三极管工作原理及详解.

合集下载

三极管的工作原理

三极管的工作原理

三极管的工作原理引言概述:三极管是一种重要的电子元件,广泛应用于各种电子设备中。

它的工作原理是基于PN结的导电性能和控制电流的特性。

本文将详细介绍三极管的工作原理,匡助读者更好地理解这一电子元件的运作机制。

一、PN结的形成1.1 PN结的概念:PN结是由P型半导体和N型半导体直接接触形成的结构。

1.2 PN结的电性:PN结的两侧形成电场,使得P区和N区的电子和空穴在结附近被吸引,形成电势垒。

1.3 PN结的导电性:当PN结处于正向偏置时,电子从N区向P区挪移,空穴从P区向N区挪移,导致PN结导通。

二、三极管的结构2.1 三极管的构造:三极管由三个掺杂不同的半导体层组成,分别是发射极、基极和集电极。

2.2 三极管的符号表示:三极管的符号表示为一个箭头指向基极,箭头指向基极的一侧是发射极,另一侧是集电极。

2.3 三极管的工作方式:三极管通过控制基极电流来控制集电极和发射极之间的电流。

三、三极管的工作原理3.1 放大作用:当基极电流增加时,集电极和发射极之间的电流也增加,实现信号的放大。

3.2 开关作用:三极管可以被用作开关,当基极电流为零时,三极管处于截止状态,不导通;当基极电流增加时,三极管处于饱和状态,导通。

3.3 稳压作用:三极管可以用作稳压器,通过控制基极电流来实现对电路中电压的稳定。

四、三极管的应用领域4.1 放大器:三极管广泛应用于放大电路中,如音频放大器、射频放大器等。

4.2 开关:三极管可用作开关,控制电路的通断,如数字电路、计算机内部电路等。

4.3 稳压器:三极管可以用作稳压器,保护电路中的其他元件不受过高电压的影响。

五、三极管的发展趋势5.1 集成化:随着技术的不断进步,三极管正向着微型化、集成化的方向发展,以适应电子设备的小型化趋势。

5.2 高频化:三极管的工作频率不断提高,适合于更高频率的应用领域,如通信领域。

5.3 多功能化:未来的三极管可能会具有更多的功能,不仅可以实现放大、开关、稳压等功能,还可能具有更多的应用场景。

三极管 讲解

三极管 讲解

三极管讲解三极管,也称为晶体三极管(Bipolar Junction Transistor,简称BJT),是一种半导体器件,用于放大和开关电信号。

它由三个半导体层组成,其中包括两个异种半导体材料(通常是N型和P型硅)和一个绝缘的基底。

三极管有三个电极,分别是发射极(Emitter,E)、基极(Base,B)和集电极(Collector,C)。

三极管的基本工作原理:1.PN结:三极管中的N型和P型半导体层形成两个PN结。

PN结是两种半导体之间的界面,具有整流性质。

2.工作状态:•当NPN三极管中的发射结极(N型)接通正电压,基极(P型)接通负电压时,发射极-基极形成正向偏置,而集电极-基极形成反向偏置。

•当PNP三极管中的发射极(P型)接通负电压,基极(N 型)接通正电压时,发射极-基极形成正向偏置,而集电极-基极形成反向偏置。

3.放大作用:当在发射极和基极之间加上一个小信号电压时,这个信号电压会影响PN结的电流,从而控制集电极和发射极之间的电流。

这种调控作用使得三极管可以作为放大器。

4.工作区域:•放大区域:在适当的工作偏置下,三极管可以进入放大工作区域,通过控制小信号电压来放大输入信号。

•截止区域:当三极管的基极电压太低时,三极管截至,电流无法通过,处于关闭状态。

•饱和区域:当三极管的基极电压适当时,电流可以通过,但达到最大值,三极管处于饱和状态。

三极管的类型:1.NPN型:N型发射极,P型基极,N型集电极。

2.PNP型:P型发射极,N型基极,P型集电极。

三极管的应用:1.放大器:用于放大小信号,如音频信号。

2.开关:用作数字和模拟电路中的开关元件。

3.振荡器:用于产生振荡信号。

4.放大电路:在无线通信和射频电路中使用。

三极管在电子领域中有广泛的应用,是许多电子设备和系统的基础元件之一。

介绍磁敏三极管的结构和工作原理

介绍磁敏三极管的结构和工作原理

介绍磁敏三极管的结构和工作原理
一、磁敏三极管结构
磁敏三极管(Hall-effect transistor)是以磁敏元件的磁特性进行控制的晶体管,它是一种电源有关型的三极管,它由源极、漏极、及基极组成。

