遗传学机理的生物进化过程的计算模 型,是一种通过模拟自然进化过程搜索最优解的方法。 •主要特点:直接对结构对象进行操作,不存在求导和函 数连续性的限定;具有内在的隐并行性和更好的全局寻 优能力;采用概率化的寻优方法,能自动获取和指导优 化的搜索空间,自适应地调整搜索方向,不需要确定的 规则。
k0
Vf s s 1es1ms
电气时间常数
机械时间常数
m s Vf s

s
k0
1 m s
5.2 机器人的位置控制
–因为转子转速ω=dθm/dt,所以:
m s Vf s

k0
s 1ms
m s Vf s

k0
1ms
–电枢控制直流电动机的传递函数:
S
1
22
S
2

S2
22

1

5.2 机器人的位置控制
机器人为串续连杆式机械手,其动态特性具有高 度的非线性。控制这种由马达驱动的操作机器 人,用适当的数学方程式来表示其运动是十分重 要的。这种数学表达式就是数学模型,或简称模 型。控制机器人运动的计算机,运用这种数学模 型来预测和控制将要进行的运动过程。
–3. 主要控制层次
•(3)伺服系统级 •解决机器人的一般实际问题。主要包括伺服电机的控 制、液压缸伺服控制、电-液伺服控制等。
5.1 机器人的基本控制原则
–液压缸伺服传动系统
•作为液压传动系统的动力元件, 能够省去中间动力减速器,从而消 除齿隙和磨损问题。 •结构简单、比较便宜,在工业机 器人机械手的往复运动装置和旋转 运动装置上都获得了广泛应用。

《机器人控制》课件

《机器人控制》课件
总结词
描述机器人轨迹规划的方法和步骤。
详细描述
介绍机器人轨迹规划的定义、目的和意义,以及基于时间、基于距离、基于加速 度等轨迹规划方法,并给出相应的规划步骤和实例。
04
机器人控制算法
基于规则的控制算法
基础且常用
基于规则的控制算法是机器人控制中最为基础和常用的算法之一。它根据预先设 定的规则或逻辑,对机器人的运动进行控制。这种算法通常比较简单,易于实现 ,适合于一些简单的、确定性强的任务。
详细描述
介绍机器人运动学的定义、研究内容 、坐标系建立、运动学方程的建立等 基本概念,以及正运动学和逆运动学 的求解方法。
机器人动力学基础
总结词
描述机器人动力学的基础概念和原理。
详细描述
介绍机器人动力学的基本概念,如牛顿-欧拉方程、拉格朗日方程等,以及机器 人在各种运动状态下的动力学特性。
机器人轨迹规划
服务机器人应用实例
家庭服务
服务机器人进入家庭,提 供清洁、烹饪、照看老人 和儿童等服务,提高家庭 生活质量。
医疗护理
服务机器人在医疗护理领 域协助医生诊断、护理病 人,提高医疗服务水平。
旅游导览
服务机器人在旅游景区提 供导览服务,为游客提供 详细的信息和便利的导航 。
特种机器人应用实例
深海探测
特种机器人潜入深海进行资源勘探、海洋生物研 究等,拓展人类对海洋的认识。
《机器人控制》ppt课件
• 机器人控制概述 • 机器人感知与决策 • 机器人运动控制 • 机器人控制算法 • 机器人应用实例
01
机器人控制概述
机器人控制的基本概念
机器人控制
控制系统的目标
指通过预设的算法或指令,使机器人 按照要求完成一系列动作或任务的过 程杂、精确的 任务。

《工业机器人技术基础》(第5章)

《工业机器人技术基础》(第5章)
点位控制方式的主要技术指标是定位精度和运动所需的时间。
2.连续轨迹控制
(a)
(b)
(c)
图5-11 示教数据的编辑机能
(d)
连续轨迹控制不仅要求机器人以一定的精度到达目标点,而且对移动轨
迹也有一定的精度要求。
5.2.2 力控制
1.被动交互控制
在被动交互控制中,由于机器人固有的柔顺,机器人末端执行器的轨迹 被相互作用力所修正。被动交互控制不需要力〔力矩〕传感器,并且预设的 末端执行器轨迹在执行期间也不需要改变。此外,被动柔顺结构的响应远快 于利用计算机控制算法实现的主动重定位。
集中控制结构是用一台计算机实现全部控制功能,构简单、本钱低,但实时 性差,难以扩展。
图5-3 集中控制结构框图
2.主从控制结构
主从控制结构采用主、从两级处理器实现系统的全部控制功能。主计算机实现管理、 坐标变换、轨迹生成和系统自诊断等;从计算机实现所有关节的动作控制。这种控制结 构系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。
2.运动控制功能
运动控制功能是指通过对机器人末端执行器在空间的位姿、速度、加速度等项的 控制,使机器人末端执行器按照任务要求进行动作,最终完成给定的作业任务。
运动控制功能与示教再现功能的区别
在示教再现控制中,机器人末端执行器的各项运动参数是由示教人员 教给它的,其精度取决于示教人员的熟练程度;而在运动控制中,机器 人末端执行器的各项运动参数是由机器人的控制系统经过运算得来的, 且在工作人员不能示教的情况下,通过编程指令仍然可以控制机器人完 成给定的作业任务。
5.1.3 工业机器人控制系统的组成
工业机器人控制系统主要由控制计算机、示教盒、操作面板、硬盘和软盘存储器、 数字和模拟量输入/输出接口、打印机接口、传感器接口、轴控制器、辅助设备控制 接口、通信接口、网络接口等组成,如图5-2所示。

