合肥市高考数学一模试卷(I)卷

合集下载

2020年安徽省合肥市高考数学一模试卷(理科) (1)

2020年安徽省合肥市高考数学一模试卷(理科) (1)
(2)设这 所学校中选择“科技体验游”学校数为随机变量 ,求 的分布列与数学期望.
如图,已知三棱柱 中,平面 平面 , = , .
(1)证明: ;
(2)设 = , = ,求二面角 的余弦值.
设椭圆 的左右顶点为 , ,上下顶点为 , ,菱形 的内切圆 的半径为 ,椭圆的离心率为 .
(1)求椭圆 的方程;
A.
B.
C.
D.
8.若函数 = 的图象向右平移 个单位得到的图象对应的函数为 ,则下列说法正确的是()
A. 的图象关于 对称
B. 在 上有 个零点
C. 在区间 上单调递减
D. 在 上的值域为
9.已知双曲线 的左右焦点分别为 , ,圆 与双曲线 的渐近线相切, 是圆 与双曲线 的一个交点.若 ,则双曲线 的离心率等于()
所以对于选项 :当 时, ,故 错误.
对于选项 :当 ,整理得 , ,当 = 时, ,当 = 时, 时,函数 = ,故选项 正确.
对于选项 ,所以 ,故函数在该区间内有增有减,故错误.
对于选项 ,所以 ,所以函数 的值域为 ,故错误.
故选: .
9.
【答案】
A
【考点】
双曲线的离心率
【解析】
设出双曲线的左右焦点,以及渐近线方程,求得焦点到渐近线的距离,以及圆 的方程,由向量数量积的坐标表示可得 = ,联立方程组可得 的坐标,代入双曲线的方程,化简可得 = ,由 , , 的关系和离心率公式可得所求值.
2020年安徽省合肥市高考数学一模试卷(理科)
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 = , = ,则 =()
A.

2021合肥市高三理科数学一模试卷及答案

2021合肥市高三理科数学一模试卷及答案

15.-16
16.27
三、解答题:
17.(本小题满分 12 分)
解:(1)
P
1
7 8
6 7
5 6
3 8

…………………………5 分
(2)设每个坯件的加工成本为 元,则
P
70
1 8
,P
130
7 8
1 7
1 8
, P
160
7 8
6 7
3 4

∴ 的分布列为
70
130
160
P
∴ E
70
1 8
130

x1x2 m2.
当k 1 时, AB 4 2m 2 .
∴ AB 1 k 2 x1 x2 2 4mp 2 p2 4 2m 2 ,化简得( p 2m 2)( p 2) 0 .
∵ p 0, m 0 , ∴ p 2 . ∴抛物线 E 的方程为 y2 4x .
…………………………6 分
z 轴,建立如图所示空间直角坐标系,则 P (0,0,1),
C
(0,1,0),
B
(1,2,0),
A
(2,1,0),G
1 2
,1,1 2
.

AG
3 2
,0,1 2
,CP
0,
1,1
,CA
2,0,0
.
设平面 PAC 的法向量n x,y,z .

nn
CP CA
0 0

y
2
x
z 0.
高三数学试题(理科)答案 第 2 页(共 4 页)
21.(本小题满分 12 分)
解:(1)
f
x

安徽省合肥市区属中学2025届高考数学一模试卷含解析

安徽省合肥市区属中学2025届高考数学一模试卷含解析

安徽省合肥市区属中学2025届高考数学一模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设等差数列{}n a 的前n 项和为n S ,若495,81a S ==,则10a =( )A .23B .25C .28D .292.一个几何体的三视图如图所示,则该几何体的表面积为( )A .48122+B .60122+C .72122+D .843.已知向量()1,3a =,b 是单位向量,若3a b -=,则,a b =( )A .6πB .4πC .3πD .23π 4.ABC 的内角,,A B C 的对边分别为,,a b c ,若(2)cos cos a b C c B -=,则内角C =( )A .6πB .4πC .3πD .2π 5.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如sin a bx 的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数0.06sin180000y t =构成乐音的是( )A .0.02sin 360000y t =B .0.03sin180000y t =C .0.02sin181800y t=D .0.05sin 540000y t = 6.已知双曲线()222:10y C x b b-=>的一条渐近线方程为22y x =,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线C 上,且13PF =,则2PF =( )A .9B .5C .2或9D .1或5 7.用数学归纳法证明,则当时,左端应在的基础上加上( ) A .B .C .D . 8.直线20(0)ax by ab ab ++=>与圆221x y +=的位置关系是( )A .相交B .相切C .相离D .相交或相切9.陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(722+πB .(1022+πC .(1042+πD .(1142+π 10.已知双曲线2222:1x y a bΓ-=(0,0)a b >>的一条渐近线为l ,圆22:()4C x c y -+=与l 相切于点A ,若12AF F ∆的面积为3Γ的离心率为( )A .2B 23C .73D 21 11.已知实数ln333,33ln 3(n ),l 3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a <<B .c a b <<C .b a c <<D .a c b << 12.已知()22log 217y x x =-+的值域为[),m +∞,当正数a ,b 满足2132m a b a b+=++时,则74a b +的最小值为( )A .94B .5C .5224+D .9二、填空题:本题共4小题,每小题5分,共20分。

合肥市重点中学2025届高考数学一模试卷含解析

合肥市重点中学2025届高考数学一模试卷含解析

合肥市重点中学2025届高考数学一模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x 的值为2,则输出的v 值为( )A .10922⨯-B .10922⨯+C .11922⨯+D .11922⨯-2.正方形ABCD 的边长为2,E 是正方形内部(不包括正方形的边)一点,且2AE AC ⋅=,则()2AE AC +的最小值为( ) A .232B .12C .252D .133.设过定点(0,2)M 的直线l 与椭圆C :2212x y +=交于不同的两点P ,Q ,若原点O 在以PQ 为直径的圆的外部,则直线l 的斜率k 的取值范围为( )A .65,2⎛⎫-- ⎪ ⎪⎝⎭B .665,,533⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭C .6,52⎛⎫⎪⎪⎝⎭D .665,,522⎛⎫⎛⎫--⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭4. 若x,y 满足约束条件x 0x+y-30z 2x-2y 0x y ≥⎧⎪≥=+⎨⎪≤⎩,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞)5.已知三棱锥D ABC -的外接球半径为2,且球心为线段BC 的中点,则三棱锥D ABC -的体积的最大值为( ) A .23B .43C .83D .1636.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( ) 发芽所需天数 1 2 3 4 5 6 7 8≥种子数 43 352 210 A .2B .3C .3.5D .47.函数()()23ln 1x f x x+=的大致图象是A .B .C .D .8.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .329.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km /h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km /h 的频率分别为( )A .300,0.25B .300,0.35C .60,0.25D .60,0.3510.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .11.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC .已知以直角边,AC AB 为直径的半圆的面积之比为14,记ABC α∠=,则sin 2α=( )A .925B .1225C .35D .4512.已知纯虚数z 满足()122i z ai -=+,其中i 为虚数单位,则实数a 等于( ) A .1-B .1C .2-D .2二、填空题:本题共4小题,每小题5分,共20分。

