最新幂的运算复习教学讲义ppt
合集下载
幂的运算 复习课
2.填上适当的指数:
⑴ a2 a( ) a5
⑶ a3 a9
⑵ a5 a a2
3.填上适当的代数式
(1) x3 x4
x8
(2)
1
2008
2009 2
2
典型例题:
例1:计算:
1 2x3 3 2x3 2x3 2 2x3 5 x2 3 2 x3 4 x2 3 x x5
x5 x5
2.注意符号
0
例2:
1若xm 1 , xn 3,求x3mn的值
5
2已知n为正整数,且x2n 5,求3 x3n 2 9 x2 2n的值
例2:
1若xm 1 , xn 3,求x3 的值 mn
5
解:x3mn x3m xn
xm 3 xn
xm 1 , xn 3 5
原 式 1 3 3 3
5
125
(2)已知n为正整数,且 x2n 5 ,
求 3 x3n 2 9 x2 2n的值
提示:3 x3n 2 9 x2 2n 3x6n 9x4n 3 x2n 3 9 x2n 2
353 952
150
小结: 1.变换指数 2.变换底数
年级:七年级 学科名称:数学 《幂的运算》复习课件
授课学校: 授课教师:
1.同底数幂的乘法法则: 文字叙述:同底数幂相乘,底不变,指数相加
公式表示:am an amn (m、n是正整数)
2.幂的乘方法则: 文字叙述: 底数不变,指数相乘
公式表示: am n amn(m、n是正整数)
3.积的乘方法则: 文字叙述: 积的乘方等于乘方的积
公式表示: abn anbn (n是正整数 ) 4.同底数幂的除法法则: 文字叙述:同底数幂相除,底不变,指数相减
期末复习(幂的运算)课件
这些规则可以帮助我们快速准确地计算幂的结果。
02
幂的运算技巧
乘法和除法
幂的乘法
$(a^m)^n = a^{mn}$
幂的除法
$a^m div a^n = a^{m-n}$
幂的乘法与除法的结合
$(a^m div a^n)^k = a^{m-n}$
指数的加法和减法
指数的加法
01
$a^m + a^n = a^m (1 + a^{n-m})$
幂的性质
幂的性质包括交换律、结合律、分配 律等。交换律是指a^m^n=a^(m*n), 结合律是指(a^m)^n=a^(m*n),分 配律是指a^(m+n)=a^m*a^n。
这些性质在数学中非常重要,可以帮 助我们简化复杂的幂运算。
幂的运算规则
幂的运算规则包括同底数幂的乘法、同底数幂的除法、幂的乘方等。同底数幂的乘 法是指a^m*a^n=a^(m+n),同底数幂的除法是指a^m/a^n=a^(m-n),幂的乘 方是指(a^m)^n=a^(m*n)。
在数学建模中,幂函数常 被用来描述一些自然现象, 如人口增长、细菌繁殖等。
幂在物理中的应用
力学
在力学中,加速度与时间的关系 可以用幂函数表示,如自由落体
运动。
电磁学
在电磁学中,电流与电压的关系可 以用幂函数表示,如欧姆定律。
光学
在光学中,光的强度与距离的关系 可以用幂函数表示,如光的散射和 吸收。
指数的减法
02
$a^m - a^n = a^m (1 - a^{n-m})$
指数的加法与减法的结合
03
$(a^m - a^n) div a^n = a^{m-n} - 1$
指数的乘法和除法
02
幂的运算技巧
乘法和除法
幂的乘法
$(a^m)^n = a^{mn}$
幂的除法
$a^m div a^n = a^{m-n}$
幂的乘法与除法的结合
$(a^m div a^n)^k = a^{m-n}$
指数的加法和减法
指数的加法
01
$a^m + a^n = a^m (1 + a^{n-m})$
幂的性质
幂的性质包括交换律、结合律、分配 律等。交换律是指a^m^n=a^(m*n), 结合律是指(a^m)^n=a^(m*n),分 配律是指a^(m+n)=a^m*a^n。
这些性质在数学中非常重要,可以帮 助我们简化复杂的幂运算。
幂的运算规则
幂的运算规则包括同底数幂的乘法、同底数幂的除法、幂的乘方等。同底数幂的乘 法是指a^m*a^n=a^(m+n),同底数幂的除法是指a^m/a^n=a^(m-n),幂的乘 方是指(a^m)^n=a^(m*n)。
在数学建模中,幂函数常 被用来描述一些自然现象, 如人口增长、细菌繁殖等。
幂在物理中的应用
力学
在力学中,加速度与时间的关系 可以用幂函数表示,如自由落体
运动。
电磁学
在电磁学中,电流与电压的关系可 以用幂函数表示,如欧姆定律。
光学
在光学中,光的强度与距离的关系 可以用幂函数表示,如光的散射和 吸收。
指数的减法
02
$a^m - a^n = a^m (1 - a^{n-m})$
指数的加法与减法的结合
03
$(a^m - a^n) div a^n = a^{m-n} - 1$
指数的乘法和除法
七年级数学下册:第八章 幂的运算复习课 (共12张PPT)
第八章 幂的运算复习课
你知道吗?