工业机器人技术(郭洪红)第5章.pptx

工业机器人技术(郭洪红)第5章.pptx
手把手示教编程也能实现点位控制,与CP控制不同的是, 它只记录各轨迹程序移动的两端点位置, 轨迹的运动速度则按 各轨迹程序段对应的功能数据输入。
第5章 工业机器人控制 2)
示教盒示教编程方式是人工利用示教盒上所具有的各种功 能的按钮来驱动工业机器人的各关节轴, 按作业所需要的顺序 单轴运动或多关节协调运动, 从而完成位置和功能的示教编程。
第5章 工业机器人控制
2. 示教编程方式
1)
手把手示教编程方式主要用于喷漆、弧焊等要求实现连续 轨迹控制的工业机器人示教编程中。具体的方法是人工利用示 教手柄引导末端执行器经过所要求的位置,同时由传感器检测 出工业机器人各关节处的坐标值,并由控制系统记录、存储下 这些数据信息。实际工作当中, 工业机器人的控制系统重复再 现示教过的轨迹和操作技能。
第5章 工业机器人控制
第5章 工业机器人控制
5.1 工业机器人控制系统的特点 5.2 工业机器人控制系统的主要功能 5.3 工业机器人的控制方式 5.4 电动机的控制 5.5 机械系统的控制 习题
第5章 工业机器人控制
5.1 工业机器人控制系统的特点
机器人的结构是一个空间开链机构, 其各个关节的运动是 独立的, 为了实现末端点的运动轨迹, 需要多关节的运动协调。 因此, 其控制系统与普通的控制系统相比要复杂得多,具体如 下:
第5章 工业机器人控制 图 5.1 示教数据的编辑机能
第5章 工业机器人控制 图 5.2 CP控制示教举例
第5章 工业机器人控制 2)
工业机器人的记忆方式随着示教方式的不同而不同。又由 于记忆内容的不同, 故其所用的记忆装置也不完全相同。通常, 工业机器人操作过程的复杂程序取决于记忆装置的容量。容量 越大, 其记忆的点数就越多, 操作的动作就越多, 工作任务就 越复杂。

《机器人控制系统》课件

《机器人控制系统》课件

2 封闭式控制系统
独立运行且对外部输入不敏感的控制系统, 通常用于自动化生产线。
机器人控制系统的ቤተ መጻሕፍቲ ባይዱ作原理
1
信号采集
传感器感知环境并将相关信号转化为数字或模拟信号。
2
信号处理
控制器对采集到的信号进行处理和分析,得出机器人需要采取的行动。
3
控制指令发送
控制器向执行器发送控制指令,指示机器人进行相应的动作和任务。
机器人控制系统的组成
传感器
用于感知机器人周围环境的 设备,如视觉传感器、力传 感器等。
控制器
负责接收和处理传感器信号, 并发出控制指令的中央处理 单元。
执行器
根据控制器发送的指令,驱 动机器人执行相应的动作和 任务的设备。
机器人控制系统的分类
1 开放式控制系统
允许通过外部输入对机器人进行干预和调整 的控制系统。
《机器人控制系统》PPT 课件
机器人控制系统是现代科技的重要组成部分。本课程介绍了机器人控制系统 的基本原理和应用,帮助您了解机器人控制系统在工业、物流、医疗和安防 等领域的重要性。
机器人控制系统简介
机器人控制系统是指用于控制机器人运动和行为的一系列技术和设备。在本节中,我们将介绍机器人控制系统 的基本概念和重要性。
安防监控
机器人控制系统在巡 逻、监控和警报等方 面增强安全防范能力。
机器人控制系统的未来展望
1 人工智能技术的发展与应用
机器学习和深度学习等人工智能技术将进一步提升机器人控制系统的智能化和自主性。
2 机器人控制系统的发展趋势
模块化、灵活性和可扩展性是未来机器人控制系统发展的关键方向。
结论
机器人控制系统在工业、物流、医疗和安防等领域具有重要的应用价值,对 未来社会的发展和进步起着关键作用。