合肥市2019年高三第一次教学质量检测数学试题(理)(含答案解析)

合肥市2019年高三第一次教学质量检测数学试题(理)(含答案解析)

合肥市2018年高三第一次教学质量检测,数学试题(理)(考试时间:120分钟满分:150分)注窻事项:1.答趙前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号疾备佘的答题区域作答,超出答题区域书写的答案无效,在试题卷、萆稿纸上答题无效第I卷(满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项t,只有一项是符合题目要求的),则=A.{4,5}B. {1,4,5}C.{3,4,5}D.{1,3,4,5}3. 已知命题p:若(x-1)(x-2) ≠0则x ≠1且x ≠2命题q:存在实数x。

,使2x<0下列选项中为真命题的是()A p⌝∨ D.q⌝ B. q p⌝∧ C. p q4. 一个六面体的三视图如图所示,其侧视图是边长为2的正方形,则该六面体的表面积是()长,此双曲线的离心率等于()数的图象与函数y=f(x)的图象关于-轴对称,则ω的值不可能是()A.2B. 4C. 6D. 107-将包含甲、乙两队的8支队伍平均分成2个小组参加某项比赛,则甲、乙两队被分在不同 小组的分组方案有()A.20 种B.35 种C.40 种D.60 种8以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等 关系不一定成立的是()A.2a 3>3a 4B. 5a 5>a 1+6a 6C.a 5+a 4-a 3<0D. a 3+a 6+a 12<2a 79执行右边的程序框图,输出的结果是()A.63B. 64C. 65D.6610函数f(x)=e x +x 2+x+1图象L 关于直线 2x-y-3 =0对称的图象为M,P 、Q 分别是 两图象上的动点,则||PQ 的最小值为()第II 卷(满分100分)二、填空题(本大題共5小题,每小题5分,共25分.把答案填在答題卡的相应位里)14. 在梯形ABCD 中,Ab//CD ,AB=2CD ,M 、N 分别为CD 、BC 的中点,若AB AM AN λμ=+, 则λμ+=_____15 已知函数f(x)=xlnx ,且x 2>x 1>0,则下列命题正确的是_______(写出所有正确命题的编号).①1212().(()()0x x f x f x --< ②1212()()1f x f x x x -<-; ③1222()()()f x f x x f x +<; ④2112.().()x f x x f x <;⑤当lnx 1=-1时,112221.()()2()x f x x f x x f x +>.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步驟)16(本小题满分12分)(I)求函数f(x)的最小正周期和单调递增区间;(II)在ΔABC 中,角A ,B,C 所对的边是a ,b ,c.若.f(A)=1,b=2,sinA=2sinC ,求边c 的长17 (本题满分12分)某地统计部门对城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,共收到1万 份答卷.其统计结果如下表(表中人数保留1位小数):(I)根据表1画出频率分布直方图;(II)对幸福指数评分值在[50,60]分的人群月平均收人的统计结果如表2,根据表2按 月均收入分层抽样,从幸福指数评分值在[50,60 ]分的人群中随机抽取10人,再从这10 人中随机抽取6人参加“幸福愿景”座谈会.记6人中月均收人在[1000,3000)元的人数 为随机变量X ,求随机变量X 的分布列与期望.18(本题满分13分)已知数列{a n }的前》项和为S n ,且2S n +3=3a n (*n N ∈)(I)求数列{a n }的通项公式;19(本題满分13分)已知函数2()2ln(1)()f x x x ax a R =+++∈.(I)若函数f(x)的图象上任意一点P 处的切线的倾斜角均为锐角,求实数a 的取值范 围;(I I )求函数f(x)的单调区间.20(本题满分12分)如图,四棱锥P-ABCD 的底面四边形ABCD 是边长 为2的正方形,PA =PB ,O 是AB 的中点, PO 丄 AD,PO=2.(I)求二面角O-PC-B 的余弦值; (II)设M为PA的中点,N为四棱银P-ABCD内部或表面上的一动点,且MN//平面PDC,请你判断满足条件的所有的N 点组成的几何图形(或几何体)是怎样的几何图形(或几何体),并说明你的理由.21•(本題满分13分):的焦点,点(I)试求椭圆C1的方程;(II)若直线l与椭圆C1相交于A,B两点(A,B不是上下顶点),且以AB为直径的圆过椭圆C1的上顶点.求证:直线l过定点.。

2019届安徽省合肥市高三第一次教学质量检测数学(理)试卷及答案

2019届安徽省合肥市高三第一次教学质量检测数学(理)试卷及答案

2019届合肥市高三第一次质检数学(理)试卷(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,41iz =+,则复数z 的虚部为( ).A.2i -B.2iC.2D.2-2.集合}{220A x x x =--≤,{}10B x x =-<,则A B =( ).A.}{1x x <B.}{11x x -≤<C.{}2x x ≤D.{}21x x -≤<3.执行右图所示的程序框图,则输出n 的值为( ).A.63B.47C.23D.74.已知正项等差数列{}n a 的前n 项和为n S (n N *∈),25760a a a +-=,则11S 的值为( ).A.11B.12C.20D.225.已知偶函数()f x 在[)0+∞,上单调递增,则对实数a b ,,“a b >”是“()()f a f b >”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多7.平面α外有两条直线a ,b ,它们在平面α内的射影分别是直线m ,n ,则下列命题正确的是( ).A.若a b ⊥,则m n ⊥B.若m n ⊥,则a b ⊥C.若//m n ,则//a bD.若m 和n 相交,则a 和b 相交或异面8.若6ax⎛ ⎝展开式的常数项为60,则a 的值为( ).A.4B.4±C.2D.2±9.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的体积为( ). A.10 B.43 C.83 D.16310.某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5的五个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球.若与第一次取出的两个小球号码相同,则为中奖.按照这样的规则摸奖,中奖的概率为( ).A.45 B.1925 C.2350 D.4110011.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ).。