1、同底数幂的乘法:同底数幂相乘,底数不变,指数相加。 am· an=am+n . (m n为正整数) 2、幂的乘方,底数不变,指数相乘。 (an)m=amn. (m n为正整数) 3、积的乘方,等于把积中每一个因式分别乘方,再把所得 的幂相乘。 (ab)n=anbn . (m n为正整数) 4、同底数幂的除法:同底数幂相除,底数不变,指数相减。 am÷an=am-n.(a≠0,m n为正整数)) 5、a0=1(a≠0),a-n=(1/a)n=1/an( 0 , n 为正整数)时,要特别注意各式子成立的条件 .
1 n a
◆注意上述各式的逆向应用.如计算,可先逆用同底数幂的乘法法 则将写成,再逆用积的乘方法则计算,由此不难得到结果为1.
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
练一练: 计算: 3 2 (1)x x x 3 2 (2)( x) x ( x) 2 10 (3) (a b) (a b) (b a) 2 n1 3 n 2 5 n 4 (4) y y y y 2 y y 解:(1)x6 (2)-x6 (3)(b-a)13 (4)0
本章需关注的几个问题
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
你知道吗?
1、同底数幂的乘法:同底数幂相乘,底数不变,指数相加。 am· an=am+n . (m n为正整数) 2、幂的乘方,底数不变,指数相乘。 (an)m=amn. (m n为正整数) 3、积的乘方,等于把积中每一个因式分别乘方,再把所得 的幂相乘。 (ab)n=anbn . (m n为正整数) 4、同底数幂的除法:同底数幂相除,底数不变,指数相减。 am÷an=am-n.(a≠0,m n为正整数)) 5、a0=1(a≠0),a-n=(1/a)n=1/an( 0 , n 为正整数)时,要特别注意各式子成立的条件 .
1 n a
◆注意上述各式的逆向应用.如计算,可先逆用同底数幂的乘法法 则将写成,再逆用积的乘方法则计算,由此不难得到结果为1.
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
练一练: 计算: 3 2 (1)x x x 3 2 (2)( x) x ( x) 2 10 (3) (a b) (a b) (b a) 2 n1 3 n 2 5 n 4 (4) y y y y 2 y y 解:(1)x6 (2)-x6 (3)(b-a)13 (4)0
本章需关注的几个问题
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
幂的运算ppt课件
7个a
=a ·a ·a ·a ·a ·a ·a
=a7 =3+4
可得
m个a
n个a
am·an=(a ·a ·a·… ·a)(a ·a ·a·… ·a)
(m+n)个a
=a ·a ·a·… ·a
=am+n
am·an=am+n(m、n为正整数) 同底数幂相乘,底数不变,指数相加.
例1 计算: (1)103×104;
bn
a
am
an
m
n
情境导入
“盘古开天辟地”的故事:公元前一 百万年,没有天没有地,整个宇宙是混浊 的一团,突然间窜出来一个巨人,他的名 字叫盘古,他手握一把巨斧,用力一劈, 把混沌的宇宙劈成两半,上面是天,下面 是地,从此宇宙有了天地之分,盘古完成 了这样一个壮举,累死了,他的左眼变成 了太阳,右眼变成了月亮,毛发变成了森 林和草原,骨头变成了高山和高原,肌肉 变成了平原与谷地,血液变成了河流.
