配方法及其应用(题目)
初三配方法求最值练习题

初三配方法求最值练习题在初三数学学习中,配方法求最值是一个重要的知识点。
这个方法不仅可以帮助我们解决一些复杂的数学问题,还能训练我们的思维能力和解题技巧。
本文将给大家提供一些配方法求最值的练习题,希望能帮助大家更好地掌握这一知识点。
1. 求函数$f(x)=x^2-2x+3$在区间$[0,3]$上的最大值和最小值。
解析:首先,我们需要找到函数的极值点。
对于二次函数$f(x)$来说,极值点位于顶点处。
由于函数$f(x)$的二次项系数是正数,所以它的抛物线开口朝上,顶点是最小值点。
首先,我们求得函数$f(x)$的导数$f'(x)=2x-2$。
令导数为零,可以得到$x=1$。
因此,函数$f(x)$的顶点横坐标为$x=1$。
将$x=1$代入函数$f(x)$,可以得到$f(1)=1^2-2\times 1+3=2$。
所以函数$f(x)$在区间$[0,3]$上的最小值为2。
接下来,我们需要确定最大值。
由于函数$f(x)$是一个开口朝上的抛物线,所以最大值要么出现在区间的端点,要么出现在极值点$x=1$。
将$x=0$和$x=3$分别代入$f(x)$,可以得到$f(0)=3$和$f(3)=6$。
所以函数$f(x)$在区间$[0,3]$上的最大值为6。
综上所述,函数$f(x)=x^2-2x+3$在区间$[0,3]$上的最大值为6,最小值为2。
2. 设$x,y$是非负实数,且满足$x+y=6$,求函数$F(x)=x^2y$的最大值。
解析:根据题目的条件,我们可以得到$y=6-x$。
将其代入函数$F(x)$,可以得到$F(x)=x^2(6-x)$。
我们要求函数$F(x)$的最大值,可以通过求导数来解决。
首先,对函数$F(x)$求导数,可以得到$F'(x)=12x-2x^2$。
令导数为零,可以得到$12x-2x^2=0$。
化简后,得到$x(6-x)=0$,解得$x=0$和$x=6$。
将$x=0$和$x=6$代入函数$F(x)$,可以得到$F(0)=F(6)=0$。
解一元二次方程练习题(直接开平方法、配方法)

解一元二次方程练习题(直接开平方法、配方法)直接开平方法1. 题目:解方程 $x^2 - 5x + 6 = 0$解答:首先,根据直接开平方法,我们需要找到两个数,它们的和等于 $-5$,乘积等于 $6$。
很明显,这两个数分别是 $-2$ 和 $-3$。
因此,我们可以将方程变为两个线性方程:$x^2 - 2x - 3x + 6 = 0$。
接下来,我们可以对这两个线性方程进行因式分解:$x(x - 2) - 3(x - 2) = 0$。
再进一步化简,我们可以得到:$(x - 2)(x - 3) = 0$。
因此,方程的解是 $x = 2$ 或 $x = 3$。
2. 题目:解方程 $2x^2 - 7x + 3 = 0$解答:这个方程也可以使用直接开平方法来解决。
我们需要找到两个数,它们的和等于 $-\frac{7}{2}$,乘积等于 $3$。
通过观察系数,我们可以确定这两个数分别是 $-\frac{1}{2}$ 和 $-3$。
因此,我们可以将方程变为两个线性方程:$2x^2 - \frac{1}{2}x - 6x + 3 = 0$。
接下来,我们可以对这两个线性方程进行因式分解:$x(2x -\frac{1}{2}) - 3(2x - \frac{1}{2}) = 0$。
再进一步化简,我们可以得到:$(2x - \frac{1}{2})(x - 3) = 0$。
因此,方程的解是 $x =\frac{1}{4}$ 或 $x = 3$。
配方法1. 题目:解方程 $3x^2 + 2x - 1 = 0$解答:对于这个方程,我们可以使用配方法来解决。
首先,我们需要找到一个数 $m$,使得方程 $3x^2 + 2x - 1$ 可以被写成 $(x +m)^2$ 的形式。
我们可以通过观察常数项的符号来得到一个启示。
由于常数项是负数,我们可以猜测 $m$ 的值为 $-\frac{1}{3}$。
将方程重新写成 $(x - \frac{1}{3})^2 = 0$,然后展开,我们可以得到$x^2 - \frac{2}{3}x + \frac{1}{9} = 0$。
“配方法”及其应用 【完整版】

“配方法”及其应用把一个式子或一个式子的某一部分化成完全平方式或几个完全平方式的和、差形式,这种方法叫“配方法”.“直接开平方法”告诉我们根据完全平方公式2222()a ab b a b ±+=±可以将一元二次方程化为形如2()(0)ax b c c +=≥的形式后求解,这就自然而然地导出了另一种解一元二次方程的解法——“配方法”.它的理论依据是完全平方公式2222()a ab b a b ±+=±.例1.解方程2210x x +-=.解:方程两边都除以2,得21022x x +-=,移项,得2122x x +=, 配方,得2111216216x x ++=+,即219416x ⎛⎫+= ⎪⎝⎭.开方,得12112x x ==-,. 通过本例可以归纳出用“配方法”解一元二次方程的一般步骤:1.方程两边同除以二次项系数,化二次项系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为2()ax b c +=的形式;4.若0c ≥,用“直接开平方法”解出;若0c <,则原方程无实数根即原方程无解.“配方法”是一种重要的数学方法,它不仅可应用于解一元二次方程,而且在数学的其它领域中也有着广泛的应用.一、用于比较大小例2.若代数式221078M a b a =+-+,2251N a b a =+++,则M N -的值( )A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数解:(作差法)22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>.故选B.说明:本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.二、用于因式分解例3.分解因式:42221x x ax a +++-.解:42221x x ax a +++-4222221x x x ax a =+-++-4222212x x x ax a =++--+()()2221x x a =+--()()22(1)(1)x x a x x a =++-+-+.说明:这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式.三、用于求待定字母的值例4.若实数x y ,满足224250x y x y +--+=的值是( )A.1B.32+C.3+D.3-解:对已知等式配方,得2210x y -+-=2()(),∴21x y ==,.3====+ 说明:本例是配方法在求值中的应用,将原等式左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.四、用于求最值例5.多项式21x x -+的最小值是( )A.1 B.54 C.12 D.34解:21x x -+21324x ⎛⎫=-+ ⎪⎝⎭.故选D. 说明:此例是“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.五、用于证明例6.证明方程85210x x x x -+++=没有实数根.证明:85210x x x x -+++=85221344244393x x x x x ⎛⎫⎛⎫=-+++++ ⎪ ⎪⎝⎭⎝⎭ 224132202433x x x ⎛⎫⎛⎫=-+++> ⎪ ⎪⎝⎭⎝⎭, 即对所有实数x ,方程左边的代数式的值均不等于0,因此,原方程没有实数根.说明:这是“配方法”在代数证明中的应用,要证明方程85210x x x x -+++=没有实数根.似乎无从下手,而用“配方法”将其变成完全平方式后,便“柳暗花明”了.以后,我们学习了函数后还会知道“配方法”在二次函数中也有着广泛的应用.“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.。
初三数学配方法公式法练习题

初三数学配方法公式法练习题在初三数学学习过程中,配方法和公式法是其中的两个重要的解题方法。
配方法主要适用于一元二次方程的解题,而公式法则广泛适用于各种数学题型。
下面我们来进行一些练习题,通过运用这两种方法解题,加深对它们的理解。
1. 配方法1.1 一元二次方程题问题:求解方程x^2 + 6x + 9 = 0的解。
解答:按照配方法的步骤来解题,我们需要先判断a、b、c的值分别是多少。
在这个方程中,a为1,b为6,c为9。
1. 将b除以2,得到3。
2. 计算3的平方,得到9。
3. 判断是否满足(a-b/2)^2 = c。
在这个例子中,(1-6/2)^2=9。
4. 若满足配方法的条件,可以进行下一步计算。
在这个例子中,满足条件。
5. 计算(x-b/2)^2 = c,即(x-3)^2 = 9。
6. 开方得到x-3=±3,即x=6或x=0。
所以,方程x^2 + 6x + 9 = 0的解为x=6或x=0。
2. 公式法2.1 面积计算题问题:求解一个半径为5cm的圆的面积。
解答:根据圆的面积公式S = πr^2,其中r为半径。
1. 将半径的值代入公式中,得到S = π(5)^2。
2. 进行计算,得到S = 25π。
所以,一个半径为5cm的圆的面积为25πcm²。
2.2 三角函数题问题:求解正弦函数f(x) = sin(x)在区间[0, π/2]上的极大值和极小值。
解答:根据三角函数的极值定理,f(x)在区间[0, π/2]上的极大值和极小值可通过求f'(x) = 0的根来得到。
其中,f'(x)代表f(x)的导数。
1. 对f(x) = sin(x)求导数,得到f'(x) = cos(x)。
2. 解方程f'(x) = 0,即cos(x) = 0。
在区间[0, π/2]上,cos(x) = 0的解为x = π/2。
3. 根据二阶导数的符号来判断极值类型。
在这个例子中,f''(x) = -sin(x)小于0,说明在x = π/2处是极大值。
配方法解一元二次方程基础练习30题含详细答案

即 ,
故选D.
10.B
【解析】
试题分析: , , .故选B.
考点:解一元二次方程-配方法.
11.C
【分析】
常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.
【详解】
解:∵ ,
∴ ,即 ,
故选:C.
【点睛】
本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.
【详解】
a=3,b=-2,c=-2,
b2-4ac=(-2)2-4×3×(-2)=28>0,
∴x= = ,
, .
【点睛】
本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.
19.(1) ;(2) 是方程的解.
【解析】
【详解】
A、由原方程,得 ,
等式的两边同时加上一次项系数2的一半的平方1,得 ;
故本选项正确;
B、由原方程,得 ,
等式的两边同时加上一次项系数−7的一半的平方,得, ,
故本选项正确;
C、由原方程,得 ,
等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;
故本选项错误;
D、由原方程,得3x2−4x=2,
12.用配方法解一元二次方程 ,配方正确的是().
A. B.
C. D.
13.用配方法解下列方程时,配方有错误的是()
A. 化为 B. 化为
C. 化为 D. 化为
14.用“配方法”解一元二次方程x2﹣16x+24=0,下列变形结果,正确的是( )
A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40
配方法例题20道及答案