安徽省合肥市2021届新高考数学一模试卷含解析

安徽省合肥市2021届新高考数学一模试卷含解析

安徽省合肥市2021届新高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .1【答案】D 【解析】 【分析】通过复数的乘除运算法则化简求解复数为:a bi +的形式,即可得到复数的虚部. 【详解】由题可知()()()()202022131313123211111i i i i i i i z i i i i i i +-+++-=====++++--, 所以z 的虚部是1. 故选:D. 【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题. 2.已知随机变量X 的分布列是则()2E X a +=( ) A .53B .73C .72D .236【答案】C 【解析】 【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果. 【详解】由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=,因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭.【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查. 3.已知复数z 满足()()5z i i --=,则z =( ) A .6i B .6i -C .6-D .6【答案】A 【解析】 【分析】由复数的运算法则计算. 【详解】因为()()5z i i --=,所以56z i i i=+=- 故选:A . 【点睛】本题考查复数的运算.属于简单题.4.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( ) A .69人 B .84人C .108人D .115人【答案】D 【解析】 【分析】先求得100名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得500名学生中对四大发明只能说出一种或一种也说不出的人数. 【详解】在这100名学生中,只能说出一种或一种也说不出的有100453223--=人,设对四大发明只能说出一种或一种也说不出的有x 人,则10050023x=,解得115x =人. 故选:D 【点睛】本小题主要考查利用样本估计总体,属于基础题. 5.若函数22y sin x ϕπ⎛⎫<+=的图象经过点0π⎛⎫,,则函数22f x sin x cos x ϕϕ=-+-图象的一条对称轴的方程可以为( ) A .24x π=-B .3724x π=C .1724x π=D .1324x π=-【答案】B 【解析】 【分析】 由点012π⎛⎫⎪⎝⎭,求得ϕ的值,化简()f x 解析式,根据三角函数对称轴的求法,求得()f x 的对称轴,由此确定正确选项. 【详解】 由题可知220,122sin ππϕϕ⎛⎫⨯+=< ⎪⎝⎭.6πϕ=- 所以()2cos 266f x sin x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭5226412x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭ 令52,122x k k Z πππ+=+∈, 得,242k x k Z ππ=+∈ 令3k =,得3724x π= 故选:B 【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.6.已知实数,x y 满足,10,1,x y x y y ≥⎧⎪+-≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .2B .32C .1D .0【答案】B 【解析】 【分析】作出可行域,平移目标直线即可求解. 【详解】 解:作出可行域:由2z x y =+得,1122y x z =-+ 由图形知,1122y x z =-+经过点时,其截距最大,此z 时最大10y x x y =⎧⎨+-=⎩得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,11,22C ⎛⎫ ⎪⎝⎭ 当1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,max 1232222z =+⨯=故选:B 【点睛】考查线性规划,是基础题.7.O 是平面上的一定点,,,A B C 是平面上不共线的三点,动点P 满足+OP OA λ=()·cos ?cos AB AC AB BAC C+,(0,)λ∈∞,则动点P 的轨迹一定经过ABC ∆的( )A .重心B .垂心C .外心D .内心【答案】B 【解析】 【分析】解出AP ,计算AP BC ⋅并化简可得出结论. 【详解】AP OP OA =-=λ(AB AC AB cosBAC cosC+⋅⋅),∴()...0AB BC AC BC AP BC BC BC AB cosB AC cosC λλ⎛⎫⎪=+=-+= ⎪⋅⋅⎝⎭,本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算AP BC ⋅是关键.8.设1F ,2F 是双曲线()2222:10,0x yC a b a b-=>>的左,右焦点,O 是坐标原点,过点2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为( ) ABC .2D .3【答案】B 【解析】 【分析】设过点()2,0F c 作b y x a =的垂线,其方程为()a y x c b =--,联立方程,求得2a x c=,ab y c =,即2,a ab P c c ⎛⎫⎪⎝⎭,由1PF =,列出相应方程,求出离心率. 【详解】解:不妨设过点()2,0F c 作b y x a =的垂线,其方程为()ay x c b=--, 由()b y x a a y xc b ⎧=⎪⎪⎨⎪=--⎪⎩解得2a x c =,ab y c =,即2,a ab P c c ⎛⎫ ⎪⎝⎭,由1PF OP =,所以有22224222226a b a a a b c c c cc ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭, 化简得223a c =,所以离心率==ce a. 故选:B. 【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.9.在复平面内,复数z=i 对应的点为Z ,将向量OZ 绕原点O 按逆时针方向旋转6π,所得向量对应的复数是( ) A.122-+ B.122i -+ C.12-D.122i --由复数z 求得点Z 的坐标,得到向量OZ 的坐标,逆时针旋转6π,得到向量OB 的坐标,则对应的复数可求. 【详解】解:∵复数z=i (i 为虚数单位)在复平面中对应点Z (0,1), ∴OZ =(0,1),将OZ 绕原点O 逆时针旋转6π得到OB , 设OB =(a ,b),0,0a b <>, 则3cos62OZ OB b OZ OB π⋅===, 即32b =, 又221a b +=, 解得:13,22a b =-=, ∴13,22OB ⎛⎫=- ⎪ ⎪⎝⎭,对应复数为1322i -+. 故选:A. 【点睛】本题考查复数的代数表示法及其几何意义,是基础题.10.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( ) A .324 B .522C .535D .578【答案】D 【解析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号. 【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:436,535,577,348,522,535,578,324,577,,因为535重复出现,所以符合要求的数据依次为436,535,577,348,522,578,324,,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键. 11.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+【答案】C 【解析】 【分析】 【详解】由于111113579-+-+-中正项与负项交替出现,根据S S i =+可排除选项A 、B ;执行第一次循环:011S =+=,①若图中空白框中填入(1)21n i n -=+,则13i =-,②若图中空白框中填入(1)2ni i -=+,则13i =-,此时20n >不成立,2n =;执行第二次循环:由①②均可得113S =-,③若图中空白框中填入(1)21ni n -=+,则15i =,④若图中空白框中填入(1)2ni i -=+,则35i =,此时20n >不成立,3n =;执行第三次循环:由③可得11135S =-+,符合题意,由④可得13135S =-+,不符合题意,所以图中空白框中应填入(1)21ni n -=+,12.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于2的偶数可以表示为两个素数的和”( 注:如果一个大于1的整数除了1和自身外无其他正因数,则称这个整数为素数),在不超过15的素数中,随机选取2个不同的素数a 、b ,则3a b -<的概率是( ) A .15B .415C .13D .25【答案】B 【解析】 【分析】先列举出不超过15的素数,并列举出所有的基本事件以及事件“在不超过15的素数中,随机选取2个不同的素数a 、b ,满足3a b -<”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率. 【详解】不超过15的素数有:2、3、5、7、11、13,在不超过15的素数中,随机选取2个不同的素数,所有的基本事件有:()2,3、()2,5、()2,7、12()()f x f x -、()2,13、()3,5、()3,7、()3,11、()3,13、()5,7、()5,11、()5,13、()7,11、()7,13、()11,13,共15种情况,其中,事件“在不超过15的素数中,随机选取2个不同的素数a 、b ,且3a b -<”包含的基本事件有:()2,3、()3,5、()5,7、()11,13,共4种情况,因此,所求事件的概率为415P =. 故选:B. 【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

2025届安徽省合肥十一中高考数学一模试卷含解析

2025届安徽省合肥十一中高考数学一模试卷含解析

2025届安徽省合肥十一中高考数学一模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知3log 5a =,0.50.4b =,2log 5c =,则a ,b ,c 的大小关系为( ) A .c b a >>B .b c a >>C .a b c >>D .c a b >>2.定义在R 上的函数()f x 满足(4)1f =,()f x '为()f x 的导函数,已知()y f x '=的图象如图所示,若两个正数,a b满足(2)1f a b +<,11b a ++则的取值范围是( )A .(11,53)B .1(,)(5,)3-∞⋃+∞C .(1,53)D .(,3)-∞3.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( ) A .甲B .乙C .丙D .丁4.已知正方体1111ABCD A B C D -的体积为V ,点M ,N 分别在棱1BB ,1CC 上,满足1AM MN ND ++最小,则四面体1AMND 的体积为( ) A .112V B .18VC .16VD .19V5.35(1)(2)x y --的展开式中,满足2m n +=的m nx y 的系数之和为( )A .640B .416C .406D .236-6.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是A .M N N =B .()UMN =∅()7.若P 是q ⌝的充分不必要条件,则⌝p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 8.已知函数()(0)f x x x x =->,()xg x x e =+,()()ln 0h x x x x =+>的零点分别为1x ,2x ,3x ,则( )A .123x x x <<B .213x x x <<C .231x x x <<D .312x x x <<9.设实数x 、y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .2B .24C .16D .1410.已知数列满足:.若正整数使得成立,则( ) A .16B .17C .18D .1911.已知点P 不在直线l 、m 上,则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件12.设变量,x y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则目标函数2z x y =+的最大值是( )A .7B .5C .3D .2二、填空题:本题共4小题,每小题5分,共20分。