(1.1×1012)÷(2.2×1010)
怎样计算呢?
探究新知
用你熟悉的方法计算: (1)25÷22=(__2_·_2_·2_·_2_·_2_)__÷__(__2_·2_)_;
=2·2·2 =23 =5-2 (2)107÷103=(__1_0_·_1_0_·_1_0_·1_0_·_1_0_·_1_0_·1_0_)__÷__(__1_0_·_1_0_·_1_0_)__;
(1)[(-x2y)3·(-x2y)2]3; (2)a3·a4·a+(a2)4+(-2a4)2.
=[(-x6y 3)·(x4y2)]3 =(-x10y 5)3
=a8+a8+4a8 =6a8
=-x30y15
=a ·a ·a ·a ·a ·a ·a
=a7 =3+4
可得
m个a
n个a
am·an=(a ·a ·a·… ·a)(a ·a ·a·… ·a)
(m+n)个a
=a ·a ·a·… ·a
=am+n
am·an=am+n(m、n为正整数) 同底数幂相乘,底数不变,指数相加.
例1 计算: (1)103×104;
bn
a
am
an
m
n
情境导入
“盘古开天辟地”的故事:公元前一 百万年,没有天没有地,整个宇宙是混浊 的一团,突然间窜出来一个巨人,他的名 字叫盘古,他手握一把巨斧,用力一劈, 把混沌的宇宙劈成两半,上面是天,下面 是地,从此宇宙有了天地之分,盘古完成 了这样一个壮举,累死了,他的左眼变成 了太阳,右眼变成了月亮,毛发变成了森 林和草原,骨头变成了高山和高原,肌肉 变成了平原与谷地,血液变成了河流.
(1.1×1012)÷(2.2×1010)
怎样计算呢?
探究新知
用你熟悉的方法计算: (1)25÷22=(__2_·_2_·2_·_2_·_2_)__÷__(__2_·2_)_;
=2·2·2 =23 =5-2 (2)107÷103=(__1_0_·_1_0_·_1_0_·1_0_·_1_0_·_1_0_·1_0_)__÷__(__1_0_·_1_0_·_1_0_)__;
(1)[(-x2y)3·(-x2y)2]3; (2)a3·a4·a+(a2)4+(-2a4)2.
=[(-x6y 3)·(x4y2)]3 =(-x10y 5)3
=a8+a8+4a8 =6a8
=-x30y15
《幂的运算复习》课件
基础练习题
1. 计算
2^3 + 3^2
3. 计算
a^m × a^n
总结词
考察幂的运算基本概念和简单 计算
2. 计算
(a^2)^3 × a^4
4. 计算
(x^2)^3
进阶练习题
1. 计算
(a + b)^2
3. 计算
(a × b)^n
总结词
考察幂的运算规则 和复杂计算
2. 计算
(a - b)^3
4. 计算
总结词 理解幂的乘方运算在解决实际问 题中的应用。
开方运算
总结词
详细描述
总结词
详细描述
掌握幂的开方运算规则,理解 开方的意义和性质。
幂的开方运算规则是"底数开方 ,指数减半"。即,√a^m = a^(m/2)。例如,√2^3 = 2^(3/2)。
理解幂的开方运算在解决实际 问题中的应用。
在解决实际问题时,有时需要 求一个数的平方根,这时就可 以使用幂的开方运算。此外, 在计算一些几何量时,也可以 使用幂的开方运算来简化计算 过程。
忽略幂的运算优先级
总结词
在进行幂的运算时,学生容易忽略运 算的优先级,导致计算结果错误。
详细描述
在数学运算中,幂运算具有优先级, 应该先进行幂运算,然后再进行加减 乘除等其他运算。学生常常忽略这一 点,例如将"a+b*c^2"误写为 "a+(b*c)^2",导致计算结果错误。
错误应用幂的性质
总结词
在金融领域,幂的运算用 于构建各种金融模型,如 股票价格模型、利率模型 等。
人口统计
在人口统计学中,幂的运 算用于预测人口增长和分 布。
《幂的运算复习》课件
幂的除法运算:a^m/a^n=a^(m-n)
幂的除法运算:a^m/a^n=a^(m-n)
乘方运算
