江苏省扬州市高考数学等差数列习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( )
A .48
B .60
C .72
D .24
2.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14
C .15
D .16
3.定义
12n
n p p p ++
+为n 个正数12,,
,n p p p 的“均倒数”,若已知数列{}n a 的前
n 项的“均倒数”为
12n ,又2n n a b =,则1223
910
111
b b b b b b +++
=( ) A .
8
17 B .
1021
C .
1123 D .
919
4.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45
B .50
C .60
D .80
5.已知数列{}n a 的前n 项和n S 满足()
12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭
的前10项的和为( ) A .
89
B .
910
C .10
11
D .
1112
6.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24
B .36
C .48
D .64
7.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121
B .161
C .141
D .151
8.已知数列{}n a 中,132a =
,且满足()*
1112,22
n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有
n a n
λ
≥成立,则实数λ的最小值是( ) A .2
B .4
C .8
D .16
9.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1 B .2 C .3 D .4 10.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )
A .9
B .12
C .15
D .18
11.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019
B .4040
C .2020
D .4038
12.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( )
A .
53
B .2
C .8
D .13
13.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列
{}n a ,已知11a =,2
2a
=,且满足()211+-=+-n
n n a a (n *∈N ),则该医院30天入
院治疗流感的共有( )人
A .225
B .255
C .365
D .465
14.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25
B .11
C .10
D .9
15.在数列{}n a 中,11a =,且11n
n n
a a na +=+,则其通项公式为n a =( ) A .
2
1
1n n -+ B .2
1
2n n -+
C .22
1
n n -+
D .2
2
2
n n -+
16.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36
B .48
C .56
D .72
17.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18
B .19
C .20
D .21
18.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若
p m n q <<<且()
*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )
A .22p p S p a =⋅
B .p q m n a a a a >
C .1111p q m n a a a a +<+
D .1111p q m n
S S S S +>+ 19.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( )
A .
5
4钱 B .
43钱 C .
23
钱 D .
5
3
钱 20.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237
n n S n T n =+,则6
3a b 的值为
( ) A .
511
B .38
C .1
D .2
二、多选题
21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114
a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1
4(1)
n a n n =
+
C .数列{}n a 为递增数列
D .数列1n S ⎧⎫
⎨⎬⎩⎭
为递增数列22.题目文件丢
失!
23.题目文件丢失!
24.已知等差数列{}n a 的前n 项和为,n S 且15
11
0,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
25.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =
C .135********a a a a a +++
+= D .222
2123202020202021a a a a a a ++++=
26.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤
D .当且仅当0n
S <时,26n ≥
27.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111
a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T < 28.下列命题正确的是( )
A .给出数列的有限项就可以唯一确定这个数列的通项公式
B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列
C .若a ,b ,c 成等差数列,则111,,a b c
可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列
29.无穷数列{}n a 的前n 项和2
n S an bn c =++,其中a ,b ,c 为实数,则( )
A .{}n a 可能为等差数列
B .{}n a 可能为等比数列
C .{}n a 中一定存在连续三项构成等差数列
D .{}n a 中一定存在连续三项构成等比数列
30.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =
D .15S 是最大值
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.A 【分析】
根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】
由条件可知1148
32362a d a d +=⎧⎪
⎨⨯+=⎪⎩
,解得:102a d =⎧⎨
=⎩, ()10789109133848S S a a a a a d -=++==+=.
故选:A 2.A 【分析】
利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】
由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 3.D 【分析】
由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】
设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n
=,则:2
2n S n =, 当1n =时,112a S ==,
当2n ≥时,142n n n a S S n -=-=-,
且14122a =⨯-=,据此可得 42n a n =-,
故212
n
n a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:
1223910
11
11111111233517191.21891919b b b b b b +++
⎡⎤⎛⎫⎛⎫⎛⎫=
-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭
⎝⎭⎣⎦
=⨯= 故选:D 4.C 【分析】
利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】
{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =
1158158()15215
156022
a a a S a +⨯⨯=
===
故选:C 【点睛】
本题考查等差数列性质及前n 项和公式,属于基础题 5.C 【分析】 首先根据()12n n n S +=得到n a n =,设1
1111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】
当1n =时,111a S ==, 当2n ≥时,()()11122
n n n n n n n a S S n -+-=-=
-=. 检验111a S ==,所以n a n =.
