2020年中考数学 圆专题复习(中等生) 学生版

合集下载

2020年中考一轮复习 圆 专题复习

2020年中考一轮复习 圆 专题复习

圆一、单选题1.如图,在半径为2的⊙O中,C为直径AB延长线上一点,CD与圆相切于点D,连接AD,已知∠DAC=30°,则线段CD的长为()A.1B.3C.2D.232.下列判断中正确的是()A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦3.下列说法:①三点确定一个圆;②长度相等的两条弧是等弧;③两条弦相等,它们所对的弧也相等;④等弧所对的圆心角相等;⑤平分弦的直径,也平分这条弦所对的两条弧;⑥内心到三角形三条边的距离相等,其中正确的个数有()A.1B.2C.3D.44.如图,点A是量角器直径的一个端点,点B在半圆周上,点P在AB上,点Q在AB上,且PB=PQ.若点P对应135°(45°),则∠PQB的度数为()A.65°B.67.5°C.60°D.80°5.半径等于12的圆中,垂直平分半径的弦长为()A.36B.123C.63D.1836.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD2C.34交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°7.已知OA平分∠BOC,P是OA上任一点,如果以P为圆心的圆与OC相离,那么⊙P与OB的位置关系是()A.相离B.相切C.相交D.不能确定8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为()A.2B.2√3C.√3D.2√29△.在ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A.10B.19D.1010.如图所示,⊙O是正方形ABCD的外接圆,P是⊙O上不与A、B重合的任意一点,则∠APB等于()3B.4π3C.π5(A.45°B.60°C.45°或135°D.60°或120°11.如图,小明做实验时发现,当三角板中30°角的顶点A在圆O上移动,三角板的两边与圆O相交于点P、Q时,弧PQ的长度不变,若圆O的半径为4,则弧PQ的长等于()A.2πD.π312.已知直线l及直线l外一点P.如图,(1)在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A,B两点;(2)连接PA,以点B为圆心,AP长为半径画弧,交半圆于点Q;(3)作直线PQ,连接BP.根据以上作图过程及所作图形,下列结论中错误的是()A.AP=BQC.∠ABP=∠PBQB.PQ∥ABD.∠APQ+∠ABQ=180°二、填空题13.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为6cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为_______________cm2.结果保留π)14.如图,在等边△ABC中,AB=22,以点A为圆心,AB为半径画弧BD,使得∠BAD =105°,过点C作CE⊥AD交AD于点D,则图中阴影部分的面积为_____.515.若直角三角形两边分别为6和8,则它内切圆的半径为_____.16.如图,在圆内接四边形ABCD中,若∠A、∠C的度数之比为4:,则∠C的度数是_____.17.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB的距离等于_____.18.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于_____.19.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB度数为________20.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD上的一个动点,当CD=6时,AP+BP的最小值为_____.三、解答题21.在△Rt ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O.与AC相切于点E,连结DE并延长与BC的延长线交于点F.(1)求证:EF2=BDCF;(2)若CF=1,BD=5.求sinA的值.22.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE^PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)连结OC,如果PD=23,∠ABC=60°,求OC的长.23.如图,以O为圆心,AB长为直径作圆,在⊙O上取一点,延长AB至点D,连接DC,过点A作⊙O的切线交DC的延长线于点E,且∠DCB=∠DAC.(1)求证:CD是⊙O的切线;(2)若AD=6,tan∠DCB=2,求AE的长.324.如图,已知AB是⊙O的直径,AC是弦,过点O作OD⊥AC于D,连结BC.(1)求证:OD=1BC;2(2)若∠BAC=40∘,求∠ABC的度数.25.如图①,在△ABC中,以AB为直径的⊙O交AC于点D,点E在BC上,连接BD,DE,∠CDE=∠ABD.(1)求证:DE是⊙O的切线.(2)如图②,当∠ABC=90°时,线段DE与BC有什么数量关系?请说明理由.(3)如图③,若AB=AC=10,sin∠CDE=35,求BC的长.参考答案1.D2.C3.B4.B5.B6.B7.A8.D9.D10.C11.B12.C13.180π14.π﹣215.2或7-1 16.100°17.218.50°.19.B20.32.21.(1)略;(2)sinA=3522.(1)略;(2)OC=7.23.(1)略;(2)AE的长为5224.(1)略;(2)50°25.(1)略;(2)DE=12BC;(3)45。

2020年中考数学圆专题复习及答案

2020年中考数学圆专题复习及答案

2020年中考数学圆专题复习及答案(名师总结历年中考真题,值得下载练习)1.如图,以△ABC的边AC为直径的⊙O与BC相切于点C,⊙O与AB相交于点D,E是BC的中点.(1)求证:DE是⊙O的切线;(2)若⊙O的直径为5,,求DE的长.2.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:△PCF是等腰三角形;(2)若tan∠ABC=,BE=,求线段PC的长.3.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE ⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.4.如图,已知A、B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG =3,求⊙O的半径.5.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.6.如图1,AB为半圆O的直径,D为BA的延长线上一点,点C在半圆O上,且∠ACD =∠B.(1)求证:DC为圆O切线;(2)如图2,∠BDC的平分线分别交AC、BC于点E、F,若AC=3,BC=4,求CE的长.7.如图,在△ABC中,AB=AC,以AB边的中点O为圆心,线段OA的长为半径作圆,分别交BC、AC边于点D、E,DF⊥AC于点F,延长FD交AB延长线于点G.(1)求证:FD是⊙O的切线.(2)若BC=AD=4,求tan∠GDB的值.8.如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.9.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.10.如图1,BC是⊙O的直径,A是⊙O上一点,过点B作⊕O的切线,与CA的延长线相交于点E,F是BE的中点,延长AF与CB的延长线相交于点P.(1)求证:P A是⊙O的切线;(2)如图2,若AD⊥BC于点D,连接CF与AD相交于点G,求证:AG=GD;(3)在(2)的条件下,若FG=BF,且⊙O的半径长为3,求BD的长度.11.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.12.如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB,垂足为E,CE的延长线与DB 相交于点F.已知AB=8,CE=.(1)求BC的长;(2)若EF=,求CD的长.13.AB为⊙O的直径,点C、D为⊙O上的两个点,AD交BC于点F,点E在AB上,DE 交BC于点G,且∠DGF=∠CAB.(1)如图1.求证:DE⊥AB.(2)如图2.若AD平分∠CAB.求证:BC=2DE.(3)如图3.在(2)的条件下,连接OF,若∠AFO=45°,AC=,求OF的长.14.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.15.如图,点A、B、C、D是⊙O上的四个点,AC是⊙O的直径,∠DAC=2∠BAC,过点B的直线与AC的延长线、DC的延长线分别相交于点E、F,且EF=CF.(1)求证:BE是⊙O的切线;(2)若⊙O的半径为5,CE=3,求CD的长.16.如图,四边形ABCD是⊙O的内接四边形,∠ABC=60°,点D是的中点,点E在OC的延长线上,且CE=AD,连接DE.(1)求证:四边形AOCD是菱形;(2)若AD=6,求DE的长.17.如图,已知在△ABP中,C是BP边上一点,P A是⊙O的切线,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:∠P AC=∠PBA;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=8,AF:FD =1:3,GF=1①求CF的长;②求cos∠ACE的值.18.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.19.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.20.如图,P是⊙O外的一点,P A、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交P A的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.21.如图,Rt△ABC中,∠ACB=90°,AC=6,AB=10,⊙C与AB相切于点D,延长AC 到点E,使CE=AC,连接EB.过点E作BE的垂线,交⊙C于点P、Q,交BA的延长线于点F.(1)求AD的长;(2)求证:EB与⊙C相切;(3)求线段PQ的长.22.如图,点P是⊙O外一点,P A是⊙O的切线,点A是切点,点B是⊙O上一点,且P A =PB,延长BO分别与⊙O,切线P A的延长线相交于C,Q两点.(1)求证:PB是⊙O的切线;(2)点D为PB的中点,QD交AB于点E,若⊙O的半径为9,OQ=15,求的值.23.如图,⊙O的直径AB垂直于弦CD,垂足为点E,过点C作⊙O的切线,交AB的延长线于点P,连接PD.(1)求证:PD与⊙O相切;(2)连结CO并延长⊙O于点F,连结FP交CD于点G,如果CF=10,PE:PC=4:5,求EG的长.24.如图所示,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,连接AO、BO、AB,并延长BO与切线P A相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=OQ•BQ;(3)设∠AOQ=α,若,OQ=15,求AB的长.25.如图所示,P是⊙O外一点,P A是⊙的切线,A是切点,B是⊙O上一点,且P A=PB,连接AO、BO、AB,并延长BO与切线P A相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=BQ•OQ;(3)设∠APB=α,若tan a=,AQ=3,求AB的长.26.如图,AB是⊙O的直径,BC与⊙O相切,AC与⊙O相交于点D,点E在AB的延长线上,且DE与⊙O相切,DE与BC相交于点F.(1)求证:CF=DF;(2)若CF=3,EF=7,求AC的长.27.如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D 是MB与⊙O的交点,点P是AD延长线与BC的交点,且=.(1)求证:PD是⊙O的切线;(2)若AD=12,AM=MC,求的值.28.如图,AB为⊙O的直径,点C,D在⊙O上,AC∥OD,过点D的切线与AB的延长线交于点E,CB与OD相交于点F,若AB=,DB=.(1)求证:CB∥DE;(2)求BE的长.29.如图,D为圆O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)图中∠ADB=°,理由是;(2)判断直线CD与圆O的位置关系,并证明;(3)过点B作圆O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求线段BE的长.30.如图,AB是⊙O的直径,P A,PC与⊙O相切,切点分别为A、C,PC的延长线与AB 的延长线相交于点D.(1)猜想BC与OP的位置关系,并证明你的猜想;(2)若OA=1,P A=2,求BD的长.31.如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D (1)求证:AC是⊙O的切线;(2)如图2,连接CD,若tan∠BCD=,⊙O的半径为,求BC的长.32.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.33.如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sin B=,求CF的长.34.如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=,①求线段BD的长;②求线段BF的长.35.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC 于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.36.如图,AB是⊙O的直径,点C、D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4,求EF的长.37.如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的平分线交⊙O于点D,过点D作ED⊥AE,垂足为E,交AB的延长线于F.(1)求证:ED是⊙O的切线;(2)若AD=4,AB=6,求FD的长.38.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O的切线与AC的延长线交于点E,且ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若DF=,AD=5,求⊙O的半径.39.如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.参考答案与试题解析一.解答题(共39小题)1.如图,以△ABC的边AC为直径的⊙O与BC相切于点C,⊙O与AB相交于点D,E是BC的中点.(1)求证:DE是⊙O的切线;(2)若⊙O的直径为5,,求DE的长.【解答】(1)证明:连接OD.∵BC是⊙O⊙的切线,AC是直径,,∴∠ACB=90°,∵AC是直径,∴∠ADC=90°,∴∠CDB=90°,又∵EB=EC∴DE为直角△DCB斜边的中线,∴DE=CE=BC.∴∠DCE=∠CDE,∵OC=OD,∴∠OCD=∠ODC,∴∠ODC+∠CDE=∠OCD+∠DCE=∠ACB=90°,∴∠ODE=90°∴DE是⊙O的切线.(2)∵,∴设AD=x,CD=2x,∵AC=5,AD2+DC2=AC2,∴x2+(2x)2=52,∴x=,即AD=,CD=2,在Rt△BDC和Rt△ADC中,∠ADC=∠BDC=90°,∠ABC=90°,∴∠ABC+∠A=90°,∠ABC+∠BCD=90°,∴∠A=∠BCD,∵△ADC∽△CDB,∴=,即=,∴BC=10.∴DE=BC=5.2.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:△PCF是等腰三角形;(2)若tan∠ABC=,BE=,求线段PC的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵弦CE平分∠ACB,∴∠ACF=∠BCF=45°,∵PC为⊙O的切线,∴OC⊥PC,∴∠PCO=90°,即∠PCB+∠OCB=90°,而OC=OB,∴∠OCB=∠OBC,而∠OBC+∠BAC=90°,∴∠PCB=∠BAC,∵∠PCF=∠PCB+∠BCF=∠PCB+45°,∠PFC=∠F AC+∠ACF=∠BAC+45°,∴∠PCF=∠PFC,∴△PCF是等腰三角形;(2)解:连结AE,如图,∵∠ABE=∠ACE=45°,∠BAE=∠BCE=45°,∴△ABE为等腰直角三角形,∴AB=BE=×=7,在Rt△ACB中,tan∠ABC==,设AC=4x,BC=3x,则AB=5x,∴5x=7,解得x=,∴AC=,BC=,∵AD⊥CD,OC⊥CD,∴OC∥AD,∴∠DAC=∠ACO,而∠ACO=∠OAC,∴∠DAC=∠BAC,∴Rt△DAC∽Rt△CAB,∴==,即==,∴AD=,DC=,∵OC∥AD,∴△POC∽△P AD,∴=,即=,∴PC=12.3.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE ⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.【解答】(1)证明:连接OD,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)连接BD.∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴==,∴CD2=CB•CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB中,2k2+4k2=9,∴k=,∴AD=.4.如图,已知A、B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG =3,求⊙O的半径.【解答】(1)证明:连接OC,如图,∵BC平分∠OBD,∴∠OBC=∠CBD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠CBD,∴OC∥AD,而CD⊥AB,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE交AB于H,如图,∵E为的中点,∴OE⊥AB,∵∠ABE=∠AFE,∴tan∠ABE=tan∠AFE=,∴在Rt△BEH中,tan∠HBE==设EH=3x,BH=4x,∴BE=5x,∵BG=BE=5x,∴GH=x,在Rt△EHG中,x2+(3x)2=(3)2,解得x=3,∴EH=9,BH=12,设⊙O的半径为r,则OH=r﹣9,在Rt△OHB中,(r﹣9)2+122=r2,解得r=,即⊙O的半径为.5.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sin E=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.。