在基极的边缘上有一个被称为磁敏片(Hall-plate)的玻璃片,片上有一个磁敏区域,它有能够触发晶体管开关的特性。

二、磁敏三极管的工作原理
当一个外加电磁场接触磁敏片(Hall-plate)时,就会产生一个引起磁敏片两侧源极和漏极之间电势差的电场,从而使三极管开关。

电磁场大小由磁感应强度、半径和磁敏片距离磁体的距离决定。

当磁敏三极管被激发时,源极和漏极之间电压差称为磁敏电压,磁敏电压的大小由电磁场强度决定。

当外加电磁场超过一定程度时,三极管就会被激活,反之,三极管就会断开。

- 1 -。

晶体三极管的工作原理详解

晶体三极管的工作原理详解

PN 结的本质:在 P 型半导体和 N 型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为 PN 结。

1、切入点:要想很自然地说明问题,就要选择恰当地切入点。

讲三极管的原理我们从二极管的原理入手讲起。

二极管的结构与原理都很简单,内部一个 PN 结具有单向导电性,如示意图B。

很明显图示二极管处于反偏状态, PN 结截止。

我们要特殊注意这里的截止状态,实际上 PN 结截止时,总是会有很小的漏电流存在,也就是说 PN 结总是存在着现象, PN 结的单向导电性并非百分之百。

为什么会浮现这种现象呢?这主要是因为PN 结反偏时,能够正向导电的多数载流子被拉向电源,使PN 结变厚,多数载流子不能再通过 PN 结承担起载流导电的功能。

所以,此时漏电流的形成主要靠的是少数载流子,是少数载流子在起导电作用。

反偏时,少数载流子在电源的作用下能够很容易地反向穿过 PN 结形成漏电流。

漏电流之所以很小,是因为少数载流子的数量太少。

很明显,此时漏电流的大小主要取决于少数载流子的数量。

如果要想人为地增加漏电流,只要想办法增加反偏时少数载流子的数量即可。

所以,如图B漏电流就会人为地增加。

其实,光敏二极管的原理就是如此。

光敏二极管与普通光敏二极管一样,它的 PN 结具有单向导电性。

因此,光敏二极管工作时应加之反向电压,如图所示。

当无光照时,电路中也有很小的反向饱和漏电流,普通为1×10-8 —1×10-9A(称为暗电流),此时相当于光敏二极管截止;光敏二极管工作在反偏状态,因为光照可以增加少数载流子的数量,于是光照就会导致反向漏电流的改变,人们就是利用这样的道理制作出了光敏二极管。