配方法例题20道及答案本文列举了20道配方法例题,并提供了详细答案解析,旨在帮助读者加强配方法的理解和应用能力。
题目1:背景介绍某餐厅每天供应12种不同口味的冰淇淋,每种口味的冰淇淋都是相同的价格,每份冰淇淋的标价为\$3。
某天,小明去餐厅买了6份冰淇淋,他共花费了\$14。
请问,小明买了多少种不同口味的冰淇淋?解答1:假设小明买了X种不同口味的冰淇淋,则小明总共花费的金额为:X * 3。
根据题目中的信息,得到方程:X * 3 = 14。
带入数值求解: X * 3 = 14 X = 14 / 3 X ≈ 4.67根据题目背景可知,小明不能购买4.67种口味的冰淇淋,所以我们需要向上取整,即小明购买了5种不同口味的冰淇淋。
题目2:背景介绍某班级有10名男生和15名女生,老师需要选择一位男生和一位女生作为班级代表。
请问,老师有多少种不同选择的方式?解答2:老师选择男生的方式有10种,选择女生的方式有15种。
因此,老师选择班级代表的方式总共有10 * 15 = 150种。
题目3:背景介绍一家图书馆共有8本科学类书籍、6本文学类书籍和10本历史类书籍。
如果要选择一本科学类书籍和一本文学类书籍,问有多少种不同的选择方式?解答3:选择科学类书籍的方式有8种,选择文学类书籍的方式有6种。
因此,选择一本科学类书籍和一本文学类书籍的方式总共有8 * 6 = 48种。
题目4:背景介绍给定一个集合A,其中包含5个元素,即A = {1, 2, 3, 4, 5}。
从集合A中任意选择2个元素,问有多少种不同的选择方式?解答4:从集合A选择2个元素的方式数量可以通过计算组合数来求解。
组合数C(n, k)表示从n个元素中选择k个元素的方式数量。
利用组合数公式C(n, k) = n! / (k! * (n-k)!),可以得到: C(5, 2) = 5! / (2! * (5-2)!) = 120 / (2 * 6) = 120 / 12 = 10因此,从集合A中选择2个元素的方式总共有10种。
专题训练(一) 配方法的四种应用

专题训练(一) 配方法的四种应用► 应用一 利用配方法解一元二次方程1.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=109 2.用配方法解一元二次方程x 2-22x +1=0,所得结果是x 1=________,x 2=________.(x 1<x 2)► 应用二 利用配方法求最值3.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .54.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值15.已知M =29a -1,N =a 2-79a(a 为任意实数),则M ,N 的大小关系为( ) A .M <N B .M =NC .M >ND .不能确定6.证明:(1)无论x 取何实数,代数式-x 2+2x -3的值一定是负数;(2)无论x 取何实数,代数式x 2+2x +5的值一定是正数.► 应用三 利用配方法和非负数的性质求值7.已知x 2+y 2+4x -6y +13=0,则代数式x +y 的值为( )A .1B .-1C .25D .368.若a 2-6ab +10b 2+b +14=0,则a =________,b =________. 9.已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2-ab -bc -ac =0,请你根据此条件判断这个三角形的形状,并说明理由.► 应用四 利用配方法求代数式的值10.已知x +y =3,xy =-7,求下列各式的值:(1)x 2+y 2;(2)x 2-xy +y 2;(3)(x -y)2.11.已知x 2-3x +1=0,求下列各式的值:(1)x 2+1x 2; (2)(x -1x)2.详解详析1.B [解析] B 项,x 2+8x +9=0化为(x +4)2=7,故本选项错误,其他选项均正确.2.[答案] 2-12+13.B4.A5.A [解析] ∵M =29a -1,N =a 2-79a (a 为任意实数),∴N -M =a 2-a +1=(a -12)2+34>0,∴N >M ,即M <N .故选A.6.证明:(1)-x 2+2x -3=-(x 2-2x )-3=-(x 2-2x +1)+1-3=-(x -1)2-2. ∵-(x -1)2≤0,∴-(x -1)2-2<0.因此,无论x 取何实数,代数式-x 2+2x -3的值一定是负数.(2)x 2+2x +5=(x 2+2x +1)+4=(x +1)2+4.∵(x +1)2≥0,∴(x +1)2+4>0.因此,无论x 取何实数,代数式x 2+2x +5的值一定是正数.7.A [解析] ∵x 2+y 2+4x -6y +13=0,∴x 2+4x +4+y 2-6y +9=0,∴(x +2)2+(y -3)2=0,∴x +2=0,y -3=0,∴x =-2,y =3,∴x +y =1.故选A .8.[答案] -32 -12[解析] 将已知等式变形,得(a -3b)2+(b +12)2=0.由非负数的性质,得a -3b =0,b +12=0.所以a =-32,b =-12. 9.解:△ABC 为等边三角形.理由如下:∵a 2+b 2+c 2-ab -bc -ac =0,∴2a 2+2b 2+2c 2-2ab -2bc -2ac =0.∴a 2+b 2-2ab +b 2+c 2-2bc +a 2+c 2-2ac =0,即(a -b)2+(b -c)2+(c -a)2=0. ∴a -b =0,b -c =0,c -a =0.∴a =b =c.∴△ABC 为等边三角形.10.解:(1)x 2+y 2=x 2+2xy +y 2-2xy =(x +y)2-2xy =32-2×(-7)=23.(2)x 2-xy +y 2=x 2+2xy +y 2-3xy =(x +y)2-3xy =32-3×(-7)=30.(3)(x -y)2=x 2-2xy +y 2=x 2+2xy +y 2-4xy =(x +y)2-4xy =32-4×(-7)=37.11.解:(1)方程x 2-3x +1=0的两边同除以x 并移项,得x +1x=3, ∴x 2+1x 2=(x +1x )2-2x·1x=9-2=7. (2)(x -1x )2=(x +1x )2-4x·1x=9-4=5.。
配方法解一元二次方程题

配方法解一元二次方程题一、基础题目1. 用配方法解方程x^2+6x + 4 = 0。
解析:- 对于一元二次方程ax^2+bx + c = 0(a≠0),在这个方程x^2+6x + 4 = 0中,a = 1,b = 6,c = 4。
- 配方的关键步骤是在等式两边加上一次项系数一半的平方。
一次项系数b = 6,一半为3,其平方是3^2=9。
- 对原方程进行配方:- x^2+6x+9 - 9+4 = 0,即(x + 3)^2-9 + 4=0。
- 化简得(x + 3)^2=5。
- 然后求解:- 开平方得x+3=±√(5)。
- 解得x=-3±√(5)。
2. 解方程x^2-4x - 3 = 0。
解析:- 这里a = 1,b=-4,c=-3。
- 一次项系数b=-4,一半为- 2,其平方是(-2)^2=4。
- 配方:- x^2-4x+4 - 4-3 = 0,即(x - 2)^2-4 - 3 = 0。
- 得到(x - 2)^2=7。
- 求解:- 开平方得x - 2=±√(7)。
- 解得x = 2±√(7)。
二、稍复杂题目(二次项系数不为1)1. 用配方法解方程2x^2-5x+2 = 0。
解析:- 方程两边同时除以2,得到x^2-(5)/(2)x + 1=0。
这里a = 1(经过变形后),b=-(5)/(2),c = 1。
- 一次项系数b =-(5)/(2),一半为-(5)/(4),其平方是(-(5)/(4))^2=(25)/(16)。
- 配方:- x^2-(5)/(2)x+(25)/(16)-(25)/(16)+1 = 0,即(x-(5)/(4))^2-(25)/(16)+1 = 0。
- 化简(x-(5)/(4))^2=(9)/(16)。
- 求解:- 开平方得x-(5)/(4)=±(3)/(4)。
- 解得x = 2或x=(1)/(2)。
配方法解方程练习题300道

配方法解方程练习题300道1. 通过配方法解下列方程:(a) $x^2-3x+2=0$(b) $2x^2+5x-3=0$(c) $3x^2+7x+2=0$(d) $4x^2-6x+2=0$(e) $5x^2-4x-1=0$解答:(a) $x^2-3x+2=0$可以通过配方法进行求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$-3$,积等于$2$。
显然,$-2$和$-1$满足这个条件。
因此,我们可以将方程改写为$(x-2)(x-1)=0$,从而得到$x=2$和$x=1$作为方程的解。
(b) $2x^2+5x-3=0$同样可以通过配方法进行求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$5$,积等于$-6$。
可以得到,$6$和$-1$满足这个条件。
因此,将方程改写为$(2x-1)(x+3)=0$,可得到$x=\frac{1}{2}$和$x=-3$作为方程的解。
(c) $3x^2+7x+2=0$可以进行配方法求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$7$,积等于$6$。
可以得到,$6$和$1$满足这个条件。
将方程改写为$(3x+1)(x+2)=0$,可得到$x=-\frac{1}{3}$和$x=-2$作为方程的解。
(d) $4x^2-6x+2=0$可以通过配方法求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$-6$,积等于$8$。
可以得到,$-4$和$-2$满足这个条件。
将方程改写为$(2x-1)(2x-2)=0$,可得到$x=\frac{1}{2}$和$x=1$作为方程的解。
(e) $5x^2-4x-1=0$同样可以进行配方法求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$-4$,积等于$-5$。
很明显,$1$和$-5$满足这个条件。
将方程改写为$(5x+1)(x-1)=0$,我们可以得到$x=-\frac{1}{5}$和$x=1$作为方程的解。
8 例析利用配方法解题题型 高中常用数学方法的介绍 例析 体验 练习