概念:乘方运算是一种特殊的乘法运算,表示一个数自乘若干次
符号:乘方运算的符号为“^”,如2^3表示2的3次方
运算规则:a^m * a^n = a^(m+n),如2^3 * 2^2 = 2^5
幂的运算方法:包括加法、减法、乘法、除法、乘方、开方等
《幂的运算复习》PPT课件
单击添加副标题
Ppt
汇报人:PPT
目录
01
单击添加目录项标题
03
幂的运算方法
05
幂的运算注意事项
02
幂的定义与性质
04
幂的运算应用
06
幂的运算易错点分析
07
幂的运算练习题与答案解析
添加章节标题
01
幂的定义与性质
02
幂的定义
幂是指一个数自乘若干次
幂的表示方法:a^n,其中a是底数,n是指数
幂的运算分配律:a^m*(b+c)=a^mb+a^mc
幂的运算结合律:a^m*a^n=a^(m+n)
幂的运算优先级:乘方>乘除>加减
底数与指数的符号问题
底数与指数的符号对幂的运算结果有重要影响
底数为负数时,幂的运算结果也为负数
指数为负数时,幂的运算结果也为负数
底数为正数时,指数为正数或负数,幂的运算结果都为正数
指数方程的解法:利用指数函数的性质和指数方程的性质进行求解
指数方程的性质:指数函数的单调性、奇偶性、周期性等
指数方程的求解步骤:确定指数方程的类型、利用指数函数的性质进行求解、验证解的正确性
幂函数的性质与图像
第八章幂的运算PPT课件
(1)(105)6=
1030
(2)(a7)3 =
a21
(3)(x5)5 =
x25
(4)(y3)2· (y2)3=
y · y = y 6
2021/7/24
6
12
9
练习三、 计算:
①10m·10m- 1·100=
102m+1
②3×27×9×3m= 3m+6
2021/7/24
10
③(m-n)4·(m-n) 5·(n-m)6=
=1
= -82000×0.1252000× (-0.125)
= (2)(-4)2005×(0.25)2005 =
-(8×0.125)2000× (-0.125) -1× (-0.125) = 0.125
= (-4×0.25)2005
= -1
2021/7/24
23
练习十一
1、下列算式中,
①a3·a3=2a3;②10×109=1019;③
2、若 mx = 2,my = 3 ,则 m3x+2y=(mx)³ (my)²
mx+y mx+y
==m_x _m6_y _,m3x+2y
=_8__7_2 =_7_2.
=6
2021/7/24
17
学习指导三
字母表示: 积的乘方的法则:
(ab)m =ambm 其中m是正整数
语言叙述: 积的乘方,等于把积的每一
中,括号内应填写的代数式是
( D)
A、x2m C、x2m+2
B、x2m+1 D、xm+2
2021/7/24
15
练习五、 计算:
(1).已知:am=7,bm=4, 求(ab)2m的值。
苏科版七年级下册数学《幂的运算》课件
你还记得吗?
4.同底数幂的除法法则
文字叙述: 同底数幂相除,底数不变,指数相减
字母表示: am÷an=am-n (a≠0 m,n是正整数 m>n)
扩大:
am÷an÷ap=am-n-p (a≠0 m,n,p是整数)
考考你
a8 ÷a3 =a8-3=a5
(½)5÷(½)3 =(1/2)5-3=(1/2)2=1/4 (-s)7÷(-s)2 =(-s)7-2=(-s)5=-s5
=4b4
(5) a8÷a4=a2 ×
=a4
(6) (-z)6÷(-z)2=-z4 ×
=z4
幂的运算中的方法与技能
类型一:熟练使用公式,正确进行各种计算
(1)m19÷m14·m3÷m2
=m5·m3÷m2 =m8÷m2
或=m19-14+3-2 =m6
=m6
(2)(x-y)8÷(x-y)4÷(y-x)3
am-n=am÷an amn= (an)m anbn= (ab)n
幂的运算中的方法与技能
类型二:逆用公式进行计算
例1.已知am=4,an=2.