既然此时漏电流的增加是人为的,那末漏电流的增加部份也就很容易能够实现人为地控制。

2、强调一个结论:讲到这里,一定要重点地说明 PN 结正、反偏时,多数载流子和少数载流子所充当的角色及其性质。

为什么呢?这就导致了以上我们所说的结论:反偏时少数载流子反向通过 PN 结是很容易的,甚至比正偏时多数载流子正向通过 PN 结还要容易。

三级管电路工作原理及详解

三级管电路工作原理及详解

三级管电路工作原理及详解一、引言三极管是一种常用的半导体器件,广泛应用于各种电路中。

它具有放大信号、开关控制和稳压等特性,是现代电子设备中不可或缺的元件之一。

本文将深入探讨三极管电路的工作原理和详解,以帮助读者更好地理解和应用三极管。

二、三极管基本概述三极管是由三个不同掺杂的半导体材料组成,常用的有NPN型和PNP型两种。

其中,NPN型三极管中央是N型半导体,两侧是P型半导体;PNP型三极管中央是P型半导体,两侧是N型半导体。

三极管的结构决定了它具有双向导通的特点。

三、三极管的工作原理3.1 NPN型三极管工作原理1.充电过程:–基极与发射极之间施加正向电压。

–发射极和基极之间形成正向偏压。

–发射极注入少量电子到基区。

2.放电过程:–基极电压接近零。

–发射区的少数载流子都陷于基区。

–收集区电流几乎是零。

3.放大过程:–基极电压逆向偏置。

–发射极和基极之间形成反向偏压。

–基极电流引起发射极电流的增加,形成放大效应。

3.2 PNP型三极管工作原理1.充电过程:–基极与发射极之间施加负向电压。

–发射极和基极之间形成负向偏压。

–发射极抽取少量电子从基区。

2.放电过程:–基极电压接近零。

–发射区的少数载流子都陷于基区。

–收集区电流几乎是零。

3.放大过程:–基极电压逆向偏置。

–发射极与基极之间形成反向偏压。

–基极电流引起发射极电流的减小,形成放大效应。

四、三极管的应用三极管由于其特性,在电子电路中有广泛的应用。

以下是几个常见的应用场景: 1. 放大器:使用三极管可以放大微弱的信号,使之变得可用于其他电路。

2. 开关控制:三极管可以作为开关,控制电路的通断。

3. 稳压器:利用三极管的特性,可以设计稳压电路,保持输出电压的稳定性。

4. 正弦波发生器:三极管可以用于正弦波发生器的设计,产生各种频率的信号。

五、三极管的优缺点5.1 优点•体积小、重量轻,便于集成和组装。

•功耗低,效率高。

•放大范围宽,稳定性好。

三极管工作原理及详解

三极管工作原理及详解

三极管工作原理及详解三极管是一种半导体器件,也被称为双极型晶体管。

它是由三个不同掺杂的半导体材料(P型、N型和P型)构成的。

三极管主要有三个区域,分别是发射区(Emitter)、基极区(Base)和集电区(Collector)。

三极管的工作原理是基于PN结和两个PN结之间的正偏压。

在三极管中,发射区被正向偏置,基极区与发射区之间的PN结是正向偏置的,而基极区与集电区之间的PN结是反向偏置的。

在正向偏置下,发射区和基极之间形成强烈的电子流。

三极管的工作原理可以通过以下过程来解释:1.关闭状态:当没有外部电压时,三极管处于关闭状态。

这时,发射区和基极之间的PN结是反向偏置的,导致电子无法通过这个结。

同时,基极区和集电区之间的PN结也是反向偏置的,阻止电流通过结。

2.开通状态:当在发射区和基极之间施加一定的正偏压时,发射区与基极之间的PN结将变得导电。

这时,电子从N区进入P区,然后重新组合成空穴进入基极区。

由于基极区非常薄,电子容易通过这个区域,这导致电子流从发射区进入基极区。

3.放大状态:在开通状态下,当电子进入基极区时,它们在基极区中会重新复合成空穴。

然而,由于基极区非常薄,复合的速度非常慢。

因此,大部分电子通过基极区,进入集电区而没有复合。

这样,发射区的电子流被放大,从而实现电流的放大功能。

总结起来,三极管的工作原理可以归结为以下三个步骤:1)施加正向偏压,使发射区和基极之间的PN结导电;2)电子从发射区进入基极区;3)电子在基极区中重新组合成空穴,并通过集电区。

除了电流放大功能之外,三极管还有其他重要的应用。

例如,它可以用于开关电路、放大电路和振荡电路。

在开关电路中,三极管可以用来控制开关的打开和关闭。

在放大电路中,三极管可以利用小信号输入来放大电流或电压。

在振荡电路中,三极管可以通过反馈来产生振荡信号。

总而言之,三极管是一种基本的半导体器件,其工作原理基于PN结和正向偏压的使用。

通过电子的流动和复合,三极管可以实现电流的放大和控制,从而为电子器件带来许多应用。

三极管的工作原理及检测方法.

三极管的工作原理及检测方法.

三极管的工作原理及检测方法三极管的工作原理三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。

分成NPN和PNP两种。

我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流放大下面的分析仅对于NPN型硅三极管。

如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。

这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。

三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。

如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。

这有几个原因。

首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7 V)。

当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。

但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。

如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻R b就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。

三极管的工作原理,详细、通俗易懂、图文并茂

三极管的工作原理,详细、通俗易懂、图文并茂

三极管的工作原理,详细、通俗易懂、图文并茂一、很多初学者都会认为三极管是两个PN 结的简单凑合(如图1)。

这种想法是错误的,两个二极管的组合不能形成一个三极管。

我们以NPN 型三极管为例(见图2 ),两个PN 结共用了一个P 区——基区,基区做得极薄,只有几微米到几十微米,正是靠着它把两个PN 结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的PN 结的特性。

三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。

二、三极管的电流放大作用与其物理结构有关,三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探讨。

从应用的角度来讲,可以把三极管看作是一个电流分配器。

一个三极管制成后,它的三个电流之间的比例关系就大体上确定了(见图 3 ),用式子来表示就是β 和α 称为三极管的电流分配系数,其中β 值大家比较熟悉,都管它叫电流放大系数。

三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。

例如,基极电流的变化量ΔI b =10 μA ,β =50 ,根据ΔI c =βΔI b 的关系式,集电极电流的变化量ΔI c =50×10 =500μA ,实现了电流放大。