安徽省合肥市2019届高三第一次教学质量检测数学试卷(理)(含解析)

安徽省合肥市2019届高三第一次教学质量检测数学试卷(理)(含解析)

安徽省合肥市2019届高三第一次教学质量检测数学试题(理)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,,则复数的虚部为().A. B. C. 2 D.【答案】D【解析】,故虚部即为i的系数,为-2,故选D。

2.集合,,则=( )A. B.C. D.【答案】C【解析】解得集合,所以,故选C。

3.执行如图所示的程序框图,则输出的值为( ).A. 63B. 47C. 23D. 7【答案】C【解析】n=15,i=2不满足条件,继续循环,得到n=11,i=3不满足条件,继续循环,n=23,i=4,满足条件,退出循环,输出n,即可。

故选C。

4.已知正项等差数列的前项和为(),,则的值为( ).A. 11B. 12C. 20D. 22【答案】D【解析】结合等差数列的性质,可得,而因为该数列为正项数列,可得,所以结合,可得,故选D。

5.已知偶函数在上单调递增,则对实数,“”是“”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】结合偶函数的性质可得,而当,所以结合在单调递增,得到,故可以推出.举特殊例子,,但是,故由无法得到,故是的充分不必要条件,故选A.6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业中从事技术岗位的人数90后比80后多【答案】D【解析】A选项,可知90后占了56%,故正确;B选项,技术所占比例为39.65%,故正确;C选项,可知90后明显比80多前,故正确;D选项,因为技术所占比例,90后和80后不清楚,所以不一定多,故错误。