求①am+n的值.②am-n的值.③ a3m+2n的值.④ a2m-n的值=am·an=m÷an=a3m·a2n
=a2m÷an
=4×2 =4÷2
=(am)3·(an)2
=(-x2n-2 ) ·(-x5) ÷x2n+1 =x2n+3÷x2n+1 =x2 (4)4-(-1/2)-2-32÷(-3)0 =4-4-9÷1 =4-4-9 =-9
注意:运算时第一确定
所含运算类型,理清运 算顺序,用准运算法则
幂的运算中的方法与技能
类型二:逆用公式进行计算
幂的运算复习课件
2555 25 111 32111 3333 33 111 27111 5222 52 111 25111
大家好12Leabharlann 课堂小结:幂的运算法则
零指数、负指数的意义
、
要根据式子的特征正确选用幂 的运算法则,并能灵活运用幂的 运算法则进行计算
大家好
13
结束
大家好
14
a-p= (a ≠ 0,p为正整数) a0= 1 (a ≠0)
6、科学记数法: 一般的,一个小于1的正数可以表示为 a×10n
式,其中 1 ≤a< 10,n是负整数。
• 用科学记数法表示0.000 00320得( D )
的形
A、3.20×10-5
B、3.2×10-6
C、3.2×10-7
大家好 D、3.20×10-6 4
0
先分析题目,确定运算顺序,
温馨提示: 分清运算,正确运用法则。
大家好
6
跟踪练习
(1)(a2)3÷(-a)3
(2) 105÷10-1×100 (3)(5×104)×(3×102)
(4)
x3·x5
+
(x )2 4 大家好
+(-2x4)2
7
法则逆用
am+n=am∙an (m、n是正整数)
amn=( am)n=(an)m (m、n是正整数)
anbn=( ab)n (n是正整数)
am-n=am÷an (m、n是正整数)
大家好
8
例2:公式逆用
1若 xm1,xn3,求 x3mn的 值
5
(2)(-0.25)11×(-4)12
大家好
9
例2: 1若xm1,xn3,求x3mn的 值
大家好12Leabharlann 课堂小结:幂的运算法则
零指数、负指数的意义
、
要根据式子的特征正确选用幂 的运算法则,并能灵活运用幂的 运算法则进行计算
大家好
13
结束
大家好
14
a-p= (a ≠ 0,p为正整数) a0= 1 (a ≠0)
6、科学记数法: 一般的,一个小于1的正数可以表示为 a×10n
式,其中 1 ≤a< 10,n是负整数。
• 用科学记数法表示0.000 00320得( D )
的形
A、3.20×10-5
B、3.2×10-6
C、3.2×10-7
大家好 D、3.20×10-6 4
0
先分析题目,确定运算顺序,
温馨提示: 分清运算,正确运用法则。
大家好
6
跟踪练习
(1)(a2)3÷(-a)3
(2) 105÷10-1×100 (3)(5×104)×(3×102)
(4)
x3·x5
+
(x )2 4 大家好
+(-2x4)2
7
法则逆用
am+n=am∙an (m、n是正整数)
amn=( am)n=(an)m (m、n是正整数)
anbn=( ab)n (n是正整数)
am-n=am÷an (m、n是正整数)
大家好
8
例2:公式逆用
1若 xm1,xn3,求 x3mn的 值
5
(2)(-0.25)11×(-4)12
大家好
9
例2: 1若xm1,xn3,求x3mn的 值
幂的运算-ppt课件
(1)每个因式都要乘方,不要漏掉任何一个因式;
(2)系数应连同它的符号一起乘方,尤其是当系数是-1时,不
可忽略.
感悟新知
知3-练
例 5 计算:
(1)(x·y3)2; (2)(-3×102)3;
(3) -
2;
(4)(-a2b3)3.