三、三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供I b 、I c 和I e 这三个电流。

为了容易理解,我们还是用水流比喻电流(见图 4 )。

这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。

如果细管子中没有水流,粗管子中的闸门就会关闭。

注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。

由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。

三极管的基极 b 、集电极 c 和发射极e 就对应着图4 中的细管、粗管和粗细交汇的管子。

三极管的工作原理及开关电路

三极管的工作原理及开关电路

三极管的工作原理三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。

分成NPN和PNP 两种。

我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流放大下面的分析仅对于NPN型硅三极管。

如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。

这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。

三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。

如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。

这有几个原因。

首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。

当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。

但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。

如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。

三极管工作原理及主要参数详解

三极管工作原理及主要参数详解

三极管工作原理及主要参数详解三极管(全称:半导体三极管,也称双极型晶体管、晶体三极管),是一种控制电流的半导体器件其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。

介绍三极管的工作原理以及主要参数。

晶体三极管是p型和n型半导体的有机结合,两个pn结之间的相互影响,使pn结的功能发生了质的飞跃,具有电流放大作用。

晶体三极管按结构粗分有npn型和pnp型两种类型。

如图2-17所示。

(用Q、VT、PQ表示)三极管之所以具有电流放大作用,首先,制造工艺上的两个特点:(1)基区的宽度做的非常薄;(2)发射区掺杂浓度高,即发射区与集电区相比具有杂质浓度高出数百倍。

晶体三极管的工作原理三极管工作必要条件是(a)在B极和E极之间施加正向电压(此电压的大小不能超过1V);(b)在C极和E极之间施加反向电压(此电压应比eb间电压较高);(c)若要取得输出必须施加负载。

当三极管满足必要的工作条件后,其工作原理如下:(1)基极有电流流动时。

由于B极和E极之间有正向电压,所以电子从发射极向基极移动,又因为C极和E极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压的作用下,通过基极进入集电极。

于是,在基极所加的正电压的作用下,发射极的大量电子被输送到集电极,产生很大的集电极电流。

(2)基极无电流流动时。

在B极和E极之间不能施加电压的状态时,由于C极和E极间施加了反向电压,所以集电极的电子受电源正电压吸引而在C极和E极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因而就没有集电极电流产生。

综上所述,在晶体三极管中很小的基极电流可以导致很大的集电极电流,这就是三极管的电流放大作用。

此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是三极管的开关作用(开关特性)。

晶体三极管共发射极放大原理如下图所示:A、vt是一个npn型三极管,起放大作用。

B、ecc 集电极回路电源(集电结反偏)为输出信号提供能量。

三极管工作原理(详解)

三极管工作原理(详解)

三极管工作原理(详解)三极管,也叫晶体三极管,简称晶体管,是一种能够放大电路中微小信号的电子元器件。

它的原理是通过控制一个区域的电子流,来改变另一个区域的电流。

晶体管最早由贝尔实验室的威廉·肖克利发明,是现代电子技术的基础之一。

本文将详细讲解三极管的工作原理。

一、晶体管的结构晶体管由三个掺杂不同材料的半导体层构成,分别为发射极(EB)、基极(CB)和集电极(CE)。

发射极(E):它是一个P型半导体,它的厚度很少,通常在0.01毫米以上,但是面积很大,通常在平方数分米。

基极(B):它是一个N型半导体,尽管它的尺寸比发射极大,但它的浓度很低,它是晶体管的控制电极。

集电极(C):它是一个N型半导体,通常比基极大几倍,是晶体管的输出电极。

为了保护晶体管的内部结构,晶体管需要封装成小型的金属或塑料外壳。

封装的芯片会被裸露出来,然后通过银色的金属脚连接电路板。

二、晶体管的工作原理晶体管是一种由硅和其他半导体材料构成的小型电子元件。

它的最重要的特性是可以放大信号。

晶体管的三个引脚在应用中被分别用作发射极、基极和集电极。

晶体管通过控制基极的电压,就能够放大电路中的微小信号。

晶体管具有三个工作区,它们分别是截止区、放大区和饱和区。

1. 截止区当基极电压低于截止电压时,晶体管处于截止状态,整个晶体管的结构中没有电流流动。

2. 放大区当基极电压高于截止电压时,晶体管处于放大状态。

此时,基极电压对晶体管的集电极电流产生控制作用。

如果基极电压升高,晶体管中的电流流向集电极方向就会升高,从而放大晶体管输入的电信号。

3. 饱和区当基极电压继续升高,晶体管中的电流达到最大值时,晶体管就会进入饱和状态。

在饱和区,晶体管可以用作开关,输出高电平或低电平。

三、晶体管的偏置要正确使用晶体管,需要对其进行偏置操作。

晶体管的偏置,是指将晶体管连接到电路中,并用一个外部电源提供所需要的电力。

基极电压在适当的电压下,即可使晶体管处于放大状态。

详解npn三极管的原理和应用

详解npn三极管的原理和应用

详解npn三极管的原理和应用一、npn三极管的原理npn三极管(NPN Transistor,NPN: Negative-Positive-Negative)是一种常见的双极型晶体管,属于半导体器件的一种。