【学生版】例析利用配方法解题题型配方法是数学中一种重要的恒等变形的方法,其作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、化简根式、解方程、解函数最值和解析式、证明等式和不等式问题等方面有广泛的应用。
所谓配方法:是把代数式通过“凑”、“配”等手段,善于将某项拆开又重新分配组合,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法;配方法主要适用于含“二次项”的函数、方程、等式、不等式的讨论、求解与证明及二次曲线的讨论。
配方法使用的最基本的配方依据是二项完全平方公式222)b a (b ab 2a ±=+±;将这个公式灵活运用,可得到各种基本配方形式;如:ab 2)b a (ab 2)b a (b a 2222+-=-+=+;222222)b 23()2b a (ab 3)b a (ab )b a (b ab a ++=+-=-+=++;])a c ()c b ()b a [(21ca bc ab c b a 222222+++++=+++++; 2)x cos x (sin x cos x sin 21x 2sin 1+=+=+;2)x1x (2)x 1x (x 1x 2222+-=-+=+。
一、运用配方法解方程对有一类方程的求解,可运用几个非负数的和等于零,则每一个非负数都是零,则就需要配方。
例1、求方程05y 4x 2y x 22=+-++的解x ,y 。
【提示】 【解析】 【评注】例2、证明:无论m 取何值,关于x 的方程05m x 4x )10m 6m (22=-++-都是一个一元二次方程。
二、运用配方法解(证明)不等式根据完全平方的非负性,结合配方,可解决不等式的证明与建立不等量关系,解决不等式问题。
例3、设方程2x kx 20++=的两实根为p 、q ,若22p q ()()7qp+≤成立,求:实数k 的取值范围。
配方法的应用精选题43道参考答案