2020-2021中考数学专题复习分类练习 圆的综合综合解答题含答案解析

2020-2021中考数学专题复习分类练习 圆的综合综合解答题含答案解析

2020-2021中考数学专题复习分类练习圆的综合综合解答题含答案解析一、圆的综合1.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E ,OE=BE ,∴DO=DE+OE=(A′E+BE )=AB=OA ,∴A′C 与半圆O 相切;(2)当BA′与半圆O 相切时,则OB ⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB ,∴∠O′AB=30°,∴∠AB O′=60°,∴α=30°,(3)∵点P ,A 不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B ;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B .当α继续增大时,点P 逐渐靠近点B ,但是点P ,B 不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B .综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.2.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o ,1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=, AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G , 1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==, 24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.3.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(Ⅰ)求∠ACB 的大小;(Ⅱ)若⊙O 半径为1,求四边形ACBP 的面积.【答案】(Ⅰ)60°;(Ⅱ)33【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=12∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴33,OP=2OA=2,∴OP=2OC,而S△OPA=123∴S△AOC=12S△PAO=34,∴S△ACP=33,4∴四边形ACBP的面积=2S△ACP=33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.4.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.5.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

2020年中考数学 圆专题复习(中等生)(含答案)

2020年中考数学 圆专题复习(中等生)(含答案)

2020年中考数学圆专题复习1.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.2.已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D.(1)如图①,若∠OCA=60°,求OD的长;(2)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.3.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.4.如图,已知在△ABC中,⊙O在AB上,AC为⊙O的弦,延长BC至D,使AD为⊙O切线,且DA=DC.(1)求证:BD为⊙O切线;(2)若AB=9,AD=12,求BD的长及⊙O的半径;(3)若⊙O的半径为6,tan∠BAC=,求CD的长.5.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.6.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.7.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.(1)求证:CF与⊙O相切;(2)若AD=2,F为AE的中点,求AB的长.8.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC 于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.9.如图,AC是⊙O的直径,PA切⊙O于点A,点B在⊙O上,PA=PB,PB的延长线与AC的延长线交于点M.(1)求证;PB是⊙O的切线;(2)当AC=6,PA=8时,求MB的长.10.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.11.如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.12.如图,四边形ABCD为矩形,E为BC边中点,以AD为直径的⊙O与AE交于点F.(1)求证:四边形AOCE为平行四边形;(2)求证:CF与⊙O相切;(3)若F为AE的中点,求∠ADF的大小.13.如图,已知Rt△ABC,∠ACB=90°.O在边长上,以O为圆心,OC为半径作⊙O,切AB于D点,连接OD并延长,过B作BE⊥BC,交OD延长线于E点.(1)求证:BD∙BC=AD∙DE;(2)若AC=6,BC=8,求BE的长度.14.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=0.6时,求AF的长.15.如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.16.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=0.8,求DE的长.17.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E作直线l//BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F.求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.18.如图,已知Rt△ABC,C=900,O在AB上,以O为圆心,OA为半径作⊙O,交AB于D点,与BC相切于E点,连接AE.(1)求证:AE平分∠CAB;(2)若CE=2,BE=6,求sinB及⊙O的半径.19.如图,⊙O的直径AB=4,点C为⊙O上的一个动点,连接OC,过点A作⊙O的切线,与BC的延长线交于点D,点E为AD的中点,连接CE.(1)求证:CE是⊙O的切线;(2)填空:①当CE=时,四边形AOCE为正方形;②当CE=时,△CDE为等边三角形.20.如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=0.6,求BD的长及⊙O的半径.参考答案1.(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)解:连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,∴x2+62=(x+8)2﹣102,解得x=,∴BC==.2.解:(1)∵AC与⊙O相切,∴∠OAC=90°.∵∠OCA=60°,∴∠AOC=30°.∵OC⊥OB,∴∠AOB=∠AOC+∠BOC=120°.∵OA=OB,∴∠OAB=∠OBA=30°,∴OD=AD,∠DAC=60°∴AD=CD=AC.∵OA=1,∴OD=AC=OA•tan∠AOC=.(2)∵OC⊥OB,∴∠OBE=∠OEB=45°.∵BE∥OA,∴∠AOC=45°,∠ABE=∠OAB,∴OA=AC,∠OAB=∠OBA=22.5°,∴∠ADC=∠AOC+∠OAB=67.5°.∵∠DAC=90°﹣∠OAB=67.5°=∠ADC,∴AC=CD.∵OC==,∴OD=OC﹣CD=﹣1.3.(1)证明:连接OD,∵OC=OD,∴∠C=∠ODC,∵OC⊥AB,∴∠COF=90°,∴∠OCD+∠CFO=90°,∵GE为⊙O的切线,∴∠ODC+∠EDF=90°,∵∠EFD=∠CFO,∴∠EFD=∠EDF,∴EF=ED.(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,21·世纪*教育网∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴OD:AG=DE:AE,即3:AG=4:8,∴AG=6.4.解:(1)连接OC,证明略;(2)BD=3,半径为4;(3)连OD,利用相似,AD=CD=18.5.解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=OA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=DF=1.6.解:7.8.(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.9.解:10.11.(1)证明:连接OC,∵点C在⊙0上,0A=OC,∴∠OCA=∠OAC,∵CD⊥PA,∴∠CDA=90°,有∠CAD+∠DCA=90°,∵AC平分∠PAE,∴∠DAC=∠CAO。