2019-2020年合肥一模:安徽省合肥市2019届高三第一次模拟考试数学(理)试题-附详细答案

2019-2020年合肥一模:安徽省合肥市2019届高三第一次模拟考试数学(理)试题-附详细答案

见微知著,闻弦歌而知雅意2019-2020届备考安徽省合肥市2019届高三第一次模拟考试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11212i i +++(其中i 为虚数单位)的虚部为( ) A .35 B .35i C .35-D .35i -2.若集合{|12}A x x =<<,{|,}B x x b b R =>∈,则A B ⊆的一个充分不必要条件是( )A .2b ≥B .12b <≤C .1b ≤D .1b <3.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x ,方差为2s ,则( )A .4x =,22s <B .4x =,22s >C .4x >,22s <D .4x >,22s >4.已知椭圆C :22221(0)x y a b a b+=>>,若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A .2213632x y +=B .22198x y +=C .22195x y +=D .2211612x y +=5.已知正项等比数列{}n a 满足31a =,5a 与432a 的等差中项为12,则1a 的值为( )A .4B .2C .12D .146.已知变量x ,y 满足约束条件40221x y x y --≤⎧⎪-≤<⎨⎪≤⎩,若2z x y =-,则z 的取值范围是( )A .[5,6)-B .[5,6]-C .(2,9)D .[5,9]-7.七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.如图,这是一个用七巧板拼成的正方形,其中1号板与2号板为两个全等的等腰直角三角形,3号板与5号板为两个全等的等腰直角三角形,7号板为一个等腰直角三角形,4号板为一个正方形,6号板为一个平行四边形.现从这个正方形内任取一点,则此点取自阴影部分的概率是( )A .18B .14C .316 D .388.已知函数()sin()f x x ωϕ=+3cos()x ωϕ++0,2πωϕ⎛⎫>< ⎪⎝⎭的最小正周期为π,且()3f x f x π⎛⎫-= ⎪⎝⎭,则( ) A .()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递减 B .()f x 在2,63ππ⎛⎫⎪⎝⎭上单调递增C .()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增 D .()f x 在2,63ππ⎛⎫ ⎪⎝⎭上单调递减9.某程序框图如图所示,该程序运行后输出M ,N 的值分别为( )A .13,21B .34,55C .21,13D .55,3410.设函数212()log (1)f x x =+112x++,则使得()(21)f x f x ≤-成立的x 的取值范围是( )A .(,1]-∞B .[1,)+∞C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞+∞ ⎥⎝⎦U11.设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 作一条渐近线的垂线,垂足为M ,延长1F M 与双曲线的右支相交于点N ,若13MN F M =u u u u r u u u u r,则此双曲线的离心率为( )A .132 B .53 C .43D .263 12.设1x ,2x 分别是函数()x f x x a -=-和()log 1a g x x x =-的零点(其中1a >),则124x x +的取值范围是( )A .[4,)+∞B .(4,)+∞C .[5,)+∞D .(5,)+∞ 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,1)a =r ,(2,)b x =r,若a b +r r 与3a b -r r 平行,则实数x 的值是 .14.某几何体的三视图如图所示,其中主视图的轮廓是底边为23,高为1的等腰三角形,俯视图的轮廓为菱形,左视图是个半圆.则该几何体的体积为 .15.512a x x x x ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中含4x 项的系数为 .16.如图所示,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上标签:原点处标数字0,记为0a ;点(1,0)处标数字1,记为1a ; 点(1,1)-处标数字0,记为2a ;点(0,1)-处标数字-1,记为3a ;点(1,1)--处标数字-2,记为4a ;点(1,0)-处标数字-1,记为5a ; 点(1,1)-处标数字0,记为6a ;点(0,1)处标数字1,记为7a ; …以此类推,格点坐标为(,)i j 的点处所标的数字为i j +(i ,j 均为整数),记12n n S a a a =++⋅⋅⋅+,则2018S = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.每22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 2b A a B c -=. (1)证明:tan 3tan B A =-;(2)若2223b c a bc +=+,且ABC ∆的面积为3,求a .18.如图1,在高为6的等腰梯形ABCD 中,//AB CD ,且6CD =,12AB =,将它沿对称轴1OO 折起,使平面1ADO O ⊥平面1BCO O .如图2,点P 为BC 中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使//AQ OB .(1)证明:OD⊥平面PAQ;(2)若2--的余弦值.BE AE=,求二面角C BQ A19.2019年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)内的产品视为合格品,否则为不合格品.图3是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.表1:设备改造后样本的频数分布表质量指[15,20)[20,25)[25,30)[30,35)[35,40)[40,45]标值频数 4 36 96 28 32 4(1)完成下面的22⨯列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;设备改造前设备改造后合计 合格品 不合格品 合计(2)根据图3和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3)企业将不合格品全部销毁后,根据客户需求对合格品...进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元;质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元;其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率........代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为X (单位:元),求X 的分布列和数学期望. 附:20()P K k ≥0.150 0.100 0.050 0.025 0.010 0k2.0722.7063.8415.0246.63522()()()()()n ad bc K a b c d a c b d -=++++20.在平面直角坐标系xOy 中,抛物线1C :24x y =,直线l 与抛物线1C 交于A ,B 两点.(1)若直线OA ,OB 的斜率之积为14-,证明:直线l 过定点;(2)若线段AB 的中点M 在曲线2C :214(2222)4y x x =--<<上,求AB 的最大值.21.已知函数2()ln (21)f x a x x a x =-+-()a R ∈有两个不同的零点. (1)求a 的取值范围;(2)设1x ,2x 是()f x 的两个零点,证明:122x x a +>.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,过点(1,2)P 的直线l 的参数方程为112322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 相交于M ,N 两点,求11PM PN+的值. 23.[选修4-5:不等式选讲] 已知函数()222f x x x =--+.(1)求不等式()6f x ≥的解集;(2)当x R ∈时,()f x x a ≥-+恒成立,求实数a 的取值范围.理科数学参考答案一、选择题1-5: CDABA 6-10: ACDBC 11、12:BD 二、填空题 13. 2 14. 33π 15. -48 16. -249 三、解答题 17.【解析】(1)根据正弦定理,由已知得:sin cos cos sin B A B A -2sin 2sin()C A B ==+, 展开得:sin cos cos sin B A B A -2(sin cos cos sin )B A B A =+, 整理得:sin cos 3cos sin B A B A =-,所以,tan 3tan B A =-.(2)由已知得:2223b c a bc +-=,∴222cos 2b c a A bc+-=3322bc bc ==, 由0A π<<,得:6A π=,3tan 3A =,∴tan 3B =-, 由0B π<<,得:23B π=,所以6C π=,a c =, 由12sin23S ac π=213322a =⨯=,得:2a =. 18.【解析】(1)【解法一(几何法)】取1OO 的中点为F ,连接AF ,PF ;∴//PF OB , ∵//AQ OB ,∴//PF AQ ,∴P 、F 、A 、Q 四点共面, 又由图1可知1OB OO ⊥, ∵平面1ADO O ⊥平面1BCO O , 且平面1ADO O I 平面11BCO O OO =, ∴OB ⊥平面1ADO O , ∴PF ⊥平面1ADO O , 又∵OD ⊂平面1ADO O , ∴PF OD ⊥.在直角梯形1ADO O 中,1AO OO =,1OF O D =,1AOF OO D ∠=∠,∴1AOF OO D ∆≅∆,∴1FAO DOO ∠=∠,∴190FAO AOD DOO AOD ∠+∠=∠+∠=o , ∴AF OD ⊥.∵AF PF F =I ,且AF ⊂平面PAQ ,PF ⊂平面PAQ , ∴OD ⊥平面PAQ .(1)【解法二(向量法)】由题设知OA ,OB ,1OO 两两垂直,所以以O 为坐标原点,OA ,OB ,1OO 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AQ 的长度为m ,则相关各点的坐标为(0,0,0)O ,(6,0,0)A ,(0,6,0)B ,(0,3,6)C ,(3,0,6)D ,(6,,0)Q m . ∵点P 为BC 中点,∴9(0,,3)2P ,∴(3,0,6)OD =u u u r ,(0,,0)AQ m =u u u r ,9(6,,3)2PQ m =--u u u r ,∵0OD AQ ⋅=u u u r u u u r ,0OD PQ ⋅=u u u r u u u r,∴OD AQ ⊥u u u r u u u r ,OD PQ ⊥u u u r u u u r ,且AQ uuu r 与PQ uuu r 不共线,∴OD ⊥平面PAQ .