配方法的应用精选题43道参考答案与试题解析一.选择题(共19小题)1.【分析】由(3x﹣)2+m=9x2﹣2x++m可知a=9,m=【解答】解:由ax2=(3x﹣)2+m=9x2﹣2x++m得:a=9,+m=1所以:m=故选:B.【点评】本题主要考查完全平方公式在配方法中的应用.2.【分析】此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.【解答】解:∵x2﹣4x+5=x2﹣4x+4﹣4+5=(x﹣2)2+1∵(x﹣2)2≥0,∴(x﹣2)2+1≥1,∴当x=2时,代数式x2﹣4x+5的最小值为1.故选:B.【点评】此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.3.【分析】先用配方法对b2+c2=2b+4c﹣5变形配方,从而求得b,c的值,再将其代入a2=b2+c2﹣bc,求出a,再由勾股定理的判定定理得出△ABC为直角三角形,从而其面积易得.【解答】解:∵b2+c2=2b+4c﹣5∴(b2﹣2b+1)+(c2﹣4c+4)=0∴(b﹣1)2+(c﹣2)2=0,∴b﹣1=0,c﹣2=0,∴b=1,c=2.又∵a2=b2+c2﹣bc,∴a2=1+4﹣2=3,∴a=或a=﹣(舍)∵,∴△ABC是以1和为直角边的直角三角形,∴△ABC的面积为:=,故选:B.【点评】本题考查了应用配方法进行变形,以及偶次方的非负性,勾股定理的逆定理,三角形的面积计算等基础内容,本题难度中等.4.【分析】根据完全平方公式把原式的右边变形,根据题意列出方程,求出m、n,计算即可.【解答】解:(x﹣5)2﹣n=x2﹣10x+25﹣n,∴x2+mx+19=x2﹣10x+25﹣n,∴m=﹣10,25﹣n=19,解得,m=﹣10,n=6,∴m+n=﹣10+6=﹣4,故选:C.【点评】本题考查的是配方法的应用,掌握完全平方公式是解题的关键.5.【分析】通过配方法配出平方根,从而判断M值的大小.【解答】解:M=5x2﹣12xy+10y2﹣6x﹣4y+13=4x2﹣12xy+9y2+y2﹣4y+4+x2﹣6x+9=(2x ﹣3y)2+(y﹣2)2+(x﹣3)2≥0,故M一定是非负数.故选:A.【点评】本题考查了配方法的应用,熟练配方法的应用是解答此题的关键.6.【分析】把Q﹣P利用完全平方公式进行变形,根据偶次方的非负性解答.【解答】解:Q﹣P=m2﹣1﹣(2m﹣3)=m2﹣1﹣2m+3=m2﹣2m+2=m2﹣2m+1+1=(m﹣1)2+1,∵(m﹣1)2≥0,∴,(m﹣1)2+1>0,∴Q﹣P>0,∴P<Q,故选:C.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.7.【分析】先利用配方法将代数式﹣x2+4x﹣2转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.【解答】解:∵﹣x2+4x﹣2=﹣(x2﹣4x+4)+4﹣2=﹣(x﹣2)2+2,又∵(x﹣2)2≥0,∴(x﹣2)2≤0,∴﹣(x﹣2)2+2≤2,∴代数式﹣x2+4x﹣2有最大值2.故选:B.【点评】本题考查配方法的应用,解题的关键是利用完全平方公式,根据非负数的性质解决问题,属于中考常考题型.8.【分析】配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.【解答】解:x2+6x+m=(x+3)2﹣9+m═(x+n)2﹣1,∴﹣9+m=﹣1,m=8.故选:C.【点评】本题考查了配方法的应用,熟练掌握完全平方公式是解题写关键.9.【分析】已知等式变形配方后,利用非负数的性质求出a与b的值,代入原式计算即可求出值.【解答】解:已知等式变形得:(a2+6a+9)+(b2﹣4b+4)=0,即(a+3)2+(b﹣2)2=0,可得a+3=0,b﹣2=0,解得:a=﹣3,b=2,则原式=(﹣3)2=9.故选:C.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.10.【分析】原式配方后,利用非负数的性质确定出m的值即可.【解答】解:原式=﹣(x2﹣mx)+9=﹣(x﹣)2+9+,当x﹣=0,即x=时,原式取得最大值9+=10,整理得:m2=4,解得:m=±2,则m的值可能为2,故选:B.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,熟练掌握完全平方公式是解本题的关键.11.【分析】先将多项式2x2﹣2xy+5y2+12x﹣24y+51分组配方,根据偶次方的非负性可得答案.【解答】解:2x2﹣2xy+5y2+12x﹣24y+51=x2﹣4xy+4y2+12x﹣24y+36+x2+2xy+y2+15=(x﹣2y)2+12(x﹣2y)+36+(x+y)2+15=(x﹣2y+6)2+(x+y)2+15∵(x﹣2y+6)2≥0,(x+y)2≥0∴(x﹣2y+6)2+(x+y)2+15≥15故选:C.【点评】本题考查了配方法在多项式最值中的应用,熟练掌握配方法并灵活运用及恰当分组,是解题的关键.12.【分析】先配成非负数的和为0,各项为0,求出a,b代入即可.【解答】解:(1)∵a2+2a+b2﹣6b+10=0,∴(a+1)2+(b﹣3)2=0,∴a=﹣1,b=3,∴b a=3﹣1=,故选:D.【点评】此题是配方法的应用,主要考查了非负数的性质,解本题的关键是求出a,b的值.13.【分析】用配方法把多项式配方,再利用非负数的性质判断多项式的值的范围.【解答】解:∵x2﹣6x+10=x2﹣6x+9+1=(x﹣3)2+1而(x﹣3)2≥0,∴(x﹣3)2+1>0,故选C.【点评】利用非负数的性质可以判断多项式的取值范围,而非负数往往需要用配方法才能得到.14.【分析】把等式左边配成完全平方加或减常数的形式,再与等式右边比较对应位置的字母与数字即可得答案.【解答】解:∵3x2+6x+2=a(x+k)2+h,等式左边3x2+6x+2=3(x2+2x+1)﹣1=3(x+1)2﹣1把上式与a(x+k)2+h比较得k=1,h=﹣1.故选:B.【点评】本题考查配方法的应用,需要先把等式左边变形,然后与右边比较对应位置的数字与字母即可,本题属于中档题.15.【分析】利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【解答】解:x2﹣4x+7=x2﹣4x+4+3=(x﹣2)2+3,∵(x﹣2)2≥0,∴(x﹣2)2+3≥3,∴代数式x2﹣4x+7有最小值3,故选:C.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.16.【分析】首先把x2+y2+2x﹣4y+9化成(x+1)2+(y﹣2)2+4;然后根据偶次方的非负性质,判断出代数式x2+y2+2x﹣4y+9的值总不小于4即可.【解答】解:x2+y2+2x﹣4y+9=(x2+2x+1)+(y2﹣4y+4)+4=(x+1)2+(y﹣2)2+4∵(x+1)2≥0,(y﹣2)2≥0,∴x2+y2+2x﹣4y+9≥4,即不论x、y为什么实数,代数式x2+y2+2x﹣4y+9的值总不小于4.故选:A.【点评】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.17.【分析】利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【解答】解:x2﹣4xy+5y2+8y+15=x2﹣4xy+4y2+y2+8y+16﹣1=(x﹣2y)2+(y+4)2﹣1,∵(x﹣2y)2≥0,(y+4)2≥0,∴(x﹣2y)2+(y+4)2﹣1≥﹣1,∴多项式x2﹣4xy+5y2+8y+15的最小值为﹣1,故选:A.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.18.【分析】利用配方法得到a2﹣4a+5=(a﹣2)2+1,然后根据非负数的性质易得(a﹣2)2+1>0.【解答】解:a2﹣4a+5=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1>0,即数式a2﹣4a+5的值一定是正数.故选:A.【点评】本题考查了配方法的应用:用配方法解一元二次方程;利用配方法求二次三项式是一个完全平方式时所含字母系数的值.也考查了非负数的性质.19.【分析】通过配方法将代数式变形,由此求得其最小值.【解答】解:由配方法得,x2﹣4x+5=(x﹣2)2+1.因为(x﹣2)2≥0,所以(x﹣2)2+1≥1,所以代数式x2﹣4x+5的最小值是1.故选:B.【点评】此题考查了配方法的应用和非负数的性质,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.二.填空题(共17小题)20.【分析】题中有﹣8xy,2x应为完全平方式子的第二项,把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数.【解答】解:原式=(x2+2x+1)+(4x2﹣8xy+4y2)+3=4(x﹣y)2+(x+1)2+3,∵4(x﹣y)2和(x+1)2的最小值是0,即原式=0+0+3=3,∴5x2+4y2﹣8xy+2x+4的最小值为3.故答案为:3.【点评】考查配方法的应用;根据﹣8xy,2x把所给代数式整理为两个完全平方式子的和是解决本题的关键.21.【分析】首先把所求的式子利用配方法转化为a(x+b)2+c的形式,根据一个式子的平方是非负数,即可确定.【解答】解:∵x2+8x+5=(x2+16x)+5=(x2+16x+64﹣64)+5,⇒x2+8x+5=[(x+8)2﹣64]+5=(x+8)2﹣27,∵(x+8)2≥0,∴代数式x2+8x+5的最小值是﹣27.【点评】此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.22.【分析】已知等式左边配方得到结果,即可确定出m的值.【解答】解:已知等式变形得:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1=(x﹣2)2+m,则m=1,故答案为:1【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.23.【分析】原式利用完全平方公式化简即可得到结果.【解答】解:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2.【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.24.【分析】根据配方法的步骤先把x2﹣4x﹣5的形式,求出m,k的值,再代入进行计算即可.【解答】解:x2﹣4x﹣5=(x﹣2)2﹣9,所以m=2,k=﹣9,所以m+k=2﹣9=﹣7.故答案是:﹣7.【点评】此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.25.【分析】由a﹣b=2,得出a=b+2,进一步代入ab+2b﹣c2+2c=0,进一步利用完全平方公式得到(b+2)2﹣(c﹣1)2﹣3=0,再根据已知条件得到b的值,进一步求得整数a的值即可.【解答】解:∵a﹣b=2,∴a=b+2,∴ab+2b﹣c2+2c=b(b+2)+2b﹣c2+2c=b2+4b﹣(c2﹣2c)=(b+2)2﹣(c﹣1)2﹣3=0,∵b≥0,﹣2≤c<1,∴4≤(b+2)2≤12,∵a是整数,∴b=0或1,∴a=2或3.