解题秘方:运用积的乘方、幂的乘方的运算法则
进行计算.
感悟新知
知3-练
最后结果要符合科
学记数法的要求
(2)(-3×102)3=(-3)3×(102)3=-27×106=-2.7×107;
解:(1)(x·y3)2=x2·(y3)2=x2y6;
(3) -
12
a ;
2=
-
· () 2 =
2
2
=
·(a6)2 =
系数乘方时,要带前面的符号,特
a4n-a6n用a2n表示,再把a2n=3 整体代入求值.
解:a4n-a6n=(a2n)2-(a2n)3=32-33=9-27=-18.
感悟新知
知2-练
4-1.已知10m=3,10n=2,求下列各式的值:
(1)103m;
解:103m=(10m)3=33=27;
(2)102n;
102n=(10n)2=22=4;
感悟新知
知3-练
6-1. [中考·淄博] 计算(-2a3b)2-3a6b2的结果是( C )
A.-7a6b2
B. -5a6b2
C. a6b2
D. 7a6b2
感悟新知
知3-练
6-2. 计算:
(1)(-2anb3n)2+(a2b6)n;
(2)系数应连同它的符号一起乘方,尤其是当系数是-1时,不
可忽略.
感悟新知
知3-练
例 5 计算:
(1)(x·y3)2; (2)(-3×102)3;
(3) -
2;
(4)(-a2b3)3.
解题秘方:运用积的乘方、幂的乘方的运算法则
进行计算.
感悟新知
知3-练
最后结果要符合科
学记数法的要求
(2)(-3×102)3=(-3)3×(102)3=-27×106=-2.7×107;
解:(1)(x·y3)2=x2·(y3)2=x2y6;
(3) -
12
a ;
2=
-
· () 2 =
2
2
=
·(a6)2 =
系数乘方时,要带前面的符号,特
a4n-a6n用a2n表示,再把a2n=3 整体代入求值.
解:a4n-a6n=(a2n)2-(a2n)3=32-33=9-27=-18.
感悟新知
知2-练
4-1.已知10m=3,10n=2,求下列各式的值:
(1)103m;
解:103m=(10m)3=33=27;
(2)102n;
102n=(10n)2=22=4;
感悟新知
知3-练
6-1. [中考·淄博] 计算(-2a3b)2-3a6b2的结果是( C )
A.-7a6b2
B. -5a6b2
C. a6b2
D. 7a6b2
感悟新知
知3-练
6-2. 计算:
(1)(-2anb3n)2+(a2b6)n;
幂函数课件ppt课件
课程总结回顾
幂函数的基本概念
回顾幂函数的基本定义,以及幂函数的图像和性质。
幂函数的运算规则
复习幂函数的加减乘除运算规则,以及幂函数运算的实例。
幂函数的实际应用
强调幂函数在生活和科学领域中的应用,如物理学、工程学、统 计学等。
对未来学习的展望和规划
深化对幂函数的理解
学习更高阶的数学理论
通过更多实例和习题,深化学生对幂函数 的理解和掌握。
幂函数乘法
$(x^m \times x^n) = x^{m+n}$
幂函数除法
$\frac{x^m}{x^n} = x^{m-n}$
幂函数的复合运算
复合幂函数
将多个幂函数进行复合运算,如:$((x^2+1)^3-2x^4)$
复合幂函数的运算顺序
先算括号内的幂函数,再乘除,最后加减
幂函数的求导与微分运算
金融和投资
在金融和投资领域,幂函数被用于描述股票价格的变化和收益率的 计算。
计算机科学
在计算机科学中,幂函数被用于高效计算大数和进行快速幂运算。
幂函数在物理学中的应用
描述放射性衰变
幂函数被用于描述放射性衰变的 过程,即原子核自发地转变为其
他原子核的过程。
描述药物代谢
在药理学中,药物的代谢过程通 常可以用幂函数来描述。
幂函数例子
如$y = 2^x$、$y = x^2$等均为幂函数。
幂函数的性质
奇偶性
当底数为正数时,幂函数为偶函 数;当底数为负数时,幂函数为
奇函数。
增减性
当指数为正数时,幂函数随着自变 量的增加而增加;当指数为负数时 ,幂函数随着自变量的增加而减小 。
零点
当指数为整数时,幂函数的零点为 该整数的负一次方。
幂的运算性质复习优秀课件
同底数幂的乘法法则应用“三点注意” 1.不要漏掉单独字母的指数1. 2.把不同底数幂转化为同底数幂时要注意符号的变化. 3.不要把同底数幂的乘法计算与整式的加法计算混淆.