它由两个P型半导体夹一个N型半导体构成。

以下是npn三极管的工作原理:1.基本结构:npn三极管由Emitter(发射极)、Base(基极)和Collector(集电极)三个区域组成。

NPN的发射极是N型半导体,Base是P 型半导体,Collector是N型半导体。

2.工作原理:当正向偏置电压(VBE)施加在Base和Emitter之间时,电流开始流动,因为N型发射极区域的多数载流子向P型基区域移动。

这被称为发射级。

当Collecto极施加一个正向电压(VCE)时,集电极区域的大多数载流子也向基区域移动。

这个区域称为集电级。

3.放大特性:npn三极管是一种放大器,输入电流的改变可以通过控制输出电流来放大。

这种放大效应是由于发射级和集电级之间的关系产生的。

二、npn三极管的应用npn三极管有很多应用,包括以下几个方面:1. 放大器npn三极管可以作为电流放大器,将小信号放大到更大的电流。

通过调节输入电流,可以控制输出电流的放大倍数。

这使得npn三极管可以在许多电子设备中用作声音放大器、电视和无线通信设备等。

2. 开关由于npn三极管具有电流放大特性,它也可以用作开关。

当基极-发射极间的电压(VBE)达到一定的阈值时,三极管会打开,导通电流。

当电压低于阈值时,三极管关闭,断开电流。

这使得npn三极管能够在数字电路中用作开关,实现许多逻辑电路。

3. 震荡器npn三极管可以构成震荡器,用于产生特定频率的振荡信号。

这种振荡器常用于无线电和通信设备中。

4. 温度传感器由于npn三极管的输入电流和输出电流之间有温度相关的特性,故npn三极管可以用作温度传感器。

温度变化会导致npn三极管的电流变化,通过测量这种变化可以获得温度信息。

三极管及场效应管原理及参数

三极管及场效应管原理及参数

晶体三极管一、三极管的电流放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。

而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。

图1、晶体三极管(NPN)的结构图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b 和集电极。

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。

在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。

由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。

三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。

三极管MOS管工作原理及详解

三极管MOS管工作原理及详解

三极管MOS管工作原理及详解三极管和MOS管是电子器件中非常重要的两种器件,它们在各种电子设备中起到重要的作用。

下面就来详细介绍一下三极管和MOS管的工作原理。

一、三极管工作原理及详解:三极管是一种用于放大和控制电流的电子器件,它由三个控制区域(发射极、基极和集电极)组成。

三极管的工作原理是基于PN结的特性。

1.1NPN三极管的工作原理:NPN三极管的结构是由一段P型半导体材料夹在两段N型半导体材料中形成的。

其中,N型半导体材料为发射极(Emitter),P型半导体材料为基极(Base),N型半导体材料为集电极(Collector)。

当三极管的基极与发射极之间加上正向电压时,基极-发射极之间的PN结就会被正向偏置,这时,PN结中的正电荷将会被电场吹向PN结的两端,导致PN结变窄。

当这个PN结窄到一定程度时,它会发生击穿,形成一个电荷云,进而形成电子-空穴对。

这种电子-空穴对将会形成一个电流,从发射极流经基极,最后到达集电极。

1.2PNP三极管的工作原理:PNP三极管的结构是由一段N型半导体材料夹在两段P型半导体材料中形成的。

其中,P型半导体材料为发射极,N型半导体材料为基极,P型半导体材料为集电极。

当三极管的基极与发射极之间加上反向电压时,基极-发射极之间的PN结就会被反向偏置,这时,PN结中的正电荷将会向基极方向靠拢,导致PN结变宽。

当这个PN结变宽到一定程度时,它会阻断整个电路,形成一个高电阻状态。

因此,PNP三极管的工作原理与NPN三极管的工作原理完全相反。

二、MOS管工作原理及详解:MOS管全称为金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field Effect Transistor),它是一种基于金属氧化物半导体的结构设计的器件。