故答案为:2或3.【点评】此题考查配方法的运用,非负数的性质,掌握完全平方公式是解决问题的关键.26.【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性解答.【解答】解:x2+y2+2x﹣4y+7=x2+2x+1+y2﹣4y+4+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2的最小值是2,即代数式x2+y2+2x﹣4y+7的最小值是2,故答案为:2.【点评】本题考查的是配方法的应用、非负数的性质,掌握配方法的一般步骤、偶次方的非负性是解题的关键.27.【分析】利用完全平方公式把原式变形,根据非负数的性质分别求出a、b,根据负整数指数幂的运算法则计算.【解答】解:a2+b2+4a﹣8b+20=0,a2+4a+4+b2﹣8b+16=0,(a+2)2+(b﹣4)2=0,则a+2=0,b﹣4=0,解得,a=﹣2,b=4,则b a=4﹣2=,故答案为:.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.28.【分析】将等式右边的部分移到左边,然后配方,利用偶次方的非负性,可得a,b,c 的值,从而可求得2b+c的值.【解答】解:∵a+b+c=2+4+6﹣14∴a+1+b+1+c﹣2﹣2﹣4﹣6+14=0∴[﹣2+1]+[﹣4+4]+[﹣6+9]=0∴++=0∴﹣1=0,﹣2=0,﹣3=0∴=1,=2,=3∴a+1=1,b+1=4,c﹣2=9∴a=0,b=3,c=11∴2b+c=2×3+11=17故答案为:17.【点评】本题考查了配方法在二次根式中应用,熟练掌握配方法并明确偶次方的非负性,是解题的关键.29.【分析】本题可以用配方法来做,当二次项系数不是1时,可以先把二次项系数提到括号外面,再凑常数项,常数项等于一次项系数一半的平方,由此可解.【解答】解:2a2﹣a+10=2+10=2()+10=2+10﹣=2+∵2≥0,∴2+≥.∴代数式2a2﹣a+10的最小值是.【点评】本题可以用配方法来求最小值.配方法是一种重要的计算化简方法,需要扎实掌握.30.【分析】把原式根据配方法化成x2+10y2+6xy﹣4y+4=(x+3y)2+(y﹣2)2,即可得出最小值.【解答】解:x2+10y2+6xy﹣4y+4=x2+6xy+9y2+y2﹣4y+4=(x+3y)2+(y﹣2)2,∵(x+3y)2+(y﹣2)2≥0,∴x2+10y2+6xy﹣4y+4的最小值是0.故答案为0.【点评】本题考查了配方法的应用,难度不大,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.31.【分析】应用配方法求出a,b,c之间的关系,然后直接计算即可.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2(a2+b2+c2﹣ab﹣bc﹣ac)=0,∴(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c又∵a+3b+4c=16,∴a=b=c=2,∴a+b+c=6.故答案为:6【点评】本题考查了配方法的应用,熟练掌握配方法是解答此题的关键.32.【分析】根据完全平方公式把原式变形即可.【解答】解:x2﹣4x+1=x2﹣4x+4﹣3=(x﹣2)2﹣3,故答案为:(x﹣2)2﹣3.【点评】本题考查的是配方法的应用,掌握完全平方公式是解题的关键.33.【分析】先求出A﹣B的值,再判断即可.【解答】解:∵A=2a2﹣a+3,B=a2+a,∴A﹣B=(2a2﹣a+3)﹣(a2+a)=a2﹣2a+3=(a﹣1)2+2≥0,∴A>B,故答案为:A>B.【点评】本题考查了整式的混合运算和配方法的应用,能选择适当的方法求解是解此题的关键.34.【分析】先利用配方法将代数式2x2﹣4x+1转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.【解答】解:2x2﹣4x+1=2(x2﹣2x+1)﹣2+1=2(x﹣1)2﹣1,∵2(x﹣1)2≥0,∴2x2﹣4x+1的最小值是﹣1,故答案为:﹣1.【点评】本题考查配方法的应用,解题的关键是利用配方法,根据非负数的性质解决问题,属于中考常考题型.35.【分析】仿照题中的方法将原式配方后,利用非负数的性质确定出最小值即可.【解答】解:y2﹣y+5=y2﹣y++=(y﹣)2+≥,则代数式y2﹣y+5的最小值是.故答案为:.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,熟练掌握完全平方公式是解本题的关键.36.【分析】已知等式左边配方后,利用非负数的性质求出x与y的值,即可求出代数式的值.【解答】解:∵4x2+9y2+12x﹣6y+10=(4x2+12x+9)+(9y2﹣6y+1)=(2x+3)2+(3y ﹣1)2=0,可得2x+3=0,3y﹣1=0,解得:x=﹣,y=,则8x﹣9y=8×(﹣)﹣9×=﹣15,故答案为:﹣15.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.三.解答题(共7小题)37.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【解答】解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.38.【分析】(1)首先把x2﹣2xy+2y2﹣2y+1=0利用完全平方公式因式分解,利用非负数的性质求得x、y代入求得数值;(2)、(3)仿照例题和(1)的解法,利用配方法计算即可.【解答】解:(1)∵x2﹣2xy+2y2﹣2y+1=0∴x2﹣2xy+y2+y2﹣2y+1=0∴(x﹣y)2+(y﹣1)2=0∴x﹣y=0,y﹣1=0,∴x=1,y=1,∴x+2y=3;(2)∵a2+5b2﹣4ab﹣2b+1=0∴a2+4b2﹣4ab+b2﹣2b+1=0∴(a﹣2b)2+(b﹣1)2=0∴a﹣2b=0,b﹣1=0∴a=2,b=1;(3))∵m=n+4,∴n(n+4)+t2﹣8t+20=0∴n2+4n+4+t2﹣8t+16=0∴(n+2)2+(t﹣4)2=0∴n+2=0,t﹣4=0∴n=﹣2,t=4∴m=n+4=2∴n2m﹣t=(﹣2)0=1.【点评】本题考查的是配方法的应用,掌握配方法的一般步骤和完全平方公式是解题的关键.39.【分析】(1)已知等式利用完全平方公式配方后,利用非负数的性质求出a,b,c的值即可;(2)把a,b,c的值代入已知等式求出++的值,原式变形后代入计算即可求出值.【解答】解:(1)已知等式整理得:(a﹣b)2+(b﹣4)2+(c﹣5)2=0,∴a﹣b=0,b﹣4=0,c﹣5=0,解得:a=b=4,c=5;(2)把a=b=4,c=5代入已知等式得:=﹣4,即+=﹣;=,即+=;=﹣,即+=﹣,∴++=﹣,则原式==﹣8.【点评】此题考查了配方法的应用,非负数的性质,以及分式的值,熟练掌握完全平方公式是解本题的关键.40.【分析】(1)根据理解材料一的内容进行解答,比对这题很容易解决.(2)①中把根式下的式子转化成平方+平方的形式,转化成点到点的距离问题,根据两点之间距离最短,所以当三个点共线时距离最短,可以求出最小值和函数关系式②中也根据材料二的内容来解答求出x的值.【解答】解:(1)根据材料一;∵(﹣)×(+)=(20﹣x)﹣(4﹣x)=16∵﹣=2,∴+=8,∴=5=3∴解得:x=﹣5∴y=2x+6(﹣2≤x≤1)(2)①解:由材料二知:=====.∴可将的值看作点(x,y)到点(1,8)的距离的值看作点(x,y)到点(﹣2,2)的距离∴=+.∴当代数式取最小值即点(x,y)与点(1,8),(﹣2,2)在同一条直线上,并且点(x,y)位点(1,8)(﹣2,2)的中间∴的最小值===3且﹣2≤x≤1设过(x,y),(1,8),(﹣2,2)的直线解析式为:y=kx+b∴解得:∴y=2x+6(﹣2≤x≤1)②:∵y=+中∵y=2x+6∴+=2x+6 ①又∵(+)(﹣)=2x2+5x+12﹣(2x2+3x+6)=2x+6∴﹣=1 ②由①+②式得:=x+解得:x1=>1(舍)x2=∴x的值为1﹣【点评】本题属于新定义题,理解新定义的内容完成题目要求.41.【分析】1、根据阅读材料内容解决问题即可;2、根据矩形的性质和阅读材料内容进行计算即可求解;3、先将代数式变形,再根据阅读内容即可求解;4、根据立方体的体积公式和已知条件表示出长方体的宽,运用阅读内容即可求解.【解答】解:1、由阅读1结论可知:把a﹣1看成一个整体,当a=4时,函数y=a﹣1++1(a>1)的最小值为7.故答案为4、7.2、设矩形周长为y,由题意,得y=2(x+),∵x+≥2∴x≥4,当x=即x==2时,函数y=2(x)的最小值为2×2=8.故答案为2、8.3、设y=(m>﹣1),=(m+1)+,当m+1=即m=1时,y=4.答:代数式(m>﹣1)的最小值为4.4、根据题意,得长方体的宽为米,∴y=x•×120+×2×2×80+80×2×2x=480+320(x+)当x=即x=2时,函数y=480+320(x+)的最小值为1760,答:当x为2时,水池总造价y最低,最低是1760元.【点评】本题考查了配方法的应用、矩形的性质、长方体体积,解决本题的关键是理解并运用阅读材料内容.42.【分析】(1)当x>0时,按照公式(当且仅当a=b时取等号)来计算即可;x<0时,由于﹣x>0,﹣>0,则也可以按照公式(当且仅当a=b 时取等号)来计算;(2)将的分子分别除以分母,展开,将含x的项用题中所给公式求得最小值,再加上常数即可;(3)设S△BOC=x,已知S△AOB=4,S△COD=9,则由等高三角形可知:S△BOC:S△COD =S△AOB:S△AOD,用含x的式子表示出S△AOD,四边形ABCD的面积用含x的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【解答】解:(1)当x>0时,≥2=2;当x<0时,=﹣(﹣x﹣)∵﹣x﹣≥2=2∴﹣(﹣x﹣)≤﹣2∴当x>0时,的最小值为2;当x<0时,的最大值为﹣2.故答案为:2;﹣2;(2)由,∵x>0,∴,当时,最小值为11.(3)设S△BOC=x,已知S△AOB=4,S△COD=9则由等高三角形可知:S△BOC:S△COD=S△AOB:S△AOD∴x:9=4:S△AOD∴:S△AOD=∴四边形ABCD面积=4+9+x+≥13+2=25当且仅当x=6时取等号,即四边形ABCD面积的最小值为25.【点评】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大,属于中档题.43.【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可【解答】解:(1)∵x2+10x+7=x2+10x+25﹣18=(x+5)2﹣18,由(x+5)2≥0,得(x+5)2﹣18≥﹣18;∴代数式x2+10x+7的最小值是﹣18;(2)﹣a2﹣8a+16=﹣a2﹣8a﹣16+32=﹣(a+4)2+32,∵﹣(a+4)2≤0,∴﹣(a+4)2+32≤32,∴代数式﹣a2﹣8a+16有最大值,最大值为32.【点评】本题考查的是配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.。
【初中数学】人教版九年级上册第2课时 用配方法解一元二次方程(练习题)