(2)∵2BE AE =,//AQ OB ,∴132AQ OB ==,则(6,3,0)Q ,∴(6,3,0)QB =-u u u r ,(0,3,6)BC =-u u u r.设平面CBQ 的法向量为1(,,)n x y z =u r,∵1100n QB n BC ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u r,∴630360x y y z -+=⎧⎨-+=⎩,令1z =,则2y =,1x =,则1(1,2,1)n =u r , 又显然,平面ABQ 的法向量为2(0,0,1)n =u u r,设二面角C BQ A --的平面角为θ,由图可知,θ为锐角,则12126cos 6n n n n θ⋅==⋅u r u u r u r u u r .19.【解析】(1)根据图3和表1得到22⨯列联表:设备改造前设备改造后合计 合格品 172 192 364 不合格品 28 8 36 合计200200400将22⨯列联表中的数据代入公式计算得:22()()()()()n ad bc K a b c d a c b d -=++++2400(172828192)20020036436⨯⨯-⨯=⨯⨯⨯12.210≈.∵12.210 6.635>,∴有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关. (2)根据图3和表1可知,设备改造前产品为合格品的概率约为1724320050=,设备改造后产品为合格品的概率约为1922420025=;显然设备改造后产品合格率更高,因此,设备改造后性能更优. (3)由表1知:一等品的频率为12,即从所有产品中随机抽到一件一等品的概率为12;二等品的频率为13,即从所有产品中随机抽到一件二等品的概率为13;三等品的频率为16,即从所有产品中随机抽到一件三等品的概率为16.由已知得:随机变量X 的取值为:240,300,360,420,480.240P X =()1116636=⨯=, 300P X =()12111369C =⨯⨯=, 360P X =()1211115263318C =⨯⨯+⨯=,420P X =()12111233C =⨯⨯=, 480P X =()111224=⨯=. ∴随机变量X 的分布列为:X 240300 360 420 480P13619 518 1314∴11240300369E X =⨯+⨯()5113604204804001834+⨯+⨯+⨯=.20.【解析】设()11,A x y ,()22,B x y ,(1)由题意可知直线l 的斜率存在,设直线l 的方程为y kx m =+,由24x yy kx m⎧=⎨=+⎩,得:2440x kx m --=, ()2160k m ∆=+>,124x x k +=,124x x m =-,1212OA OBy y k k x x ⋅⋅=⋅2212121144x xx x ⋅=⋅12164x x m ⋅==-, 由已知:14OA OB k k ⋅=-,所以1m =,∴直线l 的方程为1y kx =+,所以直线l 过定点(0,1).(2)设()00,M x y ,则12022x x x k +==,2002y kx m k m =+=+, 将()00,M x y 带入2C :214(2222)4y x x =--<<得:22124(2)4k m k +=-,∴243m k =-.∵02222x -<<,∴22222k -<<,∴22k -<<, 又∵()216k m ∆=+22216(43)32(2)0k k k =+-=->,∴22k -<<, 故k 的取值范围是:(2,2)k ∈-.2212121()4AB k x x x x =++-22116()k k m =++,将243m k =-代入得:()()224212AB kk =+-()()221242622k k ++-≤=,当且仅当2212k k +=-,即22k =±时取等号, 所以AB 的最大值为62. 21.【解析】 (1)【解法一】函数()f x 的定义域为:(0,)+∞.'()221a f x x a x =-+-(21)()x a x x+-=, ①当0a ≤时,易得'()0f x <,则()f x 在(0,)+∞上单调递增, 则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令'()0f x =得:x a =,则x(0,)a a (,)a +∞'()f x + 0 - ()f x增极大减∴max ()()f x f x =极大()(ln 1)f a a a a ==+-.设()ln 1g x x x =+-,∵1'()10g x x=+>,则()g x 在(0,)+∞上单调递增. 又∵(1)0g =,∴1x <时,()0g x <;1x >时,()0g x >. 因此:(i )当01a <≤时,max ()()0f x a g a =⋅≤,则()f x 无零点, 不符合题意,舍去.(ii )当1a >时,max ()()0f x a g a =⋅>, ∵12()(1)f a ee=-2110e e --<,∴()f x 在区间1(,)a e上有一个零点,∵(31)ln(31)f a a a -=-2(31)(21)(31)a a a --+--[ln(31)(31)]a a a =---, 设()ln h x x x =-,(1)x >,∵1'()10h x x=-<,∴()h x 在(1,)+∞上单调递减,则(31)(2)ln 220h a h -<=-<, ∴(31)(31)0f a a h a -=⋅-<,∴()f x 在区间(,31)a a -上有一个零点,那么,()f x 恰有两个零点. 综上所述,当()f x 有两个不同零点时,a 的取值范围是(1,)+∞. (1)【解法二】函数的定义域为:(0,)+∞.'()221af x x a x=-+-(21)()x a x x+-=, ①当0a ≤时,易得'()0f x <,则()f x 在(0,)+∞上单调递增, 则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令'()0f x =得:x a =,则x(0,)a a (,)a +∞'()f x + 0 - ()f x增极大减∴max ()()f x f x =极大()(ln 1)f a a a a ==+-.∴要使函数()f x 有两个零点,则必有()(ln 1)0f a a a a =+->,即ln 10a a +->, 设()ln 1g a a a =+-,∵1'()10g a a=+>,则()g a 在(0,)+∞上单调递增, 又∵(1)0g =,∴1a >; 当1a >时: ∵12()(1)f a ee=-2110e e--<, ∴()f x 在区间1(,)a e上有一个零点; 设()ln h x x x =-,∵11'()1xh x x x-=-=,∴()h x 在(0,1)上单调递增,在(1,)+∞上单调递减, ∴()(1)10h x h ≤=-<,∴ln x x <,∴2()ln (21)f x a x x a x =-+-22(21)3ax x a x ax x x ≤-+-=--23(3)ax x x a x ≤-=-, 则(4)0f a <,∴()f x 在区间(,4)a a 上有一个零点, 那么,此时()f x 恰有两个零点.综上所述,当()f x 有两个不同零点时,a 的取值范围是(1,)+∞. (2)【证法一】由(1)可知,∵()f x 有两个不同零点,∴1a >,且当(0,)x a ∈时,()f x 是增函数;当(,)x a ∈+∞时,()f x 是减函数; 不妨设:12x x <,则:120x a x <<<; 设()()(2)F x f x f a x =--,(0,2)x a ∈, 则:'()'()'(2)F x f x f a x =--2(21)2aax a x a x=-+-+-2(2)(21)a x a --+- 22()22(2)a a x a x a x x a x -=+-=--. 当(0,)x a ∈时,'()0F x >,∴()F x 单调递增,又∵()0F a =, ∴()0F x <,∴()(2)f x f a x <-, ∵1(0,)x a ∈,∴11()(2)f x f a x <-, ∵12()()f x f x =,∴21()(2)f x f a x <-,∵2(,)x a ∈+∞,12(,)a x a -∈+∞,()f x 在(,)a +∞上单调递减, ∴212x a x >-,∴122x x a +>. (2)【证法二】由(1)可知,∵()f x 有两个不同零点,∴1a >,且当(0,)x a ∈时,()f x 是增当(,)x a ∈+∞时,()f x 是减函数; 不妨设:12x x <,则:120x a x <<<; 设()()()F x f a x f a x =+--,(0,)x a ∈, 则'()'()'()F x f a x f a x =++-2()(21)a aa x a a x a x=-++-++-2()(21)a x a --+- 222()()a a x a x a x a x a x =+-=+-+-. 当(0,)x a ∈时,'()0F x >,∴()F x 单调递增, 又∵(0)0F =,∴()0F x >,∴()()f a x f a x +>-, ∵1(0,)a x a -∈,∴12()()f x f x =11(())(())f a a x f a a x =--<+-1(2)f a x =-, ∵2(,)x a ∈+∞,12(,)a x a -∈+∞,()f x 在(,)a +∞上单调递减, ∴212x a x >-,∴122x x a +>. 22.【解析】(1)由已知得:112322x t y t ⎧-=⎪⎪⎨⎪-=⎪⎩,消去t 得23(1)y x -=-,∴化为一般方程为:3230x y -+-=, 即:l :3230x y -+-=.曲线C :4sin ρθ=得,24sin ρρθ=,即224x y y +=,整理得22(2)4x y +-=, 即:C :22(2)4x y +-=.(2)把直线l 的参数方程112322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)代入曲线C 的直角坐标方2213(1)()422tt ++=,即230t t +-=, 设M ,N 两点对应的参数分别为1t ,2t ,则121213t t t t +=-⎧⎨⋅=-⎩,∴11PM PN +1212PM PN t t PM PN t t ++==⋅⋅ 21212121212()4t t t t t t t t t t -+-⋅==⋅⋅133=. 23.【解析】(1)当2x ≤-时,()4f x x =-+,∴()646f x x ≥⇒-+≥2x ⇒≤-,故2x ≤-; 当21x -<<时,()3f x x =-,∴()636f x x ≥⇒-≥2x ⇒≤-,故x φ∈; 当1x ≥时,()4f x x =-,∴()646f x x ≥⇒-≥10x ⇒≥,故10x ≥; 综上可知:()6f x ≥的解集为(,2][10,)-∞+∞U .(2)由(1)知:4,2()3,214,1x x f x x x x x -+≤-⎧⎪=--<<⎨⎪-≥⎩,【解法一】如图所示:作出函数()f x 的图象,由图象知,当1x =时,13a -+≤-,解得:2a ≤-, ∴实数a 的取值范围为(,2]-∞-.【解法二】当2a≤,-+≥-+恒成立,∴4x x ax≤-时,4当21-≥-+恒成立,∴2a≤-,-<<时,3x x ax当1-≥-+恒成立,∴2a≤-,x x ax≥时,4综上,实数a的取值范围为(,2]-∞-.。