第五章 机器人的控制基础PPT课件

第五章 机器人的控制基础PPT课件

3. 力(力矩)控制方式 在完成装配、抓放物体等工作时,除要
准确定位之外,还要求使用适度的力或力 矩进行工作,这时就要利用力(力矩)伺 服方式。
4. 智能控制方式 详见第六章。
三、机器人控制的基本单元
机器人控制系统的基本要素包括电动机、 减速器、运动特性检测的传感器、驱动电 路、控制系统的硬件和软件。
1-电枢绕组;2-电枢铁心;3-机座;4-主磁极铁心; 5-励磁绕组;6-换向极绕组;7-换向极铁心;8-主磁极
极靴;9-机座底脚; 直流电机横剖面示意图
2.直流电机的额定值
(1)额定功率:是指轴上输出的机械功率,单 位为kW。
(2)额定电压:安全工作的最大外加电压或输 出电压,单位为V(伏)。
•快速响应好 直流伺服电机:传统型和低惯量型两种类型。
传统型按定子磁极的种类分为两种,永磁式和 电磁式。永磁式的磁极是永久磁铁;电磁式的磁 极是电磁铁,磁极外面套着励磁绕组。
低惯量分为盘形电枢直流伺服电机、 空心杯电枢永磁式直流伺服电机及无槽电 枢直流伺服电机。
1一定子;2一转子 图5-3 盘型直流电机结构
• 1一转子(导线绕6空心杯1);2一内定子; 3一外定子;4一磁极;5一气隙;6—导 线;7一内定子中的磁路
• 图5-4 杯型直流电机结构
在电枢控制方式下,直流伺服电机的主 要静态特性是机械特性和调节特性。
1.机械特性 直流伺服电机的机械特性公式,
n
Ua
CT
R
CeCT 2
n0
RT
CeCT 2
2. 交流伺服电机的转子有三种结构型式:
(1)高电阻率导条的鼠笼转子
国内生产的SL系列的交流伺服电机就 是采用这种结构。
(2)非磁性空心杯转子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 机器人控制系统
5.1 控制系统概述 5.2 工业机器人控制的分类 5.3 工业机器人的位置控制 5.4 工业机器人运动轨迹控制 5.5 智能控制技术
PPT课件
1
5.1 控制系统概述
机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要 因素。工业机器人控制技术的主要任务就是控制工业机器人在工作空 间中的运动位置、姿态和轨迹、操作顺序及动作的时间等。
工业机器人接受控制器发出的关节驱动力矩矢量,装于机器人各关节上的
传感器测出关节位置矢量和关节速度矢量,再反馈到控制器上,因此,工业机
器人每个关节的控制系统都是一个闭环控制系统。
PPT课件
12
5.4 工业机器人的运动轨迹控制
路径和轨迹规划与受到控制的机器人从一个位置移动到另一
个位置的方法有关。路径和轨迹规划既要用到机器人的动力学
又要用到运动学。
轨迹规划方法一般是在机器人初始位置和目标位置之间用多
项式函数来“逼近”给定的路径,并产生一系列“控制设定
点”。
路径端点一般是在笛卡尔坐标中给出的,如果需要某些位置
的关节坐标,则可调用运动学的逆问题求解程序,进行必要的
转换。
轨迹控制就是控制机器人手端沿着一定的目标轨迹运动。因
此,目标轨迹的给定方法和如何控制机器人手臂使之高精度地
4) 描述工业机器人状态和运动的数学模型是一个非线性模型,随着状态的 变化,其参数也在变化,各变量之间还存在耦合。因此,仅仅是位置闭环是不 够的,还要利用速度、甚至加速度闭环。系统中还经常采用一些控制策略,比 如使用重力补偿、前馈、解耦、基于传感信息的控制和最优PID控制等。
5) 工业机器人还有一种特有的控制方式——示教再现控制方式。
按控制系统对工作环境变化的适应程度来分:有程序控制系统、 适应性控制系统、人工智能控制系统
按同时控制机器人数目的多少来分:可分为单控系统、群控系统
按运动控制方式的不同:将机器人控制分为位置控制、速度控制、 力控制(包括位置/力混合控制)三类
PPT课件
9
5.2.1 位置控制方式
工业机器人位置控制分为点位控制(如图a)和连续轨迹控制(如图b)两类。