人教版九年级上册第2课时 用配方法解一元二次方程(153)1.用配方法说明代数式x 2−8x +17的值恒大于零.再求出当x 取何值时,这个代数式的值最小,最小值是多少.2.已知a,b,c 是△ABC 的三边,且a 2+b 2+c 2−6a −8b −10c +50=0.(1)求a,b,c 的值;(2)判断△ABC 的形状.3.用配方法解下列方程时,配方有错误的是()A.x 2−2x −99=0化为(x −1)2=100B.x 2+8x +9=0化为(x +4)2=25C.2t 2−7t −4=0化为(t −74)2=8116 D.3x 2−4x −2=0化为(x −23)2=109 4.用配方法解下列方程,其中应在方程左右两边同时加上9的方程是( )A.3x 2−3x =8B.x 2+6x =−3C.2x 2−6x =10D.2x 2+3x =35.方程(x +2)2+6(x +2)+9=0的解是 .6.若关于x 的代数式x 2+2(m −3)x +49是完全平方式,则m = .7.已知关于x 的方程x 2+4x +n =0可以配方成(x +m)2=3,则(m −n)2017= .8.用配方法解下列方程:(1)(1+x)2+2(1+x)−4=0;(2)x 2+3=2√3x .9.用配方法解方程x 2+10x +16=0.解:移项,得 .两边同时加52,得 +52= +52.左边写成完全平方的形式,得 .直接开平方,得 .解得 .10.用配方法解一元二次方程x 2+4x −3=0时,原方程可变形为()A.(x +2)2=1B.(x +2)2=7C.(x +2)2=13D.(x +2)2=1911.已知方程x 2+2x −4=0可配方成(x +m)2=n 的形式,则()A.m =1,n =5B.m =−1,n =5C.m=2,n=5D.m=−2,n=312.填空:(1) x2−20x+=(x−)2;(2) 关于x的一元二次方程x2−6x+a=0,配方后为(x−3)2=1,则a=.13.用配方法解下列方程:(1)x2−6x−4=0;(2)x2+2x−99=0;(3)x2−4x=1.14.用配方法解方程2x2−x−6=0,开始出现错误的步骤是()2x2−x=6,①x2−12x=3,②x2−12x+14=3+14,③(x−12)2=314.④A.①B.②C.③D.④15.当用配方法解方程2x2−4x+1=0时,配方后所得的方程为()A.(x−2)2=3B.2(x−2)2=3C.2(x−1)2=1D.2(x−1)2=1216.若关于x的方程4x2−(m−2)x+1=0的左边是一个完全平方式,则m等于()A.−2B.−2或6C.−2或−6D.2或−617.用配方法解下列方程:(1)2x2+x−1=0;(2)2x2−8x+9=0;(3)4t2−8t=1.参考答案1.【答案】:∵x2−8x+17=(x−4)2+1>0,∴不论x取何值,这个代数式的值恒大于零.当(x−4)2=0时,此代数式的值最小,即当x=4时,这个代数式的值最小,最小值是1【解析】:首先将原式变形为(x−4)2+1,根据非负数的意义得出代数式的值恒大于零,并且当(x−4)2=0时,即当x=4时,代数式x2−8x+17有最小值.2(1)【答案】由a2+b2+c2−6a−8b−10c+50=0,得(a−3)2+(b−4)2+(c−5)2=0.∵(a−3)2⩾0,(b−4)2⩾0,(c−5)2⩾0,∴a−3=0,b−4=0,c−5=0,∴a=3,b=4,c=5【解析】:将题目中的等式进行整理凑成完全平方公式,再利用非负数的性质,分别求出a,b,c的值(2)【答案】∵32+42=52,即a2+b2=c2,∴△ABC是以c为斜边的直角三角形【解析】:由(1)求出的a,b,c的值,利用勾股逆定理判断△ABC的形状3.【答案】:B【解析】:A.∵x2−2x−99=0,∴x2−2x=99,∴x2−2x+1=99+1,∴(x−1)2=100,故A选项正确,不符合题意;B.∵x2+8x+9=0,∴x2+8x=−9,∴x2+8x+16=−9+16,∴(x+4)2=7,故B选项错误,符合题意;C.∵2t2−7t−4=0,∴2t 2−7t =4,∴t 2−72t =2,∴t 2−72t +4916=2+4916,∴(t −74)2=8116,故C 选项正确,不符合题意;D.∵3x 2−4x −2=0,∴3x 2−4x =2,∴x 2−43x =23,∴x 2−43x +49=23+49,∴(x −23)2=109,故D 选项正确,不符合题意.故选B .4.【答案】:B【解析】:在二次项系数为1的一元二次方程中,配方的方法:在方程两边同时加上一次项系数一半的平方.故方程x 2+6x =−3配方时,方程两边应同时加上(62)2,即加上9.故选B .5.【答案】:x 1=x 2=−5【解析】:设x +2=y ,则原方程变形为y 2+6y +9=0,∴(y +3)2=0,∴y 1=y 2=−3,∴x +2=−3,∴x 1=x 2=−56.【答案】:10或−4【解析】:x 2+2(m −3)x +49=(x ±7)2,由恒等式中对应项相同可得2(m −3)=±14,即m=10或m=−47.【答案】:1【解析】:由(x+m)2=3,得x2+2mx+m2−3=0,∴2m=4,m2−3=n,∴m=2,n=1,∴(m−n)2017=18(1)【答案】移项并配方,得(1+x)2+2(1+x)+1=4+1,即(x+2)2=5,∴x1=√5−2,x2=−√5−2【解析】:通过观察方程,将(1+x)当成一个整体,再用配方法解方程(2)【答案】移项并配方,得x2−2√3x+(√3)2=0,即(x−√3)2=0.∴x1=x2=√3【解析】:根据配方法解一元二次方程的一般步骤进行计算9.【答案】:x2+10x=−16;x2+10x;−16;(x+5)2=9;x+5=±3;x1=−8,x2=−2【解析】:考查用配方法解一元二次方程的一般步骤10.【答案】:B【解析】:x2+4x−3=0,移项得x2+4x=3,两边同时加4得x2+4x+4=3+4,整理得(x+2)2=711.【答案】:A【解析】:移项,得x2+2x=4.配方,得x2+2x+1=4+1,即(x +1)2=5,则m =1,n =5.故选 A12.【答案】:100 ;10 ;8【解析】:(1)等式左端填100,可凑出完全平方公式(2)∵(x −3)2=x 2−6x +9=1,∴a =813(1)【答案】移项,得x 2−6x =4.配方,得(x −3)2=13.直接开平方,得x −3=±√13.∴x 1=3+√13,x 2=3−√13【解析】:根据配方法解一元二次方程的一般步骤进行计算(2)【答案】移项,得x 2+2x =99.配方,得x 2+2x +1=99+1,即(x +1)2=100.直接开平方,得x +1=±10,∴x 1=9,x 2=−11【解析】:根据配方法解一元二次方程的一般步骤进行计算(3)【答案】配方,得(x −2)2=5.直接开平方,得x −2=±√5.∴x 1=2+√5,x 2=2−√5【解析】:根据配方法解一元二次方程的一般步骤进行计算14.【答案】:C【解析】:移项,得2x 2−x =6.二次项系数化为1,得x 2−12x =3.配方,得x 2−12x +(14)2=3+(14)2, 即(x −14)2=3116.观察上面的步骤可知,开始出现错误的步骤是③.故选 C15.【答案】:C【解析】:x 2−2x =−12,x 2−2x +1=−12+1, 所以(x −1)2=12,即2(x −1)2=116.【答案】:B【解析】:∵4x 2−(m −2)x +1=(2x)2−(m −2)x +12,∴−(m −2)x =±2×2x ×1,∴m −2=4或m −2=−4,解得m =6或m =−217(1)【答案】二次项系数化为1, 得x 2+12x −12=0.移项、配方,得x 2+12x +(14)2=12+(14)2, 即(x +14)2=916, ∴x +14=±34.解得x 1=12,x 2=−1【解析】:根据配方法解一元二次方程的一般步骤进行计算(2)【答案】二次项系数化为1, 得x 2−4x +92=0.移项、配方,得x 2−4x +4=−92+4,即(x −2)2=−12.∴原方程无实数根【解析】:根据配方法解一元二次方程的一般步骤进行计算(3)【答案】二次项系数化为1,得t 2−2t =14.配方,得t 2−2t +1=14+1,即(t−1)2=54.∴t−1=±√52.解得t1=1+√52,t2=1−√52【解析】:根据配方法解一元二次方程的一般步骤进行计算。
配方法练习题(打印版)