合肥市2019届高三第一次教学质量数学(理)试题含答案(pdf版)

合肥市2019届高三第一次教学质量数学(理)试题含答案(pdf版)
P 2 Z 2 0.9544 .
2
6
20.(本小题满分 12 分) 2 x2 y 2 设椭圆 C : 2 2 1 ( a b 0 )的离心率为 ,圆 O : x 2 y 2 2 与 x 轴正半轴交于点 A ,圆 O 在点 A 2 a b 处的切线被椭圆 C 截得的弦长为 2 2 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)设圆 O 上任意一点 P 处的切线交椭圆 C 于点 M ,N , 试判断 PM PN 是否为定值?若为定值, 求 出该定值;若不是定值,请说明理由.
合肥市 2019 届高三第一次教学质量检测
数学试题(理科 )
(考试时间:120 分钟 满分: 150 分)
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 . 4 1.已知 i 为虚数单位, z ,则复数 z 的虚部为( ). 1 i A. 2i B. 2i C.2 D. 2 2 2. 集 合 A x x x 2 0 , B x x 1 0 , 则 A B =
1 8.若 ax ). 展开式的常数项为 60,则 a 的值为( x A.4 B. 4 C.2 D. 2 9.如图, 网格纸上小正方形的边长为 1, 粗线画出的是某多面体的三视图, 则该几何体的体积为(
6
).
A. 2 5 4 2 10
B.
பைடு நூலகம்
4 3
C.
8 3
D.
16 3
23.(本小题满分 10 分)选修 4-5:不等式选讲 设函数 f x x 1 . (Ⅰ)若 f x 2x 2 ,求实数 x 的取值范围;
1 (Ⅱ)设 g x f x f ax ( a 1 ),若 g x 的最小值为 ,求 a 的值. 2

2023年安徽省合肥市高考数学一模试卷(理科)

2023年安徽省合肥市高考数学一模试卷(理科)

参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2023?合肥一模)已知复数z=3+4i,表示复数z的共轭复数,则,=()A.考点:专题:分析:解答:复数求模.数系的扩充和复数.菁优网权版所有B5.C.D6.首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,写出复数的共轭复数,求出共轭复数的模长.解:复数z=3+4i,=3﹣4i,=,=,﹣4﹣3i,=故选:B.==5.=﹣4﹣3i,点评:本题考查复数的乘除运算,考查复数的共轭复数,考查复数求模长,实际上一个复数和它的共轭复数模长相等,本题是一个基础题.2.(5分)(2023?合肥一模)设集合S={0,a},T={x∈Z,x<2},则“a=1”是“S?T”的()A充分不必要B必要不充分.条件C充分必要条.件考点:专题:分析:解答:必要条件、充分条件与充要条件的判断.菁优网权版所有2.条件D既不充分也.不必要条件简易逻辑.求出集合T,根据集合元素关系,利用充分条件和必要条件的定义进行判断.解:T={x∈Z,x<2}={﹣1,0,1},当a=1时,S={0,1},满足S?T.若S?T,则a=1或a=﹣1,∴“a=1”是“S?T”的充分不必要条件.故选:A.本题主要考查充分条件和必要条件的判断,利用集合元素和集合之间的关系是解决本题的关键.2点评:3.(5分)(2023?合肥一模)过坐标原点O作单位圆x2+y2=1的两条互相垂直的半径OA、OB,若在该圆上存在一点C,使得+b(a、b∈R),则以下说法正确的是()A点P(a,b)一定在单位圆内.B点P(a,b)一定在单位圆上.-9-C点P(a,b)一定在单位圆外. D当且仅当ab=0时,点P(a,b)在单位圆上.考点:专题:分析:解答:平面向量的基本定理及其意义.菁优网权版所有平面向量及应用.根据点P到圆心O的距离判断点P与圆的位置关系.解:易知,∵∴,==1 ,=,= =1 ∴OP=又圆的半为1 ∴点P一定在单位圆上故选:B 点评:4.(5分)(2023?合肥一模)过双曲线=1(a>0,b>0)的一个焦点作实轴的垂线,交双曲线于A,B两本题主要考察了向量的求模运算,以及点与圆的位置关系的判断,属于中档题.点,若线段AB的长度恰等于焦距,则双曲线的离心率为()A.考点:专题:分析:解答:解:不妨设A(c,y0),代入双曲线∵线段AB的长度恰等于焦距,∴, =1,可得y0=±.双曲线的简单性质.计算题;圆锥曲线的定义、性质与方程.菁优网权版所有B. C. D.先求出AB的长,进而可得,从而可求双曲线的离心率.∴c2﹣a2=ac,∴e2﹣e﹣1=0,∵e>1,∴e=.故选:A.点评:本题考查双曲线的几何性质,考查学生的计算能力,属于基础题.5.(5分)(2023?合肥一模)一个几何体的三视图如图所示,则该几何体的表面积是()A18+2.考点:专题:分析:由三视图求面积、体积.菁优网权版所有B24+2.C24+4.D36+4.空间位置关系与距离.根据三视图判断几何体是直四棱柱,且四棱柱的底面为等腰梯形,棱柱的高为2,底面梯形的上底边长为2,下底边长为4,高为2,利用勾股定理求出腰为公式计算.=,代入棱柱的表面积解答:解:由三视图知几何体是直四棱柱,且四棱柱的底面为等腰梯形,棱柱的高为2,底面梯形的上底边长为2,下底边长为4,高为2,腰为∴几何体的表面积S=(2+4+2)×2+2××2=24+4.=,点评:故选:C.本题考查了由三视图求几何体的表面积,判断三视图的数据所对应的几何量是解答本题的关键. 6.(5分)(2023?合肥一模)已知函数f(x)=,f(﹣x)) B(x,﹣f(x)) C A(x,(...﹣sinx,﹣,﹣x,﹣f)) +sinx,则一定在函数y=f(x)图象上的点是() D(.(+x,﹣f﹣x))(x﹣考点:专题:分析:解答:函数的图象.函数的性质及应用.在函数y=f(x)图象上的点只需把点的坐标代入方程,满足表达式即可.菁优网权版所有解:对于A,f(﹣x)=,确;对于B,﹣f(x)=﹣,对于C,﹣f(x﹣=﹣,+sin(﹣sin(﹣x),﹣,+sin(﹣x),=,+sinx,﹣,﹣sinx,≠f (x),∴A不正﹣sinx,+,+sinx,≠f(x),∴B不正确;),+,+sin(x﹣), +sin(﹣x),=f(﹣x),)=﹣,﹣sin(x﹣﹣x),+,﹣sin(﹣x),=,﹣sin(﹣x),﹣,∴C正确;对于D,﹣f(x﹣)=﹣,﹣sin(x﹣),+,+sin(x﹣), - 11 -=﹣,≠f(+sin(﹣x),+,﹣sin(﹣x),=,﹣sin(﹣x),﹣,+sin(﹣x),=f(﹣x)+x),∴D不正确;故选:C.点评:本题考查函数的定义,函数的图象的应用,考查计算能力.7.(5分)(2023?合肥一模)执行如图所示的程序框图(算法流程图),输出的结果是()A5.考点:专题:分析:解答:程序框图.算法和程序框图.根据框图的流程依次计算运行的结果,直到满足条件n>117时,确定输出i的值.菁优网权版所有B6.C7.D8.解:由程序框图知:程序第一次运行n=12﹣4=8,i=1+1=2;第二次运行n=4×8+1=33,i=2+1=3;第三次运行n=33﹣4=29,i=3+1=4;第四次运行n=4×29+1=117,i=4+1=5;第五次运行n=117﹣4=113,i=5+1=6;第六次运行n=113×4+1=452,i=6+1=7.此时满足条件n>117,输出i=7.故选:C.本题考查了选择结果与循环结构相结合的程序框图,根据框图的流程依次计算运行的结果是解答此类问题的常用方法.点评:8.(5分)(2023?许昌三模)在△ABC中,已知2acosB=c,sinAsinB(2﹣cosC)=sin2+,则△ABC为() A等边三角形. C锐角非等边B等腰直角三.角形D钝角三角形-12-。