MOS管的结构包括源极(Source)、漏极(Drain)和栅极(Gate)。

栅极与源极之间通过一个绝缘层隔开,绝缘层上方覆盖一个金属层,作为栅极。

三极管的工作原理

三极管的工作原理

三极管的工作原理标题:三极管的工作原理引言概述:三极管是一种重要的半导体器件,广泛应用于电子电路中。

它具有放大、开关和稳压等功能,是现代电子技术中不可或缺的元件之一。

本文将详细介绍三极管的工作原理。

一、三极管的结构1.1 发射极:三极管的发射极是控制电流流动的地方,它通常是N型材料。

1.2 基极:基极是控制三极管导通的关键,它通常是P型材料。

1.3 集电极:三极管的集电极是输出端,用于接受电流,通常是N型材料。

二、三极管的工作原理2.1 放大作用:当在基极加上一个微小的电流时,会引起发射极和集电极之间的电流增加,从而实现信号的放大。

2.2 开关作用:通过控制基极电流的大小,可以控制三极管的导通和截止,实现开关功能。

2.3 稳压作用:在一定的工作区域内,三极管的输出电流与输入电流之间的关系是近似线性的,可以实现稳压功能。

三、三极管的工作状态3.1 截止状态:当基极电流为零时,三极管处于截止状态,无法导通电流。

3.2 饱和状态:当基极电流足够大时,三极管会进入饱和状态,此时发射极和集电极之间的电流达到最大值。

3.3 放大状态:在基极电流较小的情况下,三极管可以实现信号的放大。

四、三极管的工作原理与晶体管的区别4.1 结构不同:三极管有三个电极,而晶体管只有两个。

4.2 工作原理不同:三极管是通过控制基极电流来控制输出电流的,而晶体管是通过控制栅极电压来控制输出电流的。

4.3 应用领域不同:三极管主要用于功率放大和开关控制,而晶体管更多地用于集成电路和高频电路中。

五、三极管的应用5.1 放大器:三极管可以作为放大器来放大信号。

5.2 开关:三极管可以作为开关来控制电路的通断。

5.3 稳压器:三极管可以作为稳压器来维持电路的稳定输出。

结论:通过本文的介绍,我们了解了三极管的结构、工作原理、工作状态、与晶体管的区别以及应用领域。

三极管作为一种重要的半导体器件,在电子技术中有着广泛的应用,对于理解和应用电子电路具有重要意义。

三极管 工作原理

三极管 工作原理

三极管工作原理
三极管是一种常用的电子器件,其工作原理是基于PN结的正向和反向偏置。

三极管的内部由两个PN结组成,分别为发射结和集电结,以及一个共用的基区。

当PN结处于正向偏置状态时,发射结处于N型区域,集电结处于P型区域。

此时,发射结的N型区域中的自由电子会向P 型区域移动,形成电流。

同样,集电结的P型区域中的空穴也会向N型区域移动,形成电流。

在三极管正常工作时,中间的基区处于两个极性材料之间,称为浮动区域。

当在基极上加上正向电压时,浮动区域的电子被吸引到P型区域中,形成一个电子云。

这个电子云会使得发射结中的N型区域形成一个引入电子的电流,这种电流称为输入电流。

这个输入电流会放大输出电流。

通过调整基极电流,可以控制三极管的输出电流大小。

这种调节作用使得三极管可以作为放大器或开关使用。

当基极电流较小时,输出电流也较小,三极管处于截止状态。

当基极电流较大时,输出电流也较大,三极管处于饱和状态。

总而言之,三极管工作原理是基于PN结的正向和反向偏置,利用中间的基区调节输入电流来控制输出电流的大小。

这使得三极管可以在放大器与开关电路中发挥作用。

三极管工作原理及详解

三极管工作原理及详解

三极管工作原理及详解三极管是一种电子元器件,也被称为晶体管,是现代电子技术中广泛应用的一种重要器件。

它是由半导体材料制成的,通常由一个n-型材料和两个p-型材料组成,形成了一个n-p-n结构。

三极管的基本结构由一个基极(B,用于控制电流流动)、一个发射极(E,用于输入电流)和一个集电极(C,用于输出电流)组成。

其工作原理可分为以下几个方面进行详解:1.PN结反偏扩散:当三极管的发射结(BE结)处于反偏状态时,即使输入电压很小,也会有导电电子和空穴被扩散进入发射结。

这会导致发射结区域的电荷强度减小,使其变得非常薄。

基极结(BC结)也被反偏,因此极少有电子和空穴从基极端扩散进入。

2.动态增益:由于发射结非常薄,即使很小的输入电流(基电流)也能穿过发射结流入发射区。