配方法练习题(打印版)### 配方法练习题(打印版)#### 一、选择题1. 下列哪个选项是二次方程 \( ax^2 + bx + c = 0 \) 的配方法? - A. \( x^2 + 2x + 1 = 0 \)- B. C. \( x^2 + 4x + 4 = (x + 2)^2 \)- D. \( x^2 - 6x + 9 = 0 \)2. 配方法可以用于求解以下哪种类型的方程?- A. 线性方程- B. C. 二次方程- C. 指数方程- D. 微分方程3. 配方法中,将 \( x^2 + 6x \) 配成完全平方的方法是:- A. 减去 9- B. C. 加上 9- C. 减去 6- D. 加上 6#### 二、填空题4. 将 \( x^2 - 8x \) 配成完全平方,需要加上的常数是 ______ 。
5. 若 \( (x - 1)^2 = x^2 - 2x + 1 \),那么 \( (x + 3)^2 \) 可以展开为 ______ 。
6. 配方法中,若 \( ax^2 + bx + c \) 可以配成 \( (x + m)^2 + n \) 的形式,其中 \( m \) 和 \( n \) 分别是 ______ 与 ______ 。
#### 三、解答题7. 利用配方法解方程 \( x^2 - 4x - 5 = 0 \)。
8. 证明 \( x^2 + 10x + 24 \) 可以配成完全平方。
9. 给定 \( ax^2 + bx + c = 0 \),若 \( a = 1 \),\( b = -6 \),\( c = -5 \),利用配方法求 \( x \) 的值。
#### 四、应用题10. 一个物体从静止开始下落,其下落距离 \( s \) 与时间 \( t \) 的关系可以表示为 \( s = 16t^2 \)。
求在第 3 秒时物体下落的距离。
11. 一个矩形的长是 \( 2x + 1 \) 米,宽是 \( x - 3 \) 米,求矩形面积的最大值。
解方程配方法练习题加答案

解方程配方法练习题加答案1. 题目:2x + 3 = 7解答:Step 1: 将等式转化为2x = 7 - 3= 4Step 2: 将2x除以2,得到x = 4/2= 2答案:x = 22. 题目:3y - 4 = 5y + 10解答:Step 1: 将等式转化为3y - 5y = 10 + 4= -2y = 14Step 2: 将-2y除以-2,得到y = 14/-2= -7答案:y = -73. 题目:4z + 8 = 2z - 6解答:Step 1: 将等式转化为4z - 2z = - 6 - 8= 2z = -14Step 2: 将2z除以2,得到z = -14/2= -7答案:z = -74. 题目:5a + 10 = 2(a + 4)解答:Step 1: 将等式转化为5a + 10 = 2a + 8Step 2: 将2a移到等式左边,得到5a - 2a = 8 - 10 = 3a = -2Step 3: 将3a除以3,得到a = -2/3答案:a = -2/35. 题目:6b - 5 = 2(b + 3)解答:Step 1: 将等式转化为6b - 2b = 5 - 6= 4b = -1Step 2: 将4b除以4,得到b = -1/4答案:b = -1/46. 题目:7c + 2 = 3(c - 1)解答:Step 1: 将等式转化为7c - 3c = 3 - 2= 4c = 1Step 2: 将4c除以4,得到c = 1/4答案:c = 1/47. 题目:8d - 7 = 10 - 3d解答:Step 1: 将等式转化为8d + 3d = 10 + 7 = 11d = 17Step 2: 将11d除以11,得到d = 17/11答案:d = 17/118. 题目:9e + 12 = 5(e - 2)解答:Step 1: 将等式转化为9e - 5e = 5(-2) - 12 = 4e = -10 - 12= 4e = -22Step 2: 将4e除以4,得到e = -22/4答案:e = -11/29. 题目:10f + 3 = 2 - 4f解答:Step 1: 将等式转化为10f + 4f = 2 - 3= 14f = -1Step 2: 将14f除以14,得到f = -1/14答案:f = -1/1410. 题目:11g - 9 = 6g + 7解答:Step 1: 将等式转化为11g - 6g = 7 + 9= 5g = 16Step 2: 将5g除以5,得到g = 16/5答案:g = 16/5通过以上题目的解答,我们可以看到解方程题目配合相应的方法可以得到正确的解答。
初三数学配方法解方法练习题

初三数学配方法解方法练习题题目一:试用配方法解下列方程:1. x^2 - 3x - 28 = 02. 3x^2 + 4x - 7 = 03. 2x^2 + 5x - 3 = 04. 4x^2 + 12x + 9 = 05. x^2 + 6x + 9 = 0解答:为了解决这些二次方程,我们将采用配方法。
配方法是一种常见的求解二次方程的方法,通过将方程两边重新排列,使之成为一个平方的形式,进而进行求解。
1. 对于方程x^2 - 3x - 28 = 0,首先将其改写为(x - a)^2 = b的形式。
通过观察系数,我们可以发现x^2 - 3x - 28可以写为(x - 7)(x + 4)。
所以,我们有(x - 7)(x + 4) = 0。
由此得到两个方程x - 7 = 0和x + 4 = 0。
解这两个方程可以得到x = 7和x = -4。
2. 对于方程3x^2 + 4x - 7 = 0,同样将其改写为(x - a)^2 = b的形式。
通过观察系数,我们可以将3x^2 + 4x - 7写为(3x - 1)(x + 7)。
所以,我们有(3x - 1)(x + 7) = 0。
解这个方程可以得到两个解x = 1/3和x = -7。
3. 对于方程2x^2 + 5x - 3 = 0,同样将其改写为(x - a)^2 = b的形式。
通过观察系数,我们可以将2x^2 + 5x - 3写为(2x - 1)(x + 3)。
所以,我们有(2x - 1)(x + 3) = 0。
解这个方程可以得到两个解x = 1/2和x = -3。
4. 对于方程4x^2 + 12x + 9 = 0,同样将其改写为(x - a)^2 = b的形式。
通过观察系数,我们可以将4x^2 + 12x + 9写为(2x + 3)^2。
所以,我们有(2x + 3)^2 = 0。
解这个方程可以得到一个解x = -3/2。
5. 对于方程x^2 + 6x + 9 = 0,同样将其改写为(x - a)^2 = b的形式。
完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法) 一元二次方程解法练题一、用直接开平方法解下列一元二次方程。
1、4x-1=2、(x-3)^2=2、2、(x-1)^2=5、81(x-2)=16二、用配方法解下列一元二次方程。
1、y^2-6y-6=0、3x^2-4x+2=02、x^2-4x-5=0、2x^2+3x-1=03、x^2-4x=9、3x^2+2x-7=04、x^2-4x-5=0、-4x^2-8x=165、2x^2+3x-1=0、(2-3x)^2=46、-4x^2+12x=0三、用公式解法解下列方程。
1、x^2-2x-8=0、4y^2-2y-1=02、2x^2-5x+1=0、-4x^2-8x=16、2x^2-3x-2=0四、用因式分解法解下列一元二次方程。
1、x^2=2x、(x+1)^2-(2x-3)^2=3、x^2-6x+8=02、4(x-3)^2=25(x-2)、(1+2)x^2-(1-2)x=6、(2-3x)^2+(3x-2)^2=1五、用适当的方法解下列一元二次方程。
1、3x/(x-1)=x/(x+5)、2x-3=5x、x-2y+6=22、x^2-7x+10=0、(x-3)(x+2)=6、4(x-3)+x(x-3)=23、(5x-1)^-2=8、3y^2-4y-9=0、x^2-7x-30=24、(y+2)(y-1)=4、x^2-4ax=b^2-4a^2、x^2+(531/36)x=05、4x(x-1)=3、3x^2-9x+2=0一元二次方程解法练题六、用直接开平方法解下列一元二次方程。
1.4x-1=2解:移项得4x=3,两边平方得16x^2=9,即x=±3/4.2.(x-3)^2=2解:展开得x^2-6x+7=0,两边平方得x-3=±√2,即x=3±√2.3.(x-1)^2=5解:展开得x^2-2x-4=0,两边平方得x-1=±√5,即x=1±√5.4.81(x-2)=162解:移项得(x-2)^2=2,两边开平方得x-2=±√2,即x=2±√2.七、用配方法解下列一元二次方程。
配方法的四种常见应用(沪科版)(原卷版)