5.2.3 力(力矩)控制方式
机器人行程的速度/时间曲线
在进行装配或抓取物体等作业时,工业机器人末端操作器与环境或作业对象
的表面接触,除了要求准确定位之外,还要求使用适度的力或力矩进行工作,这
时就要采取力(力矩)控制方式。力(力矩)控制是对位置控制的补充,这种方式的控
制原理与位置伺服控制原理也基本相同,只不过输入量和反馈量不是位置信号,
(2)示教盒
(3)操作面板
(4)硬盘和软盘存储
(5)数字和模拟量输入输出
(6)打印机接口
(7)传感器接口
(8)轴控制器
(9)辅助设备控制
(10)通信接口
(11)网络接口
PPT课件
3
5.1.3 机器人控制的关键技术
1. 关键技术
(1) 开放性模块化的控制系统体系结构 (2) 模块化层次化的控制器软件系统 (3) 机器人的故障诊断与安全维护技术 (4) 网络化机器人控制器技术
2. 机器人示教
(1) 直接示教 手把手示教,由人直接搬动机器人的手臂对机器人进行示教, 如示教盒示教或操作杆示教等。 (2) 离线示教 不对实际作业的机器人直接进行示教,而是脱离实际作业环境 生成示教数据,间接地对机器人进行示教。
PPT课件
4
典型的微机控制系统框图如图所示。图中的输入量一般由程序给定,也 可以由输入装置给定。
机器人控制系统有三种结构:集中控制、主从控制和分布式控制。
5.1.1 机器人控制系统的基本功能
(1)记忆功能
(2)示教功能
(3)与外围设备联系功能
(4)坐标设置功能
(5)人机接口
(6)传感器接口
(7)位置伺服功能
(8)故障诊断安全保护功能PPT课件
2
5.1.2 机器人控制系统的组成
(1)控的特点是仅控制离散点上工业机器人末端执行器的位姿,要求尽快而 无超调地实现相邻点之间的运动,但对相邻点之间的运动轨迹一般不作具体规定。
(2) 连续轨迹控制
这类运动控制的特点是连续控制工业机器人末端执行器的位姿,使某点按规定
的轨迹运动。
PPT课件
10
5.2.2 速度控制方式
工业机器人,在位置控制的同时,有时还要 进行速度控制。例如,在连续轨迹控制方式的情 况下,工业机器人按预定的指令,控制运动部件 的速度和实行加、减速,以满足运动平稳、定位 准确的要求,如图5.7所示。由于工业机器人是 一种工作情况(行程负载)多变、惯性负载大的运 动机械,要处理好快速与平稳的矛盾,必须控制 起动加速和停止前的减速这两个过渡运动区段。
PPT课件
7
5.1.4 工业机器人控制的特点
1) 传统的自动机械是以自身的动作为重点,而工业机器人的控制系统则更 着重本体与操作对象的相互关系。
2) 工业机器人的控制与机构运动学及动力学密切相关。
3) 每个自由度一般包含一个伺服机构,多个独立的伺服系统必须有机地协 调起来,组成一个多变量的控制系统。
总之,工业机器人控制系统是一个与运动学和动力学原 理密切相关的、有耦合的、非线性的多变量控制系统。
PPT课件
8
5.2 工业机器人控制的分类
工业机器人控制结构的选择,是由工业机器人所执行的任务决定 的,对不同类型的机器人已经发展了不同的控制综合方法。工业机器 人控制的分类,没有统一的标准。
按运动坐标控制的方式来分:有关节空间运动控制、直角坐标空 间运动控制
典型的微机控制系统框图
PPT课件
5
微机控制系统的输入通道
微机控PP制T课系件统的输出通道
6
在工业机器人控制中,进行轨迹规划等需要完成大量的计算工作, 因此,一般采用监督控制系统(SCC——Supervisory Computer Control)。其组成如图所示
SCC+模拟调节节器
SCC+DDC
而是力(力矩)信号,因此,系统中有力(力矩)传感器。
PPT课件
11
5.3 工业机器人的位置控制
工业机器人位置控制的目的,就是要使机器人各关节实现预先所规划的 运动,最终保证工业机器人终端(手爪)沿预定的轨迹运行。
下图所示表示机器人本身、控制器和轨迹规划器之间的关系。图中的轨 迹规划器由监督计算机来完成,控制器则由模拟调节器或DDC计算机来完成。
相关文档
最新文档