2020-2021中考数学圆的综合的综合复习含详细答案

2020-2021中考数学圆的综合的综合复习含详细答案

2020-2021中考数学圆的综合的综合复习含详细答案一、圆的综合1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=1,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).由(1)得:OH=2,BH=4.∵OC与⊙M相切于N,∴MN⊥OC.设圆的半径为r,则MN=MB=MD=r.∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x ,∴BR 2=OB 2﹣OR 2=(2)2=365,∴BR在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).②当∠BED =90°时,如图3.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,∴BE . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO , ∴OEOB =OP BC,2t ,∴OE .∵OE+BE=OB=255,∴t+55t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=22,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.3.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.4.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.(1)如图1,四边形ABCD内接于⊙O,∠DCB﹣∠ADC=∠A,求证:四边形ABCD为圆内接倍角四边形;(2)在(1)的条件下,⊙O半径为5.①若AD为直径,且sinA=45,求BC的长;②若四边形ABCD中有一个角为60°,且BC=CD,则四边形ABCD的面积是;(3)在(1)的条件下,记AB=a,BC=b,CD=c,AD=d,求证:d2﹣b2=ab+cd.【答案】(1)见解析;(2)①BC=6,②7534或754;(3)见解析【解析】【分析】(1)先判断出∠ADC=180°﹣2∠A.进而判断出∠ABC=2∠A,即可得出结论;(2)①先用锐角三角函数求出BD,进而得出AB,由(1)得出∠ADB=∠BDC,即可得出结论;②分两种情况:利用面积和差即可得出结论;(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.【详解】(1)设∠A=α,则∠DCB=180°﹣α.∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;(2)①连接BD.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,AD=2×5=10,sin∠A=45,∴BD=8,根据勾股定理得:AB=6,设∠A=α,∴∠ADB=90°﹣α.由(1)知,∠ADC=180°﹣2α,∴∠BDC=90°﹣α,∴∠ADB=∠BDC,∴BC=AB=6;②若∠ADC=60°时.∵四边形ABCD是圆内接倍角四边形,∴∠BCD=120°或∠BAD=30°.Ⅰ、当∠BCD=120°时,如图3,连接OA,OB,OC,OD.∵BC=CD,∴∠BOC=∠COD,∴∠OCD=∠OCB=12∠BCD=60°,∴∠CDO=60°,∴AD是⊙O 的直径,(为了说明AD是直径,点O没有画在AD上)∴∠ADC+∠BCD=180°,∴BC∥AD,∴AB=CD.∵BC=CD,∴AB=BC=CD,∴△OAB,△BOC,△COD是全等的等边三角形,∴S四边形ABCD=3S△AOB 32753.Ⅱ、当∠BAD=30°时,如图4,连接OA,OB,OC,OD.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠BAD=150°.∵BC =CD ,∴∠BOC =∠COD ,∴∠BCO =∠DCO =12∠BCD =75°,∴∠BOC =∠DOC =30°,∴∠OBA =45°,∴∠AOB =90°.连接AC ,∴∠DAC =12∠BAD =15°. ∵∠ADO =∠OAB ﹣∠BAD =15°,∴∠DAC =∠ADO ,∴OD ∥AC ,∴S △OAD =S △OCD . 过点C 作CH ⊥OB 于H .在Rt △OCH 中,CH =12OC =52,∴S 四边形ABCD =S △COD +S △BOC +S △AOB ﹣S △AOD =S △BOC +S △AOB =1522⨯×5+12×5×5=754. 故答案为:7534或754;(3)延长DC ,AB 交于点E .∵四边形ABCD 是⊙O 的内接四边形,∴∠BCE =∠A =12∠ABC . ∵∠ABC =∠BCE +∠A ,∴∠E =∠BCE =∠A ,∴BE =BC =b ,DE =DA =b ,∴CE =d ﹣c . ∵∠BCE =∠A ,∠E =∠E ,∴△EBC ∽△EDA ,∴CE BC AE AD =,∴d c b a b d-=+,∴d 2﹣b 2=ab +cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.5.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD ,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,∴PH垂直平分MN,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(65)2解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.6.如图,已知四边形ABCD 是矩形,点P 在BC 边的延长线上,且PD=BC ,⊙A 经过点B ,与AD 边交于点E ,连接CE .(1)求证:直线PD 是⊙A 的切线;(2)若5sin ∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.7.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).3831343n 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭ . ∵h =32a 2,∴1=32-1)2+14a 22, 解得a 2=8313. (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2, 即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭. ∵h 3a n ,∴1=14a n 2+2312n na ⎛⎫- ⎪ ⎪⎝⎭ ,解得a n =24331n n + .8.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线;(2)若AE =4,tan ∠ACD =3,求FC 的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案; (2)根据正切的性质求出EC 的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OCB +∠ACO =90°.∵OB =OC ,∴∠B =∠OCB.又∵∠FCA =∠B ,∴∠FCA =∠OCB ,∴∠FCA +∠ACO =90°,即∠FCO =90°,∴FC ⊥OC ,∴FC 是⊙O 切线.(2)解:∵AB ⊥CD ,∴∠AEC =90°,∴EC=AE 43tan ACE 3∠== 设OA =OC =r ,则OE =OA -AE =r -4.在Rt △OEC 中,OC 2=OE 2+CE 2,即r 2=(r -4)2+32,解得r =8.∴OE =r -4=4=AE.∵CE ⊥OA ,∴CA =CO =8,∴△AOC 是等边三角形,∴∠FOC =60°,∴∠F =30°.在Rt △FOC 中,∵∠OCF =90°,OC =8,∠F =30°,∴OF =2OC =16,∴FC 22OF OC 83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.9.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 53,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角n AGM,n AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan ∠BAC =5311, ∴设NG=53m ,可得AN =11m ,AG =22AG AM -=14m , ∵∠ACG =60°,∴CN=5m ,AM =83m ,MG =22AG AM -=2m =1, ∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.10.已知:如图1,∠ACG=90°,AC=2,点B 为CG 边上的一个动点,连接AB ,将△ACB 沿AB 边所在的直线翻折得到△ADB ,过点D 作DF ⊥CG 于点F .(1)当BC=23 时,判断直线FD 与以AB 为直径的⊙O 的位置关系,并加以证明; (2)如图2,点B 在CG 上向点C 运动,直线FD 与以AB 为直径的⊙O 交于D 、H 两点,连接AH ,当∠CAB=∠BAD=∠DAH 时,求BC 的长.【答案】(1)直线FD 与以AB 为直径的⊙O 相切,理由见解析;(2)22 .【解析】试题分析:(1)根据已知及切线的判定证明得,直线FD 与以AB 为直径的⊙O 相切; (2)根据圆内接四边形的性质及直角三角形的性质进行分析,从而求得BC 的长. 试题解析:(1)判断:直线FD 与以AB 为直径的⊙O 相切.证明:如图,作以AB 为直径的⊙O ;∵△ADB 是将△ACB 沿AB 边所在的直线翻折得到的,∴△ADB ≌△ACB ,∴∠ADB=∠ACB=90°.∵O 为AB 的中点,连接DO ,∴OD=OB=AB,∴点D在⊙O上.在Rt△ACB中,BC=,AC=2;∴tan∠CAB==,∴∠CAB=∠BAD=30°,∴∠ABC=∠ABD=60°,∴△BOD是等边三角形.∴∠BOD=60°.∴∠ABC=∠BOD,∴FC∥DO.∵DF⊥CG,∴∠ODF=∠BFD=90°,∴OD⊥FD,∴FD为⊙O的切线.(2)延长AD交CG于点E,同(1)中的方法,可证点C在⊙O上;∴四边形ADBC是圆内接四边形.∴∠FBD=∠1+∠2.同理∠FDB=∠2+∠3.∵∠1=∠2=∠3,∴∠FBD=∠FDB,又∠DFB=90°.∴EC=AC=2.设BC=x,则BD=BC=x,∵∠EDB=90°,∴EB=x.∵EB+BC=EC,∴x+x=2,解得x=2﹣2,∴BC=2﹣2.11.如图所示,AB 是半圆O 的直径,AC 是弦,点P 沿BA 方向,从点B 运动到点A ,速度为1cm/s ,若10AB cm ,点O 到AC 的距离为4cm .(1)求弦AC 的长;(2)问经过多长时间后,△APC 是等腰三角形.【答案】(1)AC=6;(2)t=4或5或145s 时,△APC 是等腰三角形; 【解析】 【分析】(1)过O 作OD ⊥AC 于D ,根据勾股定理求得AD 的长,再利用垂径定理即可求得AC 的长;(2)分AC=PC 、AP=AC 、AP=CP 三种情况求t 值即可.【详解】(1)如图1,过O 作OD ⊥AC 于D ,易知AO=5,OD=4,从而AD==3,∴AC=2AD=6;(2)设经过t 秒△APC 是等腰三角形,则AP=10﹣t①如图2,若AC=PC ,过点C 作CH ⊥AB 于H ,∵∠A=∠A ,∠AHC=∠ODA=90°,∴△AHC ∽△ADO ,∴AC :AH=OA :AD ,即AC :=5:3,解得t=s , ∴经过s 后△APC 是等腰三角形; ②如图3,若AP=AC ,由PB=x ,AB=10,得到AP=10﹣x ,又∵AC=6,则10﹣t=6,解得t=4s ,∴经过4s 后△APC 是等腰三角形;③如图4,若AP=CP ,P 与O 重合,则AP=BP=5,∴经过5s 后△APC 是等腰三角形.综上可知当t=4或5或s 时,△APC 是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC 是等腰三角形时,点P 的位置有三种情况.12.如图所示,ABC ∆内接于圆O ,CD AB ⊥于D ;(1)如图1,当AB 为直径,求证:OBC ACD ∠=∠;(2)如图2,当AB 为非直径的弦,连接OB ,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作AE BC ⊥于E ,交CD 于点F ,连接ED ,且2AD BD ED =+,若3DE =,5OB =,求CF 的长度.【答案】(1)见解析;(2)成立;(3)145【解析】【分析】 (1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠BOC=2∠A ,求出∠OBC=90°-∠A 和∠ACD=90°-∠A 即可; (3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,在AD 上取DG=BD ,延长CG 交AK 于M ,延长KO 交⊙O 于N ,连接CN 、AN ,求出关于a 的方程,再求出a 即可.【详解】(1)证明:∵AB 为直径,∴ACB 90∠=︒, ∵CD AB ⊥于D , ∴ADC 90∠=︒,∴OBC A 90∠∠+=︒,A ACD 90∠∠+=︒,∴OBC ACD ∠∠=;(2)成立,证明:连接OC ,由圆周角定理得:BOC 2A ∠∠=,∵OC OB =,∴()()11OBC 180BOC 1802A 90A 22∠∠∠∠=︒-=︒-=︒-, ∵ADC 90∠=︒,∴ACD 90A ∠∠=︒-,∴OBC ACD ∠∠=;(3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,∵AE BC ⊥,CD BA ⊥,∴AEC ADC 90∠∠==︒,∴BCD CFE 90∠∠+=︒,BAH DFA 90∠∠+=︒,∵CFE DFA ∠∠=,∴BCD BAH ∠∠=,∵根据圆周角定理得:BAH BCH ∠∠=,∴BCD BAH BCH ∠∠∠==,∴由三角形内角和定理得:CHE CFE ∠∠=, ∴CH CF =,∴EH EF =,同理DF DK =,∵DE 3=,∴HK 2DE 6==,在AD 上取DG BD =,延长CG 交AK 于M ,则AG AD BD 2DE 6=-==,BC GC =,∴MCK BCK BAK ∠∠∠==,∴CMK 90∠=︒,延长KO 交⊙O 于N ,连接CN 、AN ,则NAK 90CMK ∠∠=︒=,∴CM //AN ,∵NCK ADK 90∠∠==︒,∴CN //AG ,∴四边形CGAN 是平行四边形,∴AG CN 6==,作OT CK ⊥于T ,则T 为CK 的中点,∵O 为KN 的中点, ∴1OT CN 32==, ∵OTC 90∠=︒,OC 5=,∴由勾股定理得:CT 4=,∴CK 2CT 8==,作直径HS ,连接KS ,∵HK 6=,HS 10=,∴由勾股定理得:KS 8=, ∴3tan HSK tan HAK 4∠∠==, ∴1tan EAB tan BCD 3∠∠==, 设BD a =,CD 3a =, ∴AD BD 2ED a 6=+=+,11DK AD a 233==+, ∵CD DK CK +=, ∴13a a 283++=, 解得:9a 5=, ∴113DK a 235=+=, ∴2614CF CK 2DK 855=-=-=. 【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.13.如图,AB 是O e 的直径,DF 切O e 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C .(1)求证:ABC C ∠∠=;(2)设CA 的延长线交O e 于E BF ,交O e 于G ,若¼DG的度数等于60o ,试简要说明点D 和点E 关于直线AB 对称的理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;(2)连接OG,OD,AD,由BF∥OD,»GD=60°,可求证»BG=»»==60°,由平行线GD AD的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.【详解】(1)连接OD,∵DF为⊙O的切线,∴OD⊥DF.∵BF⊥DF,AC∥BF,∴OD∥AC∥BF.∴∠ODB=∠C.∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,DE,DE交AB于H,∵BF∥OD,∴∠OBG=∠AOD,∠OGB=∠DOG,∴»»GD AD==»BG.∵»GD=60°,∴»BG=»»GD AD==60°,∴∠ABC=∠C=∠E=30°,∵OD//CE∴∠ODE=∠E=30°.在△ODH 中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB ⊥DE .∴点D 和点E 关于直线AB 对称.【点睛】本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.14.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB .∴2AD AC AC R= ∴R =2322AC AD = 15.如图,已知四边形ABCD 内接于⊙O ,点E 在CB 的延长线上,连结AC 、AE ,∠ACB =∠BAE =45°.(1)求证:AE 是⊙O 的切线;(2)若AB=AD ,AC =32,tan ∠ADC=3,求BE 的长.【答案】(1)证明见解析;(2)52BE = 【解析】试题分析:(1)连接OA 、OB ,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF =3,在Rt △AFD 中求得DF =1,所以AB =AD =10 ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD=,即可求出BE 的长度; 试题解析: (1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°. ∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴AB AD ==且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA , ∴BE AB DA CD =,∴=∴5 BE .2。