【新结构】(合肥一模)安徽省2024年合肥市高三第一次教学质量检测数学+答案解析

【新结构】(合肥一模)安徽省2024年合肥市高三第一次教学质量检测数学+答案解析

【新结构】(合肥一模)安徽省2024年合肥市高三第一次教学质量检测数学❖一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知复数z满足,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.记为等差数列的前n项和,若,,则()A.144B.120C.100D.803.已知随机变量X服从正态分布,且,则等于()A. B. C. D.4.双曲线的焦距为4,则C的渐近线方程为()A. B. C. D.5.在中,内角A,B,C的对边分别为a,b,c,若,且,则()A.1B.C.D.26.已知四面体ABCD的各顶点都在同一球面上,若,平面平面BCD,则该球的表面积是()A. B. C. D.7.已知直线与交于A,B两点,设弦AB的中点为M,O 为坐标原点,则的取值范围为()A. B. C. D.8.已知函数的定义域为,且,,记,,,则()A. B. C. D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.现有甲、乙两家检测机构对某品牌的一款智能手机进行拆解测评,具体打分如下表满分100分设事件M表示“从甲机构测评分数中任取3个,至多1个超过平均分”,事件N表示“从甲机构测评分数中任取3个,恰有2个超过平均分”.下列说法正确的是()机构名称甲乙分值90989092959395929194A.甲机构测评分数的平均分小于乙机构测评分数的平均分B.甲机构测评分数的方差大于乙机构测评分数的方差C.乙机构测评分数的第一四分位数为D.事件M,N互为对立事件10.函数的图象可能是()A. B.C. D.11.已知椭圆的左、右顶点分别为A,B,左焦点为F,M为C上异于A,B的一点,过点M 且垂直于x轴的直线与C的另一个交点为N,交x轴于点T,则()A.存在点M,使B.C.的最小值为D.周长的最大值为8三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥市高考数学一模试卷(I)卷
姓名:________ 班级:________ 成绩:________
一、填空题 (共14题;共14分)
1. (1分) (2019高一上·厦门期中) 设集合,.若,则
________.
2. (1分) (2018高二下·遵化期中) 设是原点,向量对应的复数分别为,,那么向量对应的复数是________.
3. (1分)(2017·南通模拟) 运行如图所示的流程图,则输出的结果S是________.
4. (1分)(2016·四川文) 从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是________.
5. (1分) (2017高二上·阳高月考) 在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的,且样本容量为160,则中间一组的频数为________。

6. (1分) (2018高二上·江苏月考) 双曲线的渐近线方程是________.
7. (1分)关于函数f(x)=4sin(2x+ )(x∈R)有下列命题,其中正确的是________.
①y=f(x)的表达式可改写为y=4cos(2x﹣);
②y=f(x)的图象关于点(﹣,0)对称;
③y=f(x)的最小正周期为2π;
④y=f(x)的图象的一条对称轴为x=﹣.
8. (1分) (2015高一下·衡水开学考) 圆锥的侧面展开图为扇形,若其弧长为2πcm,半径为 cm,则该圆锥的体积为________cm3 .
9. (1分)(2017·南通模拟) 如图,△ABC中,M是中线AD的中点.若| |=2,| |=3,∠BAC=60°,则• 的值为________.
10. (1分) (2018高三上·西安模拟) 从集合中任选一个元素,则满足
的概率为________.
11. (1分) (2016高一上·景德镇期中) 在等差数列{an}中,a2=5,a6=21,记数列的前n项和为Sn ,若对n∈N+恒成立,则正整数m的最小值为________.
12. (1分) (2015高一下·忻州期中) 已知sinαcosα= ,π<α<,那么sinα﹣cosα=________
13. (1分) (2018高二下·四川期中) 函数在处的切线方程为________.
14. (1分) (2015高二下·宜昌期中) 定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(﹣1,
4]时,f(x)=x2﹣2x ,则函数f(x)在区间[0,2016]上的零点个数是________.
二、解答题 (共8题;共75分)
15. (10分)(2017·杭州模拟) 在△ABC中,a,b,c分别为A,B,C所对边,a+b=4,(2﹣cosA)tan =sinA.
(1)求边长c的值;
(2)若E为AB的中点,求线段EC的范围.
16. (10分) (2017高二下·淄川开学考) 在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大小.
17. (5分)(2017·大连模拟) 已知a,b∈(0,+∞),且2a4b=2.
(Ⅰ)求的最小值;
(Ⅱ)若存在a,b∈(0,+∞),使得不等式成立,求实数x的取值范围.
18. (10分)(2018·吉林模拟) 已知椭圆:的左、右焦点分别是、,离心率,过点的直线交椭圆于、两点,的周长为16.
(1)求椭圆的方程;
(2)已知为原点,圆:()与椭圆交于、两点,点为椭圆上一动点,若直线、与轴分别交于、两点,求证:为定值.
19. (10分)(2017·万载模拟) 已知函数f(x)=ax﹣e(x+1)lna﹣(a>0,且a≠1),e为自然对数的底数.
(1)当a=e时,求函数y=f(x)在区间x∈[0,2]上的最大值
(2)若函数f(x)只有一个零点,求a的值.
20. (15分)(2017高二下·中山期末) 对于命题P:存在一个常数M,使得不等式
对任意正数a,b恒成立.
(1)试给出这个常数M的值;
(2)在(1)所得结论的条件下证明命题P;
(3)对于上述命题,某同学正确地猜想了命题Q:“存在一个常数M,使得不等式
对任意正数a,b,c恒成立.”观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的命题.
21. (10分) (2016高二下·南安期中) 甲、乙两名同学在5次英语口语测试中的成绩统计如图的茎叶图所示.
(注:样本数据x1 , x2 ,…,xn的方差s2= [ + +…+ ],其中表示样本均值)
(1)
现要从中选派一人参加英语口语竞赛,从两同学的平均成绩和方差分析,派谁参加更合适;
(2)
若将频率视为概率,对学生甲在今后的三次英语口语竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
22. (5分)已知:在梯形ABCD中,如图,AB=DC=DA,AC和BD是梯形的对角线.用三段论证明:AC平分∠BCD,DB平分∠CBA.
参考答案一、填空题 (共14题;共14分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
二、解答题 (共8题;共75分)
15-1、
15-2、16-1、
16-2、
17-1、18-1、18-2、
19-1、
19-2、20-1、
20-2、
20-3、
21-1、
21-2、
22-1、。

相关文档
最新文档