这些电流在发射结区域中的散射使得电流进一步扩大,从而形成了由基电流控制的大电流放大器。

3.输出由输入控制:三极管的工作特点是,当输入信号施加在基极上时,这将导致在发射结和基结之间发生器件动作,如三极管的增益。

因此,输入电流的小变化就会导致输出电流的相应变化。

4.级联放大:三极管的输出可以直接连接到下一个三极管的输入,以实现级联放大,从而进一步增大信号的幅度。

这是因为三极管具有很高的放大倍数,通常在100以上。

5.工作模式:三极管的工作可以分为三种模式:放大模式、截止模式和饱和模式。

放大模式是三极管最常见的工作模式,此时三极管的输入电压足够大以驱动输出电流。

截止模式是指输入电压不足以驱动输出电流,此时三极管处于关闭状态。

饱和模式是指输入电压非常高,以至于电流饱和,此时三极管处于完全开启状态。

6.用途广泛:三极管作为一种重要的电子元件,在电子电路中应用广泛。

它可以用作放大器、开关、振荡器等。

例如,在放大器电路中,通过适当地设置电路参数,可以使输入信号的微小变化引起输出电流的大幅度变化,从而实现信号放大功能。

在开关电路中,三极管可以通过控制输入电流的开关行为,打开或关闭电路。

三极管npn工作原理

三极管npn工作原理

三极管npn工作原理
NPN三极管是一种常用的双极型晶体管,由P型掺杂的基区
和N型掺杂的发射区以及N型掺杂的集电区组成。

它的工作
原理是基于控制基极电流来控制集电极-发射极电流的。

当没有任何电流流经三极管时,三个区域都处于正常的平衡状态。

当一个正向电流从基极到发射极流过时,通过P-N结的
电势垒减小,允许电流从集电区穿过。

在这个过程中,发射电流的大小主要取决于基极电流的大小。

当基极电流增加时,发射电流也会相应增加。

这是因为基极电流越大,导致基区电子浓度的增加,从而增加了发射区电子的注入和发射电流的增加。

然而,集电极电流的大小取决于发射极电流和基极电流之间的比例关系。

当基极电流足够大时,集电极电流将随着基极电流的增加而饱和,即不再增加。

通过控制基极电流的大小,可以有效地调节集电极电流的大小,实现对三极管的放大功能。

当没有基极电流时,集电极-发射
极电流几乎为零,三极管处于关闭状态。

当基极电流增加时,集电极-发射极电流也随之增加,实现了信号放大的功能。

NPN三极管的工作原理广泛应用于放大电路、开关电路以及
逻辑门等电子设备中。

通过合适的电路设计和控制,可以实现不同的功能和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c + + +
++++ -
++++
+++
b
UBB RB UCC RC
1、发射区的电子大量地扩散注 入到基区,基区空穴的扩散可
忽略。
发射结正偏
集电结反偏
外电场方向
NP
N
++++
e ++++ ++++
+++
c + + +
++++ -
++++
IE
b
+++
UBB RB UCC RC
1、大量电子N2通过很 薄1、的发射基区极的被电子集大电量极地扩吸散注 收入忽到略,基。少区量,基电区子空穴N的1在扩基散可 极与空穴复合。N2和 N2、1的电子比扩例散由的同三时极,在管基内区将 部与空结穴构相决遇产定生。复合在。不由考于基 虑区薄空,IC穴因BO浓此时度,低复:,合且的基电区子做是得极很 少 数。 IC/IB=N2/N1=β 2、以上公式是右方电 路3扩、散满绝到大足集多发电数结射到处基结,区并正的在偏电集子、电均结能 集电场电作结用反下到偏达时集电得区到。的,
按使用频率分: 低频管、高频管 按功率分: 小功率管 < 500 mW 中功率管 0.5 1 W 大功率管 > 1 W
1.3.2 半导体三极管的工作原理
半导体半导体三极管有共有四种工作状态:
工作状态
放大 截止 饱和 倒置
发射结电压
正向 反向 正向 反向
集电结电压
反向 反向 正向 正向
1. 工作于放大状态的半导体三极管
一旦外界条件改变到
不4、再因满集电足结这反偏两,个集条电区件和,基 则区形中成以少很上子小公在的结且式电与不场集作电再用结成下的立漂反移偏。,
压无关的反向饱和电流。
发射结正偏
集电结反偏
外电场方向
NP
N
++++
e ++++ ++++
+++
c + + +
++ ++
IE
UBB
++ -
++
+ICBO+ +
b
电压分配关系
UCE=UCC-IC*Rc≈UCC-βIB*Rc