2020年中考数学一轮复习精选题 圆(含答案)

2020年中考数学一轮复习精选题 圆(含答案)

3.如图,⊙O 的半径为 5,弦 AB=8,M 是弦 AB 上C.4
D.5
4.如图,AB 是⊙O 的直径,C、D 是⊙O 上两点,CD⊥AB,若∠DAB=65°,则∠AOC 等于( )
A.25°
B.30°
C.50°
D.65°
5.在直径为 200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽 AB=160cm,则油的
于 8cm,则 PA=
cm;已知⊙O 的直径是 6cm,PO=
cm.
三、解答题 19.如图,AB 为⊙O 的直径,点 C 在⊙O 上,延长 BC 至点 D,使 DC=CB,延长 DA 与⊙O 的另一个
交点为 E,连接 AC,CE. (1)求证:∠B=∠D; (2)若 AB=4,BC﹣AC=2,求 CE 的长.
参考答案
9.B 10.C. 11.C 12.A 13.答案为:48. 14.答案为:130°.
15.答案为:70°. 16.5 17.答案为:2 . 18.答案为:4,5. 19.解:
(1)证明:∵AB 为⊙O 的直径, ∴∠ACB=90°,∴AC⊥BC, 又∵DC=CB,∴AD=AB, ∴∠B=∠D; (2)解:设 BC=x,则 AC=x﹣2, 在 Rt△ABC 中,AC2+BC2=AB2, ∴(x﹣2)2+x2=42,解得:x1=1+ ,x2=1﹣ (舍去), ∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE, ∵CD=CB, ∴CE=CB=1+ .
最大深度为(

A.40cm
B.60cm
C.80cm
D.100cm
6.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为(

2020-2021中考数学圆的综合的综合复习含答案解析

2020-2021中考数学圆的综合的综合复习含答案解析

2020-2021中考数学圆的综合的综合复习含答案解析一、圆的综合1.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系猜想结论:(要求用文字语言叙述)写出证明过程(利用图1,写出已知、求证、证明)(性质应用)①初中学过的下列四边形中哪些是圆外切四边形(填序号)A:平行四边形:B:菱形:C:矩形;D:正方形②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是.③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.【答案】见解析.【解析】【分析】(1)根据切线长定理即可得出结论;(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;②根据圆外切四边形的对边和相等,即可求出结论;③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.【详解】性质探讨:圆外切四边形的对边和相等,理由:如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.求证:AD+BC=AB+CD.证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.故答案为:圆外切四边形的对边和相等;性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.故答案为:B,D;②∵圆外切四边形ABCD ,∴AB +CD =AD +BC .∵AB =12,CD =8,∴AD +BC =12+8=20,∴四边形的周长是AB +CD +AD +BC =20+20=40. 故答案为:40;③∵相邻的三条边的比为5:4:7,∴设此三边为5x ,4x ,7x ,根据圆外切四边形的性质得:第四边为5x +7x ﹣4x =8x .∵圆外切四边形的周长为48cm ,∴4x +5x +7x +8x =24x =48,∴x =2,∴此四边形的四边为4x =8cm ,5x =10cm ,7x =14cm ,8x =16cm .【点睛】本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.2.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC (1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30. 【解析】 【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案. 【详解】(1)证明:∵CD 与⊙O 相切于点E , ∴OE CD ⊥,∴90CEO ∠=︒, 又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA ∵OE=OB ,∴OEB OBE ∠=∠, ∴COE COA ∠=∠, 又∵OC=OC ,OA=OE , ∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒, 又∵AB 为⊙O 的直径, ∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形, ∴OF=OB=BF=EF , ∴OE=OB=BE ,∴OBE ∆为等边三角形, ∴60BOE ∠=︒, 而OE CD ⊥, ∴30D ∠=︒. 故答案为30. 【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.3.如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被过P 点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法).【答案】(1)90;(2)作图见解析,P (7,7),PH 是分割线. 【解析】试题分析:(1)根据勾股定理求出△FEG 的三边长,根据勾股定理逆定理可判定△FEG 是直角三角形,且∠FGE="90" °.(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.试题解析:(1)连接FE,∵E(8,0),F(0 , 6),G(4,8),∴根据勾股定理,得FG=,EG=,FE=10.∵,即.∴△FEG是直角三角形,且∠FGE=90 °.(2)作图如下:P(7,7),PH是分割线.考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.4.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.(1)求证:∠ACE=∠DCE;(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;(3)若AC=4,23CDFCOESS∆∆=,求CF的长.【答案】(1)证明见解析,(2)60°;(3)43【解析】 【分析】(1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°; (3)易证12COE CAE S S =V V ,由于23CDF COE S S =V V ,所以CDF CAE S S V V =13,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案. 【详解】(1)∵OC =OE ,∴∠OEC =∠OCE .∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G .∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°. ∵OE ∥BC ,∴∠AEO =∠AGC =60°. ∵OA =OE ,∴∠EAO =∠AEO =60°.(3)∵O 是AC 中点,∴12COE CAE S S =V V . 23CDF COE S S =V V Q,∴CDF CAE SS V V =13. ∵AC 是直径,∴∠AEC =∠FDC =90°. ∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴CF CA =3,∴CF =3CA =43.【点睛】本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.5.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;(2)若OD=15,AE=7,求BE的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.详解:(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.6.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

2020九年级中考数学 专题复习:圆的综合(含答案)

2020九年级中考数学 专题复习:圆的综合(含答案)