设()11111
11
n n n b a a n n n n +=
==-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
…. 故选:C 6.B 【分析】
利用等差数列的性质进行化简,由此求得9S 的值. 【详解】
由等差数列的性质,可得345675520a a a a a a ++++==,则54a =
19592993622
a a a
S +=
⨯=⨯= 故选:B 7.B 【分析】 由条件可得127a =,然后231223S a =,算出即可. 【详解】
因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即
127a =
所以231223161S a == 故选:B 8.A 【分析】 将11122
n n n a a -=
+变形为11221n n n n a a --=+,由等差数列的定义得出2
2n n n a +=,从而得
出()
22n
n n λ+≥,求出()max
22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】
因为2n ≥时,11122
n n n
a a -=+,所以1
1221n n n n a a --=+,而1123a = 所以数列{
}
2n
n a 是首项为3公差为1的等差数列,故22n
n a n =+,从而2
2n n
n a +=
. 又因为
n a n λ
≥恒成立,即()22n
n n λ+≥恒成立,所以()max
22n n n λ+⎡⎤≥⎢⎥⎣⎦.
由()()()
()()()()
1
*121322,221122n n n
n n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨
+-+⎪≥⎪⎩N 得2n = 所以()()2
max
2222222n n n +⨯+⎡⎤
==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 9.C 【分析】
利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】
设等差数列{}n a 的公差为d ,
则3856522a a a a a +=+=+,解得652d a a =-=,
212112228S a a a d a =+=+=+=,解得13a =
故选:C 10.A 【分析】
在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】
在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,
所以139522639a a a =-=⨯-=, 故选:A 11.B 【分析】
由等差数列的性质可得52012016024a a a a +==+,则
()15202020
202016202010102
a a a a S +=
⨯=⨯+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+
()12020
202052016202010104101040402
a a a a S +=
==⨯=+⨯⨯ 故选:B 12.B 【分析】
设公差为d ,则615a a d =+,即可求出公差d 的值.
【详解】
设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 13.B 【分析】
直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】
解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,
2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,
所以30132924301514
()()1515222552
S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B 14.D 【分析】
利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,
故选:D . 15.D 【分析】
先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出212
2
n n n a -+=,进而求出n a .
【详解】 解:11n
n n
a a na +=
+, ()11n n n a na a ++=∴,
化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:
111
n n
n a a +-=, 即21
11
1a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:
213243111111+a a a a a a --+-+ (1)
11123n n a a -+-=+++…1n +-, 即
111(1)
2
n n n a a --=, 2111(1)(1)2=1(2,)222
n n n n n n n n n z a a ---+∴=++=≥∈, 又
1
1
1a =也满足上式, 212()2
n n n n z a -+∴=∈, 2
2
()2
n a n z n n ∴=
∈-+. 故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 16.A 【分析】
根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】
因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()199998
3622
a a S +⨯===. 故选:A . 【点睛】
熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 17.B 【分析】
由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得
10a .
【详解】
()122n n a a n --=≥,且11a =,
∴数列{}n a 是以1为首项,以2为公差的等差数列,
通项公式为()12121n a n n =+-=-,
10210119a ∴=⨯-=,
故选:B. 18.D 【分析】
利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】
对于A 选项,由于()
()1221222
p p
p p p p a a S
p a a pa ++=
=+≠,故选项A 错误;
对于B 选项,由于m p q n -=-,则
()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦
()()()()()2
2m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦
()()()2
220q n n m d q n d =-----<,故选项B 错误;
对于C 选项,由于1111
p q m n m n p q p q p q m n m n
a a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误; 对于D 选项,设0x q n m p =-=->,则
()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,
由于2
2
2
2
22p q m n p q pq m n mn +=+⇔++=++,故2222
p q m n +>+.
()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,
故()()22221122
p q m n p q p q m n m n
S S p q a d m n a d S S +--+--+=++>++=+.
()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d
--+---⎡
⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦
()()()22
1121124mn m n mn p q mna a d d
+---<+
+()()()22
1121124m n mn m n mn m n mna a d d S S +---<++=,
由此
1111
p q m n p q p q m n m n
S S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】
关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断.