知识点 同底数幂的乘法法则的应用
【示范题2】已知ma+b·ma-b=m2014,求a的值.
逆用同底数幂的乘法法则“两点注意” 1.转化过程中要时刻注意保持幂的底数相同. 2.解题时注意整体思想的应用.
幂的运算性质复习
幂的运算性质:
• 1.同底数幂的乘法法则:
(1)语言叙述:同底数幂相乘,底数_____,指数_____. (2)式子表示:am·an=____(m,n都是正整数). 2.幂的乘方法则: (1)文字描述:幂的乘方,底数_____,指数_____. (2)符号表示:(am)n=___(m,n为正整数).
知识点 幂的乘方运算 【示范题3】计算: (1)-(a4)3. (2)(xm)4. (3)(a4)3·a3. (4)[(-6)5]6.
1.进行幂的乘方运算时,要注意系数为-1时的“-”号和括号里的“-”号与 括号外的“-”号的区别. 2.当算式中不止一种运算时,要分清运算的顺序及运算的法则.
同底数幂的乘法与幂的乘方的比较
知识点 逆用积的乘方法则
【示范题6】计算:0.252013×(-4)2014-8100× ( 1 )300. 2
幂的运算法则逆用选择
运算特点
适用法则
幂的指数为和的形式
同底数幂的乘法
幂的指数为积的形式
幂的乘方
幂的指数相同(或相差不大),底数的积容 易计算
积的乘方
知识点 积的乘方运算 【示范题5】计算:(1)-(-3a2b3)4. (2)(xn+1y2-n)2. (3)(-2x2)3·x5.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)x12÷x 4
(6)(-a)6÷(-a)4
(7)(p3 )2 ÷p5
(8)a10÷(-a 2)3
(9)m 8÷m 2÷m3 (10)(a2 )3 ÷a4a
例1 计算-x2· (-x)2· (-x2)3- 2x10
思路点拨:
计算时,应注意到-x2,(-x)2, (-x2)3 的含义是完全不一样的,运算的 依据也不一样.
回忆:3.积的乘方
(1)(ab)2 = (ab) • (ab) = (aa) • (bb) = a (2 )b(2 ) (2)(ab)3=___(a_b_)_•__(a_b_)_•_(_a_b_)___________
=__(_a_a_a_)_•_(_b_b_b_)______________ = a ( 3 )b( 3 ) (3)(ab)4=___(a_b_)_•__(a_b_)_•_(_a_b_)_•_(_a_b_)______ =__(_a_a_a_a_)_•_(_b_b_b_b_)____________ = a ( 4)b(4)
看一看、 算一算、 想 一想
a5 · a2=____a_7___;
同底数幂相乘
(a+b)3·(a+b)8 = _(_a__+_b_)__1_1_;底数 不变 , a3· a4 · a5 = ___a_12___。指数 相加 。
(-x)3 · x5=_-_x_8_ am ·an =am+n(m,n都是正整数)
➢ 练习一 2. 计算:
①10m·10m-1·100= 102m+1 ②3×27×9×3m= 3m+6 ③(m-n)4·(m-n) 5·(n-m)6 = (m-n)15 ④ (x-2y)4·(2y-x) 5·(x-2y)6 = (2y-x)15
➢ 练习二
1.下列各式中,与x5m+1相等的是( c )
(A)(x5)m+1
(B)(xm+1)5
(C) x(x5)m
(D) xx5xm
2.x14不可以写成( c )
(A)x5(x3)3 (B) (-x)(-x2)(-x3)(-x8)
①10m·10m-1·100= 102m+1 ②3×27×9×3m= 3m+6 ③(m-n)4·(m-n) 5·(n-m)6 = (m-n)15 ④ (x-2y)4·(2y-x) 5·(x-2y)6 = (2y-x)15
思考题:
动脑筋!
m3x+2y =(m x)³ (m y)²
1、若 am = 2, 则a3m =__8___. 2、若 mx = 2, my = 3 , mx+则y =mxx+my y=__6__, m3x+2y =__7_2___.