2020中考数学 专题复习:圆的综合(含答案)类型一 与基本性质有关的证明与计算1. 如图,AB 是⊙O 的直径,点D 是AE ︵上的一点,且∠BDE =∠CBE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第1题图(1)证明:∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠EAB +∠ABE =90°,∵∠BDE =∠EAB ,∠BDE =∠CBE , ∴∠EAB =∠CBE ,∴∠ABE +∠CBE =∠ABE +∠EAB =90°,即CB ⊥AB . 又∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线; (2)证明:∵BD 平分∠ABE , ∴∠ABD =∠DBE ,AD ︵=DE ︵, ∴∠ABD = ∠DEA , ∴∠DEA = ∠DBE , ∵∠EDB =∠BDE , ∴△DEF ∽△DBE ,∴DE DB =DF DE, ∴DE 2= DF ·DB ;(3)解:如解图,连接OD ,延长ED 交BA 的延长线于点P ,第1题解图∵OD =OB , ∴∠ODB =∠OBD , ∵BD 平分∠ABE , ∴∠OBD = ∠EBD , ∴∠EBD =∠ODB , ∴OD ∥BE , ∴△PDO ∽△PEB , ∴PD PE =POPB, ∵P A =AO , ∴P A =AO =OB , ∴PO PB =PD PE =23, ∵PD PE =PD PD +DE =23,DE =2, ∴PD =4.2. 如图,AB 是⊙O 的直径,C 是BD ︵的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若BE =4,EF = 3,求⊙O 的半径.第2题图(1)证明:连接AC ,如解图,∵点C 是BD ︵的中点,∴∠DBC =∠BAC , 在△ABC 中,∠ACB =90°,CE ⊥AB ,第2题解图∴∠BCE +∠ECA =∠BAC +∠ECA =90°, ∴∠BCE =∠BAC , 又∵C 是BD ︵的中点, ∴∠DBC =∠CDB , ∴∠BCE =∠DBC , ∴CF = BF ;(2)解:∵BE = 4,EF = 3, ∴BF =32+42= 5,∴CF = 5,∴CE = 5+3= 8, ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ∴CE 2=BE ·AB , ∴AB =CE 2BE = 644= 16,∴AO = 8,∴⊙O 的半径为8.3. 如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD . (1)求证:AD =AN;(2)若AB =8,ON = 1,求⊙O 的半径.第3题图(1)证明:∵CD ⊥AB , ∴∠CEB = 90°, ∴∠C +∠B = 90°, 同理∠C +∠CNM = 90°, ∴∠CNM =∠B , ∵∠CNM = ∠AND , ∴∠AND = ∠B , ∵AC ︵=AC ︵, ∴∠ADN = ∠B , ∴∠AND = ∠ADN , ∴AN =AD ;第3题解图(2)解:设OE 的长为x ,连接OA , ∵AN =AD ,CD ⊥AB , ∴DE = NE =x +1,∴OD =OE +ED =x +x +1=2x +1, ∴OA = OD = 2x +1,∴在Rt △OAE 中,OE 2+AE 2= OA 2, ∴x 2+42=(2x +1)2,解得x =53或x =-3(不合题意,舍去),∴OA = 2x +1= 2×53+1= 133,即⊙O 的半径为133.4. 如图,A 、B 、C 为⊙O 上的点,PC 过O 点,交⊙O 于D 点,PD = OD ,若OB ⊥AC 于E 点.第4题图(1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长. 解:(1)A 是PB 的中点, 理由:连接AD ,如解图,第4题解图∵CD 是⊙O 的直径, ∴AD ⊥AC , ∵OB ⊥AC , ∴AD ∥OB , ∵PD = OD ,∴AD 是△PBO 的中位线, ∴P A =AB , ∴A 是PB 的中点; (2)∵AD ∥OB , ∴△APD ∽△BPO , ∴AD BO =PD PO = 12, ∵⊙O 半径为8, ∴OB = 8, ∴AD =4, ∴AC =CD 2-AD 2= 415,∵OB ⊥AC , ∴AE =CE = 215, ∴OE =12AD = 2,∴BE =6, ∴BC =BE 2+CE 2=4 6.5. 如图,AB 是⊙O 的直径,点C 、E 是⊙O 上的点,且AC ︵=EC ︵,连接AC 、BE ,并延长交于点D ,已知AB =2AC =6.第5题图(1)求DC 的长; (2)求EC ︵的长.解:(1)如解图,连接BC ,第5题解图∵ AB 是⊙O 的直径, ∴∠ACB =90°,CB ⊥AD , ∵AC ︵=EC ︵, ∴∠ABC =∠DBC , ∴△ABD 为等腰三角形, ∵AB =2AC =6, ∴DC =AC =3;(2)如解图,连接OC 、OE , ∵AB =2AC =6,∠ACB =90°, ∴∠ABC =30°,OC =OE =3, ∴∠DBC =∠ABC =30°∴∠COE =2∠DBC =60°,∴l EC ︵=60×π×3180=π.6. 如图,AB 为圆O 的直径,CD ⊥AB 于点E ,交圆O 于点D ,OF ⊥AC 于点F .第6题图(1)求证:OF =12BD ;(2)当∠D =30°,BC =1时,求圆中阴影部分的面积. (1)证明:如解图,连接OC ,第6题解图∵OF ⊥AC ,OA =OC , ∴AF =FC ,∵OA =OB ,∴OF 是△ABC 的中位线,∴OF =12BC ,∵AB ⊥CD ,∴BC ︵=BD ︵, ∴BC =BD , ∴OF =12BD ;(2)解:∵∠D =30°, ∴∠A =∠D =30°, ∴∠COB =2∠A =60°, ∴∠AOC =120°,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,BC=1,∴AB=2,AC=3,由(1)可知OF=12BC=1 2,∵∠COB=60°,OB=OC,∴△BOC是等边三角形,∴OA=OB=BC=1,∴S△AOC=12AC ·OF=12×3×12=34,S扇形AOC=120πOA2360=π3,∴S阴影=S扇形AOC-S△AOC=π3-34.7. 如图,△ABC内接于⊙O,AB为⊙O的直径,OD⊥AB交⊙O于点D,AC、OD的延长线交于点E,连接CD.(1)求证:∠ECD=∠BCD;(2)当AC=CD时,求证:CE=CB.第20题图证明:(1)∵AB是⊙O的直径,∴∠ACB=∠ECB=90°,∵OD⊥AB,∴∠DOB=90°,∴∠BCD=12∠DOB=45°,∴∠ECD=∠ECB-∠BCD=90°-45°=45°,∴∠ECD =∠BCD ; (2)如解图,连接OC 、BD ,第7题解图∵AC =CD ,∴∠AOC =∠DOC ,∠ABC =∠DBC , 又∵∠E +∠A =∠ABC +∠A =90°, ∴∠E =∠ABC =∠DBC , 在△ECD 和△BCD 中⎩⎨⎧∠E =∠DBC∠ECD =∠BCD CD =CD, ∴△ECD ≌△BCD (AAS), ∴CE = CB .8. 如图,四边形ABCD 内接于⊙O ,且BD 为直径,∠ACB = 45°,过A 点的AC 的垂线交BC 的延长线于点E . (1)求证:BE = DC ; (2)如果AD =2,求图中阴影的面积.第8题图解:(1)∵BD 是⊙O 的直径, ∴∠BAD =90°,∵∠ACB =45°,∴∠ADB =∠ACB = 45°, ∵AE ⊥AC ,∴△ACE 与△ABD 是等腰直角三角形,∴AE = AC ,AB = AD ,∠EAC = ∠BAD = 90°, ∴∠EAB = ∠CAD , 在△ABE 与△ADC 中,⎩⎨⎧AE =AC∠EAB = ∠CAD AB =AD, ∴△ABE ≌△ADC , ∴BE =DC ;第8题解图(2)如解图,连接AO ,则∠AOD = ∠ABD =90°, ∵AD = 2, ∴AO = OD = 1, ∴S 阴影= S 扇形-S △AOD =90 ·π×12360-12×1×1= π4-12. 9. 如图,在△ABC 中,以AC 为直径的⊙O 分别交AB ,BC 于点D ,E ,连接DE ,AD =BD ,∠ADE =120°. (1)证明:△ABC 是等边三角形; (2)若AC =2,求图中阴影部分的面积.第9题图(1)证明:如解图,连接CD , ∵AC 为⊙O 的直径, ∴CD ⊥AB , ∵AD =BD , ∴AC =BC ,∵∠ADE =120°,∴∠ACE =60°, 又∵AC =BC ,∴△ABC 是等边三角形;第9题解图(2)解:∵△ABC 是等边三角形, ∴∠CAB =∠ACB =∠B =60°,∵∠ADE =120°,∴∠BED =∠BDE =∠B =60°, ∴△BDE 是等边三角形, ∴BD =ED , ∵AD =BD ,∴DE =AD = BE =12AB = 12BC ,∴DE ︵=AD ︵,DE 为△ABC 的中位线,E 为BC 的中点, ∴S 弓形DE =S 弓形AD ,∴S 阴影=S △DEB = 12S △BDC ,∵AC =2,∴AD =BD =1,∴DC =3,∴S 阴影=12×12×1×3= 34.10. 如图,在△ABC 中,AB = AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD .第10题图(1)求证:点E 是BD ︵的中点;(2)当BC = 12,且AD ∶CD =1∶2,求⊙O 的半径. (1)证明:如解图,连接AE ,DE ,第10题解图∵AB 是直径, ∴AE ⊥BC , ∵AB = AC , ∴BE = EC ,∵∠CDB =90°,DE 是斜边BC 的中线, ∴DE = EB , ∴ED ︵= EB ︵,即点E 是BD ︵的中点; (2)设AD =x ,则CD = 2x , ∴AB =AC =3x ,∵AB 为直径, ∴∠ADB =90°, ∴BD 2= (3x )2-x 2=8x 2, 在Rt △CDB 中, (2x )2+8x 2=122, ∴x =23, ∴OA = 32x =33,即⊙O 的半径是3 3.类型二 与切线有关的证明与计算1. 如图,AB 是⊙O 的切线,B 为切点,圆心O 在AC 上,∠A = 30°,D 为BC ︵的中点.第1题图(1)求证:AB =BC ;(2)试判断四边形BOCD 的形状,并说明理由. 解:(1)∵AB 是⊙O 的切线,∴∠OBA = 90°,∠AOB = 90°-30°= 60°. ∵OB =OC ,∴∠OBC =∠OCB ,∠OCB = ∠A = 30°, ∴AB = BC ;(2)四边形BOCD 为菱形,理由如下:连接OD 交BC 于点M , ∵D 是BC ︵的中点,第1题解图∴OD 垂直平分BC , 在Rt △OMC 中, ∵∠OCM = 30°, ∴OC =2OM =OD , ∴OM =MD ,∴四边形BOCD 为菱形.2. 如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点,∠BAC =∠DAC ,过点C 作直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF 是⊙O 的切线;(2)若DE =1,BC =2,求劣弧BC ︵的长l .第2题图(1)证明:如解图,连接OC , ∵OA =OC , ∴∠OAC =∠OCA , ∵∠BAC =∠DAC , ∴∠DAC =∠OCA , ∴AD ∥OC , ∵EF ⊥AD , ∴∠AEC =90°,∴∠OCF =∠AEC =90°, ∴EF 是⊙O 的切线;(2)解:如解图,连接OD ,DC .第2题解图∵∠DAC =12∠DOC ,∠OAC =12∠BOC ,∠DAC =∠OAC , ∴∠DOC =∠BOC , ∴DC =BC =2, 在Rt △EDC 中, ∵ED =1,DC =2, ∴sin ∠ECD =DE DC =12, ∴∠ECD =30°,∴∠OCD =90°-30°=60°, 又∵OC =OD ,∴△DOC 为等边三角形,∴∠BOC =∠COD =60°,OC =2, ∴l =60π×2180=23π. 3. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊥AC ,垂足为点F .第3题图(1)求证:DF 是⊙O 的切线; (2)若AE =4,cos A =25,求DF 的长.(1)证明:如解图,连接OD ,第3题解图∵OB =OD , ∴∠ODB =∠B . 又∵AB =AC , ∴∠C =∠B . ∴∠ODB =∠C . ∴OD ∥AC , ∵DF ⊥AC , ∴∠DFC =90°.∴∠ODF =∠DFC =90°, ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊥AC ,垂足为点G . ∴AG =12AE =2.∵cos A =AG OA =25,∴OA =225=5.∴OG =OA 2-AG 2=21.∵∠ODF =∠DFG =∠OGF =90°. ∴四边形OGFD 为矩形, ∴DF =OG =21.4. 如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=34,求⊙O的半径.第4题图(1)证明:如解图,连接OD,第4题解图∵BC是⊙O的切线,∴OD⊥BC,∴∠ODB=90°,又∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠CAD=∠OAD,∴AD平分∠BAC;(2)解:∵AC=8,tan∠P AC=CDAC=34,∴CD=6,在Rt△ACD中,AD=AC2+CD2=10,如解图,连接DE ,∵AE 为⊙O 的直径, ∴∠ADE = 90°, ∴∠ADE = ∠C , ∵∠CAD =∠OAD , ∴△ACD ∽△ADE , ∴AD AC = AE AD ,即108= AE10, ∴AE =252,∴⊙O 的半径是254.5. 如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA 的延长线于点E ,CO 的延长线交⊙O 于点G ,EF ⊥OG 于点F .(1)求证:∠FEB =∠ECF ; (2)若BC =6,DE =4,求EF 的长.第5题图(1)证明:∵EF ⊥OG ,BC 是⊙O 的切线, ∴∠CBA = ∠EFC =90°,∴∠EOF +∠FEB = 90°,∠BOC +∠BCO =90°, ∵∠EOF = ∠COB , ∴∠FEB = ∠BCO , ∵CB ,CD 是⊙O 的切线, ∴∠ECF = ∠BCO , ∴∠FEB = ∠ECF ;(2)解:如解图,连接OD ,则OD ⊥CE ,第5题解图∵CB,CD为⊙O的切线,BC=6,DE=4,∴CD=BC=6,∴CE=CD+DE=6+4=10,在Rt△CBE中,根据勾股定理得BE=CE2-BC2=102-62=8,设OD=x,则OE=8-x,在Rt△ODE中,根据勾股定理得OE2=OD2+ED2,即(8-x)2=x2+42,解得x=3,则OE=5.在Rt△ODC中,根据勾股定理得OC=CD2+OD2=62+32=35,∵∠EOF=∠COB,∠EFO=∠CBO,∴△EFO∽△CBO,∴EFCB=OEOC,即EF6=535,解得EF=2 5.6. 如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.。