19.C 【分析】
根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为
2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】
设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +, 则根据题意有(2)()()(2)5
(2)()()(2)a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨-+-=++++⎩

解得1
16a d =⎧⎪⎨=-⎪⎩

所以戊所得为223
a d +=, 故选:C . 20.C 【分析】
令2
2n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则
6
3
a b 可得. 【详解】
令2
2n S n λ=,()37n T n n λ=+,
可得当2n ≥时,()()2
21221221n n n a S S n n n λλλ-=-=--=-,
()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,
当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,
()232n b n λ=+
故622a λ=,322b λ=, 故
6
3
1a b =. 【点睛】
由n S 求n a 时,11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符
合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解.
二、多选题
21.ABC 【分析】
数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11
4
a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1n
S ,n S ,2n ≥时,()()
111144141n n n a S S n n n n -=-=
-=---,进而求出n a . 【详解】
数列{}n a 的前n 项和为0n n S S ≠()
,且满足1402n n n a S S n -+=≥(),11
4
a =, ∴1140n n n n S S S S ---+=,化为:
1
11
4n n S S --=, ∴数列1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,公差为4,
∴()1
4414n n n S =+-=,可得14n S n
=, ∴2n ≥时,()()
1111
44141n n n a S S n n n n -=-=
-=---, ∴()1
(1)41(2)41n n a n n n ⎧=⎪⎪
=⎨⎪-≥-⎪⎩

对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】
本题考查数列递推式,解题关键是将已知递推式变形为1
11
4n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题
22.无 23.无
24.ACD 【分析】
由题可得16a d =-,0d <,21322
n d d S n n =
-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022
n d d
S n n =
->,解出即可判断D.
设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,
10a >,0d ∴<,且()21113+
222
n n n d d
S na d n n -==-, 对于A ,
81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =
-的对称轴为13
2n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =
⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;
对于D ,令213022
n d d
S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】
方法点睛:由于等差数列()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 25.BCD 【分析】
根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】
对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得
135********a a a a a +++⋅⋅⋅+=,故C 正确;
对D ,该数列总有21n n n a a a ++=+,2
121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222
123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.
故选:BCD 【点睛】
关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进
26.AB 【分析】
根据等差数列的性质及717S S =可分析出结果. 【详解】
因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,
又10a >,
所以12130,0a a ><,
所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()
2502
a a S a +==<,故D 错误, 故选:AB 【点睛】
关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到
12130,0a a ><,考查学生逻辑推理能力.
27.AC 【分析】 将
3201911111a a e e +≤++变形为32019
1111
01212
a a e e -+-≤++,构造函数()11
12
x
f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由
3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()11
12
x f x e =-+, ()()1111101111
x x x x x e f x f x e e e e --+=+-=+-=++++,
所以()1112
x
f x e =
-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()
320192*********
a a S +=
≥;
当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021
202110110T a =>.
故选:AC 【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 28.BCD 【分析】
根据等差数列的性质即可判断选项的正误. 【详解】
A 选项:给出数列的有限项不一定可以确定通项公式;
B 选项:由等差数列性质知0d >,{}n a 必是递增数列;
C 选项:1a b c ===时,
111
1a b c
===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以
11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;
故选:BCD 【点睛】
本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题. 29.ABC 【分析】
由2
n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.
【详解】
当1n =时,11a S a b c ==++.
当2n ≥时,()()2
21112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .
所以若{}n a 是等差数列,则0.a b a b c c +=++∴=
所以当0c 时,{}n a 是等差数列, 0
0a c b ==⎧⎨≠⎩
时是等比数列;当0c ≠时,{}n a 从第二
项开始是等差数列. 故选:A B C 【点睛】
本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 30.CD 【分析】
根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案; 【详解】
1118S S =,∴0d <,
设2n S An Bn =+,则点(,)n n S 在抛物线2
y Ax Bx =+上,
抛物线的开口向下,对称轴为14.5x =,
∴1514S S =且为n S 的最大值,
1118S S =12131815070a a a a ⇒+++=⇒=,
∴129291529()
2902
a a S a +=
==, 故选:CD. 【点睛】
本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。

相关文档
最新文档