UBE正向导通: 硅管大约0.7V 锗管大约0.2V
三极管的放大原理归结为:
内部机制:发射区高掺杂,基区很薄,集电结面积大
外部条件:发射结正偏,集电结反偏
载流子传输:
发射区向基区提供载流子 基区传送和控制载流子
很小的IB控制 IC
集电区收集载流子
发射结电压
正向 反向 正向 反向
集电结电压
反向 反向 正向 正向
判断截止状态时的引脚
NPN型 c
b
e UC>Leabharlann E≥UBPNP型 cb
e UC<UE≤UB
对一般的NPN管电路: UC=+UCC,UE=0V,UB≤0V UCE=+UCC 对一般的PNP管电路: UC= -UCC,UE=0V,UB≥0V UCE= -UCC
工作状态
放大 截止 饱和 倒置
三极管状态判断小结
发射结电压
正向 反向 正向 反向
正向UCE被称作 正向 反向为饱三 和极压管降的 正向
UCES
放大状态时有: IC=β IB+ICEO≈βIB
UCE=UCC-IC*Rc
减小Rb,IB增大; IC增大,UCE减小 集电结反偏电压减小。
饱和后,UCE≈0, IC=(UCC-UCES)/Rc
IC≈UCC/Rc
饱和条件:
IB>IC/β IB>(UCC-UCES)/βRc≈UCC/(β
1.3.1 概述
半导体三极管,又称为双极结型晶体管(BJT)
b
基极
集电极
c
集电结 N
P
N
发射结
e
发射极
NPN型 c
b
PNP型 c
b
e
e
三极管的发射极的箭头方向, 代表三极管工作在放大,饱和 状态时,发射极电流(IE)的 实际方向。
半导体三极管的分类:
按材料分: 按结构分:
硅管、锗管 按结构和材料 NPN、 PNP 共有4种组合
Rc)
4. 工作于倒置状态的半导体三极管
工作状态
放大 截止 饱和 倒置
发射结电压
正向 反向 正向 反向
集电结电压
反向 反向 正向 正向
• 放由电大于区内 掺部 杂结 的构 浓原度因低,,集正
倒置
偏的集电区不能提供大
量的电子发射,发射结
也不能有效收集电子,
所以倒置状态电流放大
倍数很小,不采用。
三极管状态判断小结
IB RB UCC
IC RC
电流分配关系
IC
I E ICBO0
IC
I E
IC
I B ICBO0
IC
I B
=1+
=1-

IE IC IB
IC IB 1 ICBO IB ICEO IB
工作状态
放大 截止 饱和 倒置
发射结电压
正向 反向 正向 反向
集电结电压
反向 反向 正向 正向
• 由放大状态进入截止状态 的临界情况是发射结电压 为零,此时基区的反向电 流分别流入发射极和集电 极。
3. 工作于饱和状态的半导体三极管
工作状态
放大 截止 饱和 倒置
发射结电压 集电结电压
正向
反向
反向三时极 的管管饱压和降 反向
IC IB
• 三极管的电流放大条 件
• 内部:发射区高掺杂, 基区很薄,集电结面 积大
• 外部:发射结正偏, 集电结反偏
三极管的 电流放大条件
内部:发射区高掺杂, 基区很薄,集电结面 积大
外部:发射结正偏,集 电结反偏
发射结正偏
集电结反偏
外电场方向
NP
N
++++
e ++++ ++++
+++
IC = β IB
基极电流和集电极电流除直流分
量外还有交流分量,且iC = β iB。 放大电路是在ui的作用下,改变iB, 并通过iB控制直流电源供给集电极 电流iC,使其产生相应的交流分量, 并在足够大的RC上形成较大的电 压降,就有了可供输出的经放大
的交流电压uo。
2. 工作于截止状态的半导体三极管
1.以电压判断三极管工作状态
工作状态
放大 截止 饱和 倒置
发射结电压
正向 反向 正向 反向
集电结电压
反向 反向 正向 正向
判断放大状态时的引脚
NPN型 c
b
e UC>UB>UE
PNP型 c
b
e UC<UB<UE
UBE正向导通,压降: 硅管大约0.7V 锗管大约0.2V
三极管状态判断小结
工作状态
放大 截止 饱和 倒置
三极管状态判断小结
工作状态
放大 截止 饱和 倒置
发射结电压
正向 反向 正向 反向
集电结电压
反向 反向 正向 判断饱和状态时的引脚 正向
NPN型 c
b
e UC≤UB>UE
PNP型 c
b
e UC≥UB<UE
UBE正向导通: 硅管约0.7V, 锗管大约0.2V
饱和时三极管的管压被称作为
UCES,UCES范围: 硅管约0.7V~0V, 锗管约0.2V~0V
相关文档
最新文档