2020年中考数学 临考大专题复习:圆(解析版)

2020年中考数学 临考大专题复习:圆(解析版)

2020中考数学临考大专题复习:圆(含答案)一、选择题(本大题共8道小题)1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 如图,AB,AC分别是☉O的直径和弦,OD☉AC于点D,连接BD,BC,若AB=10,AC=8,则BD的长为()A.2√5B.4C.2√13D.4.83. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1B.2C.3D.4⏜=CB⏜.若∠C=110°,4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,DC则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 如图,☉O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD 的长为()A.6√2B.3√2C.6D.126. 如图,已知AB是☉O的直径,点P在BA的延长线上,PD与☉O相切于点D,过点B作PD的垂线交PD的延长线于点C.若☉O的半径为4,BC=6,则P A的长为()A.4B.2√3C.3D.2.57. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点8. 如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为()A. 2B. 3C. 4D. 5二、填空题(本大题共5道小题)9. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2√3,则☉O的半径是.10. 如图所示,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.11. 如图,☉AOB=90°,☉B=30°,以点O为圆心,OA为半径作弧,交AB于点A,C,交OB于点D,若OA=3,则阴影部分的面积为.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.⏜上.若13. 如图,☉O分别切☉BAC的两边AB,AC于点E,F,点P在优弧EDF☉BAC=66°,则☉EPF等于度.三、解答题(本大题共4道小题)14. 如图,四边形ABCD是正方形,以边AB为直径作☉O,点E在BC边上,连接AE交☉O于点F,连接BF并延长交CD于点G.(1)求证:☉ABE≌△BCG.⏜的长.(结果保留π)(2)若∠AEB=55°,OA=3,求BF15. 如图,AB是☉O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为☉O的切线.(2)判断四边形AOCD是否为菱形?并说明理由.16. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中两对相似三角形,并证明其中的一对;(2)请连接FG,如果α=45°,AB=42,AF=3,求FG的长.17. 如图,过☉O外一点P作☉O的切线P A,切☉O于点A,连接PO并延长,与☉O交于C,D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC,CM.(1)求证:CM2=MN·MA;(2)若∠P=30°,PC=2,求CM的长.2020中考数学 临考大专题复习:圆-答案一、选择题(本大题共8道小题)1. 【答案】D [解析]∵AB 为☉O 的切线,∴∠OAB=90°. ∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD ,∴∠ADC=∠OAD ,∵∠AOB=∠ADC +∠OAD ,∴∠ADC=12∠AOB=27°,故选D .2. 【答案】C[解析]∵AB 是直径,∴∠C=90°,∴BC=√AB 2-AC 2=6.∵OD ⊥AC ,∴CD=AD=12AC=4, ∴BD=√BC 2+CD 2=2√13,故选C .3. 【答案】C4. 【答案】A[解析]连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵DC⏜=CB ⏜,∴∠CAB=12∠DAB=35°. ∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O 的直径AB 垂直于弦CD , ∴∠CEO=90°,CE=DE. ∵∠COE=45°, ∴CE=OE=√22OC=3√2, ∴CD=2CE=6√2,故选A .6. 【答案】A[解析]如图,连接OD.∵PC切☉O于点D,∴OD⊥PC.∵☉O的半径为4,∴PO=P A+4,PB=P A+8.∵OD⊥PC,BC⊥PD,∴OD∥BC,∴△POD∽△PBC,∴ODBC =POPB,即46=PA+4PA+8,解得P A=4.故选A.7. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B.8. 【答案】B【解析】由垂径定理可得DH=2,所以BH=BD2-DH2=1,又可得△DHB∽△ADB,所以有BD2=BH·BA,(3)2=1×BA,AB=3.二、填空题(本大题共5道小题)9. 【答案】2[解析]连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2√3,∴CH=√3,∴OH=1,∴OC=2.10. 【答案】20[解析]如图,连接DO,∵CO⊥AB,∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB,∴∠BAD=20°.11. 【答案】34π[解析]连接OC,过点C作CN⊥AO于点N,CM⊥OB于点M,∵∠AOB=90°,∠B=30°,∴∠A=60°,∵OA=OC,∴△AOC为等边三角形,∵OA=3,∴CN=32√3,CM=ON=32,∴S扇形AOC =32π,S△AOC=94√3,在Rt △AOB 中,OB=√3OA=3√3,S △OCB =94√3,∠COD=30°,S 扇形COD =34π,∴S 阴影=S 扇形AOC -S △AOC +S △OCB -S 扇形COD =34π.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】57[解析]连接OE ,OF .∵☉O 分别切∠BAC 的两边AB ,AC 于点E ,F ,∴OF ⊥AC ,OE ⊥AB ,∴∠BAC +∠EOF=180°,∵∠BAC=66°, ∴∠EOF=114°.∵点P 在优弧EDF ⏜上, ∴∠EPF=12∠EOF=57°.故填:57.三、解答题(本大题共4道小题)14. 【答案】解:(1)证明:∵四边形ABCD 是正方形,AB 为☉O 的直径, ∴∠ABE=∠BCG=∠AFB=90°,AB=BC , ∴∠BAF +∠ABF=90°,∠ABF +∠EBF=90°, ∴∠EBF=∠BAF , 在△ABE 与△BCG 中,{∠BAF =∠EBF ,AB =BC ,∠ABE =∠BCG ,∴△ABE ≌△BCG (ASA). (2)连接OF ,∵∠ABE=∠AFB=90°,∠AEB=55°, ∴∠BAE=90°-55°=35°, ∴∠BOF=2∠BAE=70°. ∵OA=3, ∴BF⏜的长=70×π×3180=7π6.15. 【答案】解:(1)证明:如图,连接OD ,∵点C ,D 为半圆O 的三等分点, ∴∠AOD=∠COD=∠COB=60°. ∵OA=OD ,∴△AOD 为等边三角形, ∴∠DAO=60°, ∴AE ∥OC. ∵CE ⊥AD , ∴CE ⊥OC , ∴CE 为☉O 的切线. (2)四边形AOCD 为菱形. 理由:∵OD=OC ,∠COD=60°, ∴△OCD 为等边三角形, ∴CD=CO. 同理:AD=AO. ∵AO=CO ,∴AD=AO=CO=DC , ∴四边形AOCD 为菱形.16. 【答案】解:(1)△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM 等.(写出两对即可)以下证明△AMF ∽△BGM.由题知∠A =∠B =∠DME =α,而∠AFM =∠DME +∠E ,∠BMG =∠A +∠E ,∴∠AFM =∠BMG ,∴△AMF ∽△BGM. (2)当α=45°时,可得AC ⊥BC 且AC =BC ,∵M 为AB 中点, ∴AM =BM =2 2.由△AMF ∽△BGM 得,AF·BG =AM·BM ,∴BG =83.又AC =BC =42cos 45°=4,∴CG =4-83=43,CF =4-3=1,∴FG =(43)2+12=53.17. 【答案】解:(1)证明:∵在☉O 中,点M 是半圆CD 的中点,∴∠CAM=∠DCM , 又∵∠CMA 是△CMN 和△AMC 的公共角, ∴△CMN ∽△AMC ,∴CM AM =MNMC ,∴CM 2=MN ·M A . (2)连接OA ,DM ,∵P A 是☉O 的切线,∴∠P AO=90°, 又∵∠P=30°, ∴OA=12PO=12(PC +CO ). 设☉O 的半径为r ,∵PC=2,∴r=12(2+r ),解得r=2. 又∵CD 是直径,∴∠CMD=90°, ∵点M 是半圆CD 的中点,∴CM=DM , ∴△CMD 是等腰直角三角形, ∴在Rt △CMD 中,由勾股定理得CM 2+DM 2=CD 2,∴2CM 2=(2r )2=16,∴CM 2=8,∴CM=2√2.。

2020年中考数学复习解答题专题练 圆(解析版)

2020年中考数学复习解答题专题练 圆(解析版)