(x3y2)3,而后再根据同底数幂的运算法
则计算,注意本道题的特点,具有相同的底
数x3y2,因此解题时也可先依据同底数幂的
乘法法则计算。
解法一:
解法二:
(x3y2)2 · (x3y2)3
(x3y2)2· (x3y2)
3
=x6y4· x9y6 =x6+9y4+6 =x15y10
=(x3y2)2+3 =(x3y2)5 =x15y10
(4)(- 7 x)3=- 3 4 3 x3
2
2
(6)(x3)2=x5
思路点拨:
计算中错误的原因,主要有两个方面一 是粗心;二是对运算法则的理解上存在错 误.因此,要针对具体的错误,找出原因, 本道题主要是运算法则上出现错误.
例3 计算(x3y2)2 · (x3y2)3 思路点拨:
先根据积的乘方法则分别计算(x3y2)2、
幂的运算复习
回忆: 1.同底数幂的乘法法则: 字母表示:
am·an=am+n
其中m , n都是正整数
语言叙述: 同底数幂相乘,底数
不变,指数相加
回忆: 2.幂的乘方法则: 字母表示:
(am)n=amn
其中m , n都是正整数
语言叙述: 幂的乘方,底数不变, 指数相乘
➢ 练习一 2. 计算:
解:-x2· (-x)2· (-x2)3-2x10 =-x2· x2· (-x6)-2x10 =x2+2+6-2x10 =x10-2x10 =-x10
例2 下列计算错在哪里?并加以改正.
(1)(xy)2=xy2
(2)(3xy)4=12x4y4
(3)(-7x3)2=-49x6 (5)x5· x4=x20
➢ 练习一 1. 计算:( 口答)
(1) 105×106 1011
(3) a7 ·a3 a10
(5) x5 ·x5
x10 (7) x5 ·x ·x3
x9
(2) (105)6 1030
(4) (a7)3 a21
(6) (x5)5
x25
(8)(y3)2·(y2)3
= y 6 ·y 6 = y 12
25×24=___2_9__;
(1)24×44×0.1254 (2)(-4)2005×(0.25)2005
逆 = (2×4×0.125)4 = (-4×0.25)2005
用 法
=
= -1
则 (3)-82000×(-0.125)2001
进
行 = -82000×(-0.125)2000× (-0.125)
计
算 = -82000×0.1252000× (-0.125)
3.积的乘方
(ab)n = a nbn (n为正整数)
语言叙述:积的乘方,等于各因数乘方的积。
例 计算:
解(1)(2b)3
=23b3 =8b3
(2)(2×a3)2 =22×(a3)2
=4a6
(3)(-a)3 (4)(-3x)4
=(-1)3 •a3 = -a3
=(-3)4 • x4 = 81 x4
1.判断下列计算是否正确,并说明理由:
(1)(xy3)2=xy6
x²y6
(2)(-2x)3=-2x3
-8x3
练 习
2.计算:
(1)(3a)2 =32a2=9a2
(2)(-3a)3 =(-3)3a3=-27a3 (3)(ab2)2 =a2(b2)2=a2b4 (4)(-2×103)3 =(-2)3×(103)3=-8×109
= -(8×0.125)2000× (-0.125)
= -1× (-0.125) = 0.125
回忆
4.同底数幂的除法
字母表示
am ÷ an =am-n
语言叙述 (n为正整数,m>n,且a≠0) 同底数幂相除,底数不变, 指数相减。
练习
(1)a 8÷a3
(2)(-a)10 ÷(-a)3
(3)(2a)7 ÷(2a)4 (4)(-m)2÷(-m)