配方法的四种常见应用考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对配方法的四种常见应用的理解!【类型1 利用配方法确定未知数的取值】1.(2023春·安徽安庆·八年级安庆市第四中学校考期末)对于多项式x2+2x+4,由于x2+2x+4=(x+1)2+3≥3,所以x2+2x+4有最小值3.已知关于x的多项式−x2+6x−m的最大值为10,则m的值为()A.1B.−1C.−10D.−192.(2023春·湖北省直辖县级单位·八年级统考期末)若关于x的一元二次方程x2+6x+c=0配方后得到方程(x+3)2=2c,则c的值为()A.−3B.0C.1D.33.(2023春·浙江杭州·八年级期末)若−2x2+4x−7=−2(x+m)2+n,则m,n的值为()A.m=1,n=−5B.m=−1,n=−5C.m=1,n=9D.m=−1,n=−94.(2023春·辽宁大连·八年级统考期末)已知关于x的多项式−x2+mx+4的最大值为5,则m的值可能为()A.1B.2C.4D.55.(2023春·山东青岛·八年级统考期中)若关于x的一元二次方程kx2﹣6x+3=0通过配方可以化成(x+a)2=b(b>0)的形式,则k的值可能是()A.0B.2C.3D.926.(2023春·天津和平·八年级校考期中)若方程4x2−(m−2)x+1=0的左边可以写成一个完全平方式,则m的值为()A.−2B.−2或6C.−2或−6D.2或−67.(2023春·河北保定·八年级统考期末)将一元二次方程x2−8x+5=0配方成(x+a)2=b的形式,则a+b 的值为.8.(2023春·山东威海·八年级统考期中)对于二次三项式x2+6x+3,若x取值为m,则二次三项式的最小值为n,那么m+n的值为.9.(2023春·江苏苏州·八年级统考期末)关于x的二次三项式x2+4x+9进行配方得x2+4x+9=(x+m)2+n(1)则m= ,n= ;(2)求x为何值时,此二次三项式的值为7 ?10.(2023春·广西贺州·八年级统考期中)请阅读下列材料:我们可以通过以下方法求代数式的x2+2x−3最小值.x2+2x−3=x2+2x⋅1+12−12−3=(x+1)2−4∵(x+1)2≥0∴当x=-1时,x2+2x−3有最小值-4请根据上述方法,解答下列问题:(1)x2+2√3x+5=x2+2×√3x+(√3)2+2=(x+a)2+b,则a=__________,b=__________;(2)若代数式x2−2kx+7的最小值为3,求k的值.【类型2 利用配方法构造“非负数之和”解决问题】1.(2023春·八年级课时练习)已知a,b,c满足a2+6b=7,b2−2c=−1,c2−2a=−17,则a−b+c的值为()A.−1B.5C.6D.−72.(2023·全国·八年级专题练习)已知a-b=2,ab+2b-c2+2c=0,当b≥0,-2≤c<1时,整数a的值是.3.(2023春·江苏·八年级期末)若a,b满足2a2+b2+2ab−4a+4=0,则a+3b的值为.4.(2023春·八年级课时练习)根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.5.(2023春·浙江·八年级专题练习)已知a+b−2√a−1−4√b−2=3√c−3−1c−5,求a+b+c的2值.6.(2023春·广东佛山·八年级校考期中)(1)若m2−2mn+2n2−8n+16=0,求m、n的值.解:因为m2−2mn+2n2−8n+16=0,所以(m2−2mn+n2)+(n2−8n+16)=0由此,可求出m=______;n=______;根据上面的观察,探究下面问题:(2)x2+4xy+5y2+2−2√2y=0,求2x+y的值;7.(2023春·全国·八年级专题练习)已知a、b是等腰△ABC的两边长,且满足a2+b2-8a-4b+20=0,求a、b 的值.8.(2023春·湖南益阳·八年级统考期末)阅读材料:我们知道:若几个非负数相加得零,则这些数都必同时为零.例如:①(a﹣1)2+(b+5)2=0,我们可以得:(a﹣1)2=0,(b+5)2=0,∴a=1,b=-5.②若m2-4m+n2+6n+13=0,求m、n的值.解:∵m2-4m+n2+6n+13=0,∴(m2﹣4m+4)+(n2+6n+9)=0(我们将13拆成4和9,等式左边就出现了两个完全平方式)∴(m﹣2)2+(n+3)2=0,∴(m﹣2)2=0,(n+3)2=0,∴n=2,m=-3.根据你的观察,探究下面的问题:(1)a2﹣4a+4+b2=0,则a=.b=.(2)已知x2+2xy+2y2-6y+9=0,求x y的值.(3)已知a、b(a≠b)是等腰三角形的边长,且满足2a2+b2﹣8a﹣6b+17=0,求三角形的周长.9.(2023春·江苏·八年级专题练习)阅读与思考的运用“配方法”能对一些多项式进行因式分解.例如:x2+4x−5=x2+4x+22−22−5=(x+2)2−9=(x+2+3)(x+2−3)=(x+5)(x−1)(1)解决问题:运用配方法将下列多项式进行因式分解①x2+3x−4;②x2−8x−9(2)深入研究:说明多项式x2−6x+12的值总是一个正数?(3)拓展运用:已知a、b、c分别是△ABC的三边,且a2−2ab+2b2−2bc+c2=0,试判断△ABC的形状,并说明理由.10.(2023春·内蒙古赤峰·八年级统考期末)阅读材料:若x2−2xy+2y2−8y+16=0,求x,y的值.解:∵x2−2xy+2y2−8y+16=0∴(x2−2xy+y2)+(y2−8y+16)=0∴(x−y)2+(y−4)2=0∴(x−y)2=0,(y−4)2=0∴y=4,x=4根据上述材料,解答下列问题:(1)m2−2mn+2n2−2n+1=0,求2m+n的值;(2)a−b=6,ab+c2−4c+13=0,求a+b+c的值.11.(2023春·湖南岳阳·八年级统考期末)设b为正整数,a为实数,记M=a2−4ab+5b2+2a−2b+11,4在a,b变动的情况下,求M可能取得的最小整数值,并求出M取得最小整数值时a,b的值.12.(2013·四川达州·中考真题)选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:x2−4x+2=(x−2)2−2;②选取二次项和常数项配方:x2−4x+2=(x−√2)2+(2√2−4)x,或x2−4x+2=(x+√2)2−(4+2√2)x③选取一次项和常数项配方:x2−4x+2=(√2x−√2)2−x2根据上述材料,解决下面问题:(1)写出x2−8x+4的两种不同形式的配方;(2)已知x2+y2+xy−3y+3=0,求x y的值.13.(2023春·广东揭阳·八年级统考期末)把代数式通过配凑等手段,得到局部完全平方式.再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a2+6a+8,解:原式=a2+6a+8+1−1=a2+6a+9−1=(a+2)(a+4)②M=a2−2ab+2b2−2b+2,利用配方法求M的最小值,解:a2−2ab+2b2−2b+2=a2−2ab+b2+b2−2b+1+1=(a−b)2+(b−1)2+1∵(a−b)2≥0,(b−1)2≥0∴当a=b=1时,M有最小值1.请根据上述材料解决下列问题:(1)在横线上添加一个常数,使之成为完全平方式:x2−2x+______.3(2)用配方法因式分解:x2−4xy+3y2.(3)若M=x2+8x−4,求M的最小值.(4)已知x2+2y2+z2−2xy−2y−4z+5=0,则x+y+z的值为______.【类型3 利用配方法求最值】1.(2023春·湖南长沙·八年级校联考期末)代数式x2−4x+5的最小值为()A.−1B.0C.1D.22.(2023春·山东威海·八年级统考期中)已知A=x2+6x+n2,B=2x2+4x+n2,下列结论正确的是()A.B−A的最大值是0B.B−A的最小值是−1C.当B=2A时,x为正数D.当B=2A时,x为负数3.(2023春·江苏南通·八年级统考期末)平面直角坐标系xOy中,P点坐标为(m,2n2−10),且实数m,n 满足2m−3n2+9=0,则点P到原点O的距离的最小值为()A.35√10B.125C.65√3D.45√54.(2023春·浙江·八年级期末)新定义,若关于x的一元二次方程:a1(x−m)2+n=0与a2(x−m)2+n=0,称为“同族二次方程”.如2(x−3)2+4=0与3(x−3)2+4=0是“同族二次方程”.现有关于x的一元二次方程:2(x−1)2+1=0与(a+2)x2+(b−4)x+8=0是“同族二次方程”.那么代数式ax2+bx+2018能取的最小值是()A.2011B.2013C.2018D.20235.(2023春·福建福州·八年级福建省罗源第一中学校考期中)已知实数m、n满足m−n2=8,则代数式m2−3n2+m−14的最小值是.6.(2023春·广东韶关·八年级校考期末)阅读下面的解答过程:求y2+4y+8的最小值解:y2+4y+8=y2+4y+4+4=(y+2)2+4=(y+2)2≥0,即(y+2)2的最小值为0,∴(y+2)2+4的最小值为4.即y2+4y+8的最小值是4.根据上面的解答过程,回答下列问题:(1)式子x2+2x+2有最______值(填“大”或“小”),此最值为______(填具体数值).(2)求12x2+x的最小值.(3)求−x2+2x+4的最大值.7.(2023春·四川达州·八年级统考期末)根据学过的数学知识我们知道:任何数的平方都是一个非负数,即:对于任何数a,a2≥0都成立,据此请回答下列问题.应用:代数式m2−1有值(填“最大”或“最小”)这个值是.探究:求代数式n2+4n+5的最小值,小明是这样做的:请你按照小明的方法,求代数式4x2+12x−1的最小值,并求此时x的值,拓展:求多项式x2−4xy+5y2−12y+15的最小值及此时x,y的值8.(2023春·广东惠州·八年级期末)阅读理解:求代数式x2+6x+10的最小值.解:因为x2+6x+10=(x2+6x+9)+1=(x+3)2+1,所以当x=−3时,代数式x2+6x+10有最小值,最小值是1.仿照应用求值:(1)求代数式x2+2x+10的最小值;(2)求代数式−m2+8m+3的最大值.9.(2023春·江苏扬州·八年级统考期末)【提出问题】某数学活动小组在学习完反比例函数后,类比学到的方法尝试研究函数y=x+1x时,提出了如下问题:(1)初步思考:自变量x的取值范围是_______________(2)探索发现:当x>0时,y>0;当x<0时,y<0.由此我们可猜想,该函数图像在第_________象限;(3)深入思考:当x>0时,y=x+1x =(√x)2+(1√x)2=(√x−1√x)2+2≥2,于是,当√x−1√x=0时,即x=1时,y的最小值是2.请仿照上述过程,求当x<0时,y的最大值;【实际应用】(4)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.【类型4 利用配方法比较大小】1.(2023·全国·八年级假期作业)若代数式M=10a2+b2−7a+8,N=a2+b2+5a+1,请比较M、N的大小.2.(2023春·浙江杭州·八年级期末)已知M=x2﹣3,N=4(x﹣3).2(1)当x=﹣1时,求M﹣N的值;(2)当1<x<2时,试比较M,N的大小.3.(2023·江苏·八年级假期作业)【项目学习】“我们把多项式a2+2ab+b2及a2−2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32−32+8=(a+3)2−1因为(a+3)2≥0,所以a2+6a+≥−1,因此,当a=−3时,代数式a2+6a+8有最小值,最小值是−1.【问题解决】利用配方法解决下列问题:(1)当x=___________时,代数式x2−2x−1有最小值,最小值为___________.(2)当x取何值时,代数式2x2+8x+12有最小值?最小值是多少?【拓展提高】(3)当x,y何值时,代数式5x2−4xy+y2+6x+25取得最小值,最小值为多少?(4)如图所示的第一个长方形边长分别是2a+5、3a+2,面积为S1;如图所示的第二个长方形边长分别是5a、a+5,面积为S2,试比较S1与S2的大小,并说明理由.4.(2023春·江苏宿迁·八年级校考期中)问题:对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa−3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2xa−3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa−3a2=(a2+2ax+a2)−a2−3a2=(x+a)2−4a2=(x+a)2−(2a)2=(x+3a)(x−a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”,利用“配方法",解决下列问题:(1)分解因式:a2−6a+8.(2)比较代数式x2−1与2x−3的大小.5.(2023春·江苏淮安·八年级统考期中)“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x)2+;(2)已知x2﹣4x+y2+2y+5=0,求y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.6.(2023春·江苏苏州·八年级校联考期中)先阅读后解题:若m2+2m+n2−6n+10=0,求m和n的值.解:等式可变形为:m2+2m+1+n2−6n+9=0即(m+1)2+(n−3)2=0因为(m+1)2≥0,(n−3)2≥0,所以m+1=0,n−3=0即m=−1,n=3.像这样将代数式进行恒等变形,使代数式中出现完全平方式的方法叫做“配方法”.请利用配方法,解决下列问题:(1)已知x2+y2+4x−10y+29=0,求y x的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2−4a−6b+11=0,则△ABC的周长是________;(3)在实数范围内,请比较多项式2x2+2x−3与x2+3x−4的大小,并说明理由.7.(2023春·河南驻马店·八年级统考期末)阅读下列材料利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式.例如:x2﹣8x+17=x2﹣2•x•4+42﹣42+17=(x﹣4)2+1(1)填空:将多项式x2﹣2x+3变形为(x+m)2+n的形式,并判断x2﹣2x+3与0的大小关系.∵x2﹣2x+3=(x﹣)2+.∴x2﹣2x+30(填“>”、“<”、“=”)(2)如图①所示的长方形边长分别是2a+5、3a+2,求长方形的面积S1(用含a的式子表示);如图②所示的长方形边长分别是5a、a+5,求长方形的面积S2(用含a的式子表示)(3)比较(2)中S1与S2的大小,并说明理由.8.(2023春·广东肇庆·八年级德庆县德城中学校考期中)材料阅读结论:①形如(a±b)2+c的式子,当a±b=0有最小值,最小值是c;②形如−(a±b)2+c的式子,当a±b=0有最大值,最大值是c;③а2+b2≥2ab.这三个结论有着广泛的运用.比如:求x取何值时,代数式x2−4x+3有最小值,最小值是多少?小明同学用结论①求出了答案,他是这样解答的:∵x2−4x+3=x2−4x+(4−4)+3=(x2−4x+4)−4+3=(x−2)2−1∴当x−2=0,即x=2时x2−4x+3的值最小,最小值为−1.理解运用请恰当地选用上面的结论解答下面的问题(1)求x取何值时,代数式−x2−6x+5有最大值,最大值是多少?(2)某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案:方案一:第一次提价p%,第二次提价q%:%.方案二:第一次,第二次提价均为p+q2其中p,q是不相等的正数,请比较两种方案,哪种方案提价较多?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配方法及其应用
初一( )班 学号:_______ 姓名:____________
一、配方法:
将一个式子变为完全平方式,称为配方,它是完全平方公式的逆用。
配方法是一种重要的数学方法,它是恒等变形的重要手段,又是求最大最小值的常用方法,在数学中有广泛的应用。
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简,何时配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方,有时也将其称为“凑配法”.
配方法使用的最基本的配方依据是二项完全平方公式(a +b )2=a 2+2ab +b 2
,将这个公式灵活运用,可得到各种基本配方形式,如: a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ;
a 2+a
b +b 2=(a +b )2-ab =(a -b )2
+3ab =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫32b 2; a 2+b 2+c 2+ab +bc +ca =12
[(a +b )2+(b +c )2+(c +a )2].
下面举例说明配方法的应用:
一、求字母的值
【例1】已知a ,b 满足a 2+2b 2-2ab -2b +1=0,求a +2b 的值.
分析:可将含x,y 的方程化为两个非负数和为0的形式,从而求出两个未知数的值. 解:∵a 2+2b 2-2ab -2b +1=0,
∴a 2+b 2-2ab +b 2-2b +1=0,
∴(a -b )2+(b -1)2=0.
∵(a -b )2≥0,(b -1)2≥0,
∴a -b =0,b -1=0,
∴a =1,b =1,
∴a +2b =1+2×1=3,
∴a +2b 的值是3.
变式练习:
1、已知,6134222x xy x y x =+++则x,y 的值分别为___ ___.
2、已知a 2+b 2+4a -2b +5=0,则3a 2+5b 2-4的值为___ ___.
4. 已知096622
2=+--++y x y xy x ,则y x +的值为___ ___. 5、若a 、b 为有理数,且0442222=+++-a b ab a ,则22ab b a +的值为___ ___.
6、已知a 、b 、c 满足722=+b a ,122-=-c b ,1762-=-a c ,则a +b +c 的值为______.
7、已知0962222222=+---++c bc ab c b a ,则abc 的值为___ ___.
8. 已知b a ab b a ++=++122,则b a 43-的值为___ ___.
二、证明字母相等
【例2】已知a 、b 、c 是△ABC 的三边,且满足,0222=---++ac bc ab c b a ,判断这个三角形的形状.
分析:等式两边乘以2,得,022*******=---++ac bc ab c b a
配方,得()()(),022*******=+-++-++-a ca c c bc b b ab a
即()()().0222=-+-+-a c c b b a 由非负数的性质得a-b=0,b-c=0,c-a=0,
a=b,b=c,c=a,即a=b=c.
故△ABC 是等边三角形.
变式练习:
1、已知()
()22223c b a c b a ++=++,求证:c b a ==
2、已知:a 4+b 4+c 4+d 4=4abcd ,其中a ,b ,c ,d 是正数,求证:a=b=c=d 。
三、比较大小
【例3】若代数式,15,87102222+++=+-+=a b a N a b a M 则M-N 的值( )
A. 一定是负数
B.一定是正数
C. 一定不是负数
D.一定不是正数 分析: M-N=)15(1)8710(2222++++-+a b a a b a
=1587102222----+-+a b a a b a
=().0323341292
2 +-=++-a a a 故选B. 变式练习:
已知a 、b 满足等式2022++=b a x ,()a b y -=24,则x ,y 的大小关系是( ) A .y x ≤ B .y x ≥ C .y x < D .y x >
四、证明代数式非负
【例4】用配方法证明:不论x 为任何实数,代数式5.442+-x x 的值恒大于0.
分析:本题主要考查利用配方法说明代数式的值恒大于0,说明一个二次三项式恒大于0的方法是通过配方将二次三项式化成“2a +正数”的形式.
证明: ∵()()22
225.025.4445.44+-=++-=+-x x x x x , 又∵()022
≥-x ,∴05.442 +-x x ∴不论x 为任何实数,代数式5.442+-x x 的值恒大于0.
变式练习:
1、求证: 不论x 、y 为何值, 多项式2
5222+
+-+-y x y xy x 的值永远大于或等于0。
2、小萍说,无论x 取何实数,代数式x 2+y 2-10x +8y +42的值总是正数.你的看法如何?请谈谈你的理由.
五、求代数式的最值
【例5】利用配方法求7422--=x x y 的最大值或最小值.
分析:求最大值或最小值,必须将它们化成()c b x a y ++=2
的形式,然后再判断,当a >0时,它有最小值c;当a <0时,它有最大值c.
解: ()()912271227422
22--=--+-=--=x x x x x y ∵(),0122≥-x ∴(),99122
--- x ∴它的最小值是-9.
变式练习:
1、证明:无论x 取何实数值,代数式-x 2
-x -1的值总是负数,并求它的最大值.
2、对关于x 的二次三项式x 2+4x +9进行配方得x 2+4x +9=(x +m )2+n .
(1)求m ,n 的值;
(2)当x 为何值时x 2+4x +9有最小值?并求最小值.
3、当a ,b 为何值时,多项式a 2+2ab +2b 2+6b +18有最小值?并求出这个最小值.
六、证明完全平方数
【例6】已知9x2+18(n-1)x+9n2+n是完全平方式,求常数n的值.
解:9x2+18(n-1)x+9n2+n
=9[x2+2(n-1)x]+9n2+n
=9[x2+2(n-1)x+(n-1)2]-9(n-1)2+9n2+n
=[3(x+n-1)]2-9(n-1)2+9n2+n.
已知9x2+18(n-1)x+9n2+n是一个完全平方式,
∴-9(n-1)2+9n2+n=0,
化简,得19n-9=0,解得n=9/19.
变式练习:
1、一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数__________.
2、四个连续自然数的乘积加上1,一定是平方数吗?为什么?
3、求证:五个连续整数的平方和不可能是一个整数的平方.
5、(1)请观察:25=52,1225=352,112225=3352,1122225=33352…写出表示一般规律的等式,并加以证明.
(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选另外两个类似26、53的数,使它们能表示成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?
6、如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.
如:4=42-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.
(1)28和2012这两个数是“神秘数”吗?为什么?
(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?。