2020年中考数学复习解答题专题练圆⏜,AC=5,DE=1.5,求OE的长.1. 如图,AB是☉O的直径,点D平分AC2. 如图,在平行四边形ABCD中,以对角线AC为直径的☉O分别交BC,CD于点M,N.若AB=13,BC=14,CM=9,求MN的长度.3. 已知:如图,在☉O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.4. 如图,图1和图2都是由边长为2的正方形和以正方形顶点为圆心、正方形的边长为半径的圆弧组成的图形.(1)计算图1中阴影部分的面积.(2)图2中的阴影部分面积与图1中的阴影部分的面积________(填“相等”或“不相等”).(3)图3是一个圆心角为45°、半径为2的扇形和一个等腰直角三角形的图形,那么图中的阴影部分面积是________.(4)图4是一个由等腰直角三角形和以三角形的顶点为圆心、直角边长为半径的圆弧组成的图形,求阴影部分的面积.5. 如图,点D是☉O的直径CA延长线上一点,点B在☉O上,且∠DBA=∠BCD.(1)证明:BD是☉O的切线.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为16,,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请cos∠BFA=23说明理由.6. 如图,☉O的半径为1,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值.7. 如图,已知AB为☉O的直径,AC为☉O的切线,OC交☉O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD.(2)若AE=EC=2,求☉O的半径.8. 如图,已知AB是☉O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是☉O切线.(2)求证:△CED∽△ACD.,求AE的长.(3)若OA=1,sin D=139. 如图,AB是☉O的直径,点C为☉O上一点,CN为☉O的切线,OM⊥AB于点O,分别交AC,CN于D,M两点.(1)求证:MD=MC.(2)若☉O的半径为5,AC=4√5,求MC的长.10. 如图,点D是☉O的直径CA延长线上一点,点B在☉O上,且∠DBA=∠BCD.(1)证明:BD是☉O的切线.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为16,cos∠BFA=2,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请3说明理由.11. 如图,AB为☉O的直径,C为☉O上一点,∠ABC的平分线交☉O于点D,DE⊥BC于点E.(1)试判断DE与☉O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3√3,DF=3,求图中阴影部分的面积.12. 如图,在△ABC中,以BC为直径的☉O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EF是☉O的切线.(2)若sin∠EGC=3,☉O的半径是3,求AF的长.513. 如图,AB为☉O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE,DE,AE 交CD于F点.(1)求证:DE为☉O切线.(2)若☉O的半径为3,sin∠ADP=1,求AD.3(3)请猜想PF与FD的数量关系,并加以证明.14. 如图,A,P,B,C 是圆上的四个点,∠APC=∠CPB=60°,AP,CB 的延长线相交于点D.(1)求证:△ABC 是等边三角形.(2)若∠PAC=90°,AB=2√3,求PD 的长.2020年中考数学复习解答题专题练圆1. 如图,AB 是☉O 的直径,点D 平分AC⏜,AC=5,DE=1.5,求OE 的长.【解析】∵AB 是☉O 的直径,点D 平分AC⏜,AC=5,DE=1.5, 设OE 为x,由垂径定理可得:x 2+(52)2=(x+1.5)2, 解得:x=43,即OE=43.2. 如图,在平行四边形ABCD中,以对角线AC为直径的☉O分别交BC,CD于点M,N.若AB=13,BC=14,CM=9,求MN的长度.【解析】连接AM,AN,∵AC是☉O的直径,∴∠AMC=90°,∠ANC=90°,∵AB=13,BM=BC-CM=5,∴AM=√AB2-BM2=12,∵CM=9,∴AC=√AM2+CM2=15,∵∠MCA=∠MNA,∠MCA=∠CAD,∴∠MNA=∠CAD,∵∠AMN=∠ACN,∴△NMA∽△ACD,∴AM∶MN=DC∶CA,∴12∶MN=13∶15,.∴MN=180133. 已知:如图,在☉O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.【解析】连接OD,设☉O的半径为r,则OE=r-2,∵∠BAD=30°,∴∠DOE=60°,∵CD⊥AB,∴CD=2DE,∠ODE=30°,∴OD=2OE,即r=2(r-2),解得r=4;∴OE=4-2=2,∴DE=√OD2-OE2=√42-22=2√3,∴CD=2DE=4√3.4. 如图,图1和图2都是由边长为2的正方形和以正方形顶点为圆心、正方形的边长为半径的圆弧组成的图形.(1)计算图1中阴影部分的面积.(2)图2中的阴影部分面积与图1中的阴影部分的面积________(填“相等”或“不相等”).(3)图3是一个圆心角为45°、半径为2的扇形和一个等腰直角三角形的图形,那么图中的阴影部分面积是________.(4)图4是一个由等腰直角三角形和以三角形的顶点为圆心、直角边长为半径的圆弧组成的图形,求阴影部分的面积.【解析】(1)S阴影=90π·22360-12×2×2=π-2.(2)根据对称性得出题图2中阴影部分的面积=题图1中阴影部分的面积. 答案:相等(3)S阴影=45π×22360-12×√2×√2=π2-1.答案:π2-1(4)S阴影=2×45π·22360-12×2×2=π-2.5. 如图,点D是☉O的直径CA延长线上一点,点B在☉O上,且∠DBA=∠BCD.(1)证明:BD是☉O的切线.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为16,cos∠BFA=23,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.【解析】(1)如图所示,连接OB,∵AC是☉O的直径,∴∠ABC=90°,∴∠BAC+∠BCD=90°,∵OA=OB,∴∠BAC=∠OBA,∴∠OBA+∠BCD=90°,∵∠ABD=∠BCD,∴∠ABD+∠OBA=90°,即∠OBD=90°,∴DB是☉O的切线.(2)在Rt△ABF中,∵cos∠BFA=23,∴BFAF =2 3 ,∵∠E=∠C,∠EBF=∠FAC, ∴△EBF∽△CAF,∴S△BFE ∶S△AFC=(BFAF)2=49,∵△BEF的面积为16,∴△ACF的面积为36.6. 如图,☉O的半径为1,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值.【解析】∵PQ切☉O于点Q,∴∠OQP=90°,∴PQ2=OP2-OQ2,而OQ=1,∴PQ2=OP2-1,即PQ=√OP2-1,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PQ的最小值为√9-1=2√2.7. 如图,已知AB为☉O的直径,AC为☉O的切线,OC交☉O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD.(2)若AE=EC=2,求☉O的半径.【解析】(1)∵AB为☉O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为☉O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD.(2)∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD∶CA=CE∶CD,∴CD2=CA·CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2√2,设☉O的半径为x,则OA=OD=x,在Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2√2+x)2,解得:x=√2.∴☉O的半径为√2.8. 如图,已知AB是☉O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是☉O切线.(2)求证:△CED∽△ACD.(3)若OA=1,sin D=1,求AE的长.3【解析】(1)∵AB为☉O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°, ∵∠DAC=∠B,∴∠CAB+∠DAC=90°. ∴AD⊥AB,∵OA是☉O半径,∴DA为☉O的切线.(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE,∵∠D=∠D,∴△CED∽△ACD.(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD-OC=2.∵AD=22√2,又∵△CED∽△ACD,∴ADCD =CD DE,∴DE=CD 2AD=√2,∴AE=AD-DE=2√2-√2=√2.9. 如图,AB是☉O的直径,点C为☉O上一点,CN为☉O的切线,OM⊥AB于点O,分别交AC,CN于D,M两点.(1)求证:MD=MC.(2)若☉O的半径为5,AC=4√5,求MC的长.【解析】(1)连接OC,∵CN 为☉O 的切线,∴OC ⊥CM.∴∠OCA+∠MCD=90°.∵OM ⊥AB,∴∠OAC+∠ODA=90°.∵OA=OC,∴∠OAC=∠OCA.∴∠MCD=∠ODA.又∵∠ODA=∠MDC,∴∠MCD=∠MDC.∴MD=MC.(2)依题意可知AB=5×2=10,AC=4√5,∵AB 为☉O 的直径,∴∠ACB=90°.∴BC=√102-(4√5)2=2√5.∵∠AOD=∠ACB,∠A=∠A,∴△AOD ∽△ACB.∴OD BC =AO AC ,即2√5=4√5,得OD=52. 设MC=MD=x,在Rt △OCM 中,由勾股定理得(x +52)2=x 2+52,解得x=154,即MC=154.10. 如图,点D 是☉O 的直径CA 延长线上一点,点B 在☉O 上,且∠DBA=∠BCD.(1)证明:BD 是☉O 的切线.(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F,且△BEF 的面积为16,cos∠BFA=23,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.【解析】(1)如图所示,连接OB,∵AC是☉O的直径,∴∠ABC=90°,∴∠BAC+∠BCD=90°,∵OA=OB,∴∠BAC=∠OBA,∴∠OBA+∠BCD=90°,∵∠ABD=∠BCD,∴∠ABD+∠OBA=90°,即∠OBD=90°,∴DB是☉O的切线.(2)在Rt△ABF中,∵cos∠BFA=23,∴BFAF =2 3 ,∵∠E=∠C,∠EBF=∠FAC, ∴△EBF∽△CAF,∴S△BFE ∶S△AFC=(BFAF)2=49,∵△BEF的面积为16, ∴△ACF的面积为36.11. 如图,AB 为☉O 的直径,C 为☉O 上一点,∠ABC 的平分线交☉O 于点D,DE ⊥BC 于点E.(1)试判断DE 与☉O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F,若BE=3√3,DF=3,求图中阴影部分的面积.【解析】(1)DE 与☉O 相切,理由如下:连接OD.∵OB=OD,∴∠ODB=∠OBD,∵BD 平分∠ABC,∴∠EBD=∠OBD,∴∠ODB=∠EBD,∴OD ∥BE,∴∠ODE+∠E=180°.∵DE ⊥BC,∴∠E=90°,∴∠ODE=90°,∴DE ⊥OD,∴DE 与☉O 相切.(2)∵BD 平分∠ABC,DE ⊥BC,DF ⊥AB,∴DE=DF=3.∵BE=3√3,∴tan ∠DBE=DE BE =√33,∴∠DBE=30°=∠ABD,∴∠AOD=2∠ABD=60°,∴OF=√3=√3,OD=2OF=2√3, ∴S △ODF =12×√3×3=32√3,S 扇形ODA =60π(2√3)2360=2π,∴图中阴影部分的面积为:S 阴影=S 扇形ODA -S △ODF =2π-32√3.12. 如图,在△ABC中,以BC为直径的☉O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EF是☉O的切线.,☉O的半径是3,求AF的长.(2)若sin∠EGC=35【解析】(1)如图,连接OE,则∠EOG=2∠C,∵∠ABG=2∠C,∴∠ABG=∠EOG,∴OE∥AB,∵EF⊥AB,∴∠AFE=90°,∴∠GEO=∠AFE=90°,∴OE⊥EG,又∵OE是☉O 的半径,∴EF是☉O 的切线.(2)∵∠ABG=2∠C,∠ABG=∠C+∠A,∴∠A=∠C,∴BA=BC,又∵☉O的半径为3,∴OE=OB=OC=3,∴BA=BC=2×3=6,∵在Rt △OEG 中,sin ∠EGC=OE OG ,即35=3OG ,∴OG=5,又∵在Rt △FGB 中,sin ∠EGC=BF GB ,即35=BF 2,∴BF=65,∴AF=AB-BF=6-65=245.13. 如图,AB 为☉O 直径,P 点为半径OA 上异于O 点和A 点的一个点,过P 点作与直径AB 垂直的弦CD,连接AD,作BE ⊥AB,OE ∥AD 交BE 于E 点,连接AE,DE,AE 交CD 于F 点.(1)求证:DE 为☉O 切线.(2)若☉O 的半径为3,sin ∠ADP=13,求AD.(3)请猜想PF 与FD 的数量关系,并加以证明.【解析】(1)连接OD,∵OA=OD,∴∠OAD=∠ODA.∵OE ∥AD,∴∠OAD=∠BOE,∠DOE=∠ODA,∴∠BOE=∠DOE,在△BOE 和△DOE 中,{OB=OD,∠BOE=∠DOE, OE=OE,∴△BOE≌△DOE,∴∠ODE=∠OBE.∵BE⊥AB,∴∠OBE=90°,∴∠ODE=90°,∴DE为☉O切线.(2)方法一:连接BD,∵AB为☉O直径,∴∠ADB=90°, ∴∠ABD+∠BAD=90°,∵AB⊥CD,∴∠ADP+∠BAD=90°, ∴∠ABD=∠ADP,∴sin∠ABD=ADAB =sin∠ADP=13,∴AD=13AB=2.方法二:∵sin∠ADP=APAD =1 3 ,∴设AP=x,AD=3x, ∴PD2=AD2-AP2=8x2, OP=OA-AP=3-x,∵OP2+PD2=OD2,∴(3-x)2+8x2=9,解得x1=0(舍去),x2=23,∴AD=3x=2.(3)猜想PF=FD,证明:∵CD⊥AB,BE⊥AB, ∴CD∥BE,∴△APF∽△ABE,∴PFBE =APAB,∴PF=AP·BEAB.在△APD 和△OBE 中,{∠APD =∠OBE .∠PAD =∠BOE ,∴△APD ∽△OBE,∴PD BE =AP OB ,∴PD=AP ·BE OB. ∵AB=2OB,∴PF=12PD,∴PF=FD.14. 如图,A,P,B,C 是圆上的四个点,∠APC=∠CPB=60°,AP,CB 的延长线相交于点D.(1)求证:△ABC 是等边三角形.(2)若∠PAC=90°,AB=2√3,求PD 的长.【解析】(1)∵A,P,B,C 是圆上的四个点,∠APC=∠CPB=60°,∴∠ABC=∠APC =60°,∠CPB=∠BAC=60°.∴∠ABC=∠BAC=60°,∴△ABC 是等边三角形.(2)∵△ABC 是等边三角形,∴∠ACB=60°,AC=AB=BC=2√3.∵∠PAC=90°,∴∠D=30°.∴DC=2AC=4√3,∴BD=2√3.∵四边形APBC是圆内接四边形,∠PAC=90°, ∴∠PBC=90°,∴∠PBD=90°.在Rt△PBD中,BD=2√3,∠D=30°∴cos 30°=BDPD ,PD=BDcos30°=√3√32=4.【解析】(1)∵A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,∴∠ABC=∠APC =60°,∠CPB=∠BAC=60°.∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)∵△ABC是等边三角形,∴∠ACB=60°,AC=AB=BC=2√3.∵∠PAC=90°,∴∠D=30°.∴DC=2AC=4√3,∴BD=2√3.∵四边形APBC是圆内接四边形,∠PAC=90°,∴∠PBC=90°,∴∠PBD=90°.在Rt△PBD中,BD=2√3,∠D=30°∴cos 30°=BDPD ,PD=BDcos30°=√3√32=4.。

四川省达州市第四中学2020届九年级中考数学《圆》第二轮专题复习题(Word无答案)

四川省达州市第四中学2020届九年级中考数学《圆》第二轮专题复习题(Word无答案)

四川省达州市第四中学 2020 届九年级中考数学圆第二轮专题复习题一.选择题1、如图,在菱形 ABCD 中,点 E 是 BC 的中点,以 C 为圆心、CE 为半径作弧,交 CD 于点 F ,连接 AE 、AF .若 AB =6,∠B =60°,则阴影部分的面积为( )A .9﹣3π ﹣2π ﹣9π ﹣6π2、如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )A .70°B .55°C .45°D .35°3、如图,在⊙O 中,半径 OC 垂直弦 AB 于 D ,点 E 在⊙O 上,∠E =22.5°,AB =2,则半径 OB 等于( )A . 1 C . 24、如图,已知⊙O 的内接正六边形 ABCDEF 的边心距 OM =2,则该圆的内接正三角形 ACE 的面积为( )A .2B .4C .6D .45、阅读理解:已知两点 M (x 1,y 1),N (x 2,y 2),则线段 MN 的中点 K (x ,y )的坐标公式为:x = ,y = .如图,已知点 O 为坐标原点,点 A (﹣3,0),⊙O 经过点 A ,点 B 为弦 PA 的中点.若点 P (a ,b ),则有 a ,b 满足等式:a 2+b 2=9.设 B (m ,n ),则 m ,n 满足的等式是( ) A .m 2+n 2=9)2+()2=9 C .(2m+3)2+(2n )2=3D .(2m+3)2+4n 2=96、已知锐角∠AOB ,如图,(1)在射线 OA 上取一点 C ,以点 O 为圆心,OC 长为半径,交射线 OB 于点 D ,连接 CD ;(2)分别以点 C ,D 为圆心,CD 长为半径作弧,于点 M ,N ;(3)连接 OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是()A .∠COM =∠CODB .若 OM =MN .则∠AOB =20°C .MN ∥CD D .MN =3CD7、如图,在半径的⊙O 中,弦 AB 与 CD 交于点 E ,∠DEB =75°,AB =6,AE =1,则 CD 的长是( )A .2B .2C .2D .48、如图,AD 是⊙O 的直径, = ,若∠AOB =40°,则圆周角∠BPC 的度数是( )A.40°B.50°C.60°D.70°9、如图,四边形ABCD 内接于⊙O,AE⊥CB 交CB 的延长线于点E,若BA 平分,则AE=()A.3 C.4D.210、如图,⊙O 的直径AB 垂直于弦CD,垂足是点E,∠CAO=22.5°,OC=6,则CD 的长为()A.6B.3C.6 D.1211、如图,⊙P 与x 轴交于点A(﹣5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB=60°,则点C 的纵坐标为()A .+B.2+C.4D.2+212、如图,四边形ABCD 是菱形,⊙O 经过点A、C、D,与BC 相交于点E,连接AC、AE.若∠D=80°,则∠EAC 的度数为()A.20° B.25° C.30° D.35°二.填空题13、《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB 时,OC 平分AB)可以求解.现已知弦AB=8 米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.14、如图,分别以边长为2 的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为.15、如图,AC 是⊙O 的弦,AC=5,点B 是⊙O 上的一个动点,且∠ABC=45°,若点M、N 分别是AC、BC 的中点,则MN 的最大值是.16、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O 的面积S,设⊙O 的半径为1,则S﹣S1=.17、如图,等边三角形ABC 的边长为2,以A 为圆心,1 为半径作圆分别交AB,AC 边于D,E,再以点C 为圆心,CD长为半径作圆交BC 边于F,连接E,F,那么图中阴影部分的面积为.18、如图,AC 是⊙O 的内接正六边形的一边,点 B 上,且 BC 是⊙O 的内接正十边形的一边,若 AB 是⊙O 的内接正n 边形的一边,则 n =.三.解答题19、在综合与实践活动中,活动小组对学校 400 米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中 400 米跑道最内圈为 400 米,两端半圆弧的半径为 36 米.(π取 3.14).(1)求 400 米跑道中一段直道的长度;(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:跑道宽度/米0 1 2 3 4 5 … 跑道周长/米 400… 若设 x 表示跑道宽度(单位:米),y 表示该跑道周长(单位:米),试写出 y 与 x 的函数关系式:(3)将 446 米的跑道周长作为 400 米跑道场地的最外沿,那么它与最内圈(跑道周长 400 米)形成的区域最多能铺设道宽为 1.2 米的跑道多少条?20、在△ABC 中,D,E 分别是△ABC 两边的中点,如上的所有点都在△ABC 的内部或边上,则为△ABC 的中内弧.例如,图1 是△ABC 的一条中内弧.(1)如图2,在Rt△ABC 中,D,E 分别是AB,AC 的中点,画出△ABC 的最长的中内,并直接写出此的长;(2)在平面直角坐标系中,已知点 A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E 分别是 AB,AC 的中点.①若,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内,使所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.21、已知平面图形 S,点 P、Q 是S 上任意两点,我们把线段 PQ 的长度的最大值称为平面图形 S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1 的圆:;②如图1,上方是半径为1 的半圆,下方是正方形的三条边的“窗户形“:;(2)如图 2,在平面直角坐标系中,已知点 A(﹣1,0)、B(1,0),C 是坐标平面内的点,连接 AB、BC、CA所形成的图形为 S,记 S 的宽距为 d.①若 d=2,用直尺和圆规画出点 C 所在的区域并求它的面积(所在区域用阴影表示);②若点 C 在⊙M 上运动,⊙M 的半径为 1,圆心 M 在过点(0,2)且与 y 轴垂直的直线上.对于⊙M 上任意点 C,都有 5≤d≤8,直接写出圆心 M 的横坐标 x 的取值范围.22、如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D,E 是⊙O 上一点,且∠AED=45°.(1)试判断CD 与⊙O 的位置关系,并证明你的结论;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学圆专题复习
1.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AD=8,DE=5,求BC的长.
2.已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D.
(1)如图①,若∠OCA=60°,求OD的长;
(2)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.
3.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切
线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.
(1)求证:△EFD为等腰三角形;
(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.
4.如图,已知在△ABC中,⊙O在AB上,AC为⊙O的弦,延长BC至D,使AD为⊙O切线,
且DA=DC.
(1)求证:BD为⊙O切线;
(2)若AB=9,AD=12,求BD的长及⊙O的半径;
(3)若⊙O的半径为6,tan∠BAC=,求CD的长.
5.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.
6.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
(1)试判断DE与⊙O的位置关系,并说明理由;
(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.
7.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.
(1)求证:CF与⊙O相切;
(2)若AD=2,F为AE的中点,求AB的长.
8.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC
于点E,F是DE的中点,连接CF.
(1)求证:CF是⊙O的切线.
(2)若∠A=22.5°,求证:AC=DC.
9.如图,AC是⊙O的直径,PA切⊙O于点A,点B在⊙O上,PA=PB,PB的延长线与AC的延
长线交于点M.
(1)求证;PB是⊙O的切线;
(2)当AC=6,PA=8时,求MB的长.
10.如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠
ABC的平分线BD交AF于D,连结BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.
11.如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙0的切线;
(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.
12.如图,四边形ABCD为矩形,E为BC边中点,以AD为直径的⊙O与AE交于点F.
(1)求证:四边形AOCE为平行四边形;
(2)求证:CF与⊙O相切;
(3)若F为AE的中点,求∠ADF的大小.
13.如图,已知Rt△ABC,∠ACB=90°.O在边长上,以O为圆心,OC为半径作⊙O,切AB于D点,连接OD并延长,过B作BE⊥BC,交OD延长线于E点.
(1)求证:BD∙BC=AD∙DE;
(2)若AC=6,BC=8,求BE的长度.
14.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于
点D,F,且DE=EF.
(1)求证:∠C=90°;
(2)当BC=3,sinA=0.6时,求AF的长.
15.如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,
E是BC的中点,连接DE并延长与AB的延长线交于点F.
(1)求证:DF是⊙O的切线;
(2)若OB=BF,EF=4,求AD的长.
16.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于
点F,且∠ABF=∠ABC.
(1)求证:AB=AC;
(2)若AD=4,cos∠ABF=0.8,求DE的长.
17.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E作直线l//BC.(1)判断直线l与⊙O的位置关系,并说明理由;
(2)若∠ABC的平分线BF交AD于点F.求证:BE=EF;
(3)在(2)的条件下,若DE=4,DF=3,求AF的长.
18.如图,已知Rt△ABC,C=900,O在AB上,以O为圆心,OA为半径作⊙O,交AB于D点,与BC相切于E点,连接AE.
(1)求证:AE平分∠CAB;
(2)若CE=2,BE=6,求sinB及⊙O的半径.
19.如图,⊙O的直径AB=4,点C为⊙O上的一个动点,连接OC,过点A作⊙O的切线,与
BC的延长线交于点D,点E为AD的中点,连接CE.
(1)求证:CE是⊙O的切线;
(2)填空:①当CE= 时,四边形AOCE为正方形;
②当CE= 时,△CDE为等边三角形.
20.如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.
(1)求证:BD是⊙O的切线;
(2)若AB=10,cos∠BAC=0.6,求BD的长及⊙O的半径.
第11 页共11 页。

相关文档
最新文档