大学高等数学第一章函数(习题精讲)

合集下载

高等数学习题及解答(1)

高等数学习题及解答(1)

一般班高数作业(上)第一章 函数1、试判断以下每对函数是不是同样的函数,并说明原因: (2) y sin(arcsin x) 与(6) yarctan(tan x) 与 y x ;(4)y x ;(8)y x 与 y x2;y f ( x) 与 xf ( y) 。

解:判断两个函数的定义域和对应法例能否同样。

(2) y sin(arcsin x) 定义域不一样,所以两个函数不一样;(4) y x 2x ,两个函数同样;(6) y arctan(tan x) 定义域不一样,所以两个函数不一样;(8) yf (x) 与 xf ( y) 定义域和对应法例都同样,所以两个函数同样。

2、求以下函数的定义域,并用区间表示:x 211(2) yx;(7) y ex x;(3) y 2 xarcsinln 1x解:(2) x [ 2,0) ;(3) x [1 e 2 ,0) (0,1 e 2 ] ;(7) x(0, e)(e,) 。

1 。

1 ln xf (x)x 2 1, x 03、设 1x 2, x ,求 f ( x) f ( x) 。

解:按 x 0 , x 0 , x 0 时,分别计算得, f (x)0 x 0f ( x)x 。

2 04、议论以下函数的单一性(指出其单增区间和单减区间) :(2) y4xx2;(4) y x x 。

解:(2) y 4xx24 ( x 2) 2单增区间为 [0,2] ,单减区间为 [ 2,4] 。

(4) yx x2x x 0) 。

0 x ,定义域为实数集,单减区间为 ( ,5、议论以下函数的奇偶性:(2)f ( x) x x2 1 tanx ;(3)f (x) ln( x2 1 x);(6) f ( x) cosln x ;1 x, x 0 (7) f (x)x, x 0。

1解:(2)奇函数;(3)奇函数;( 6)非奇非偶函数;( 7)偶函数。

6、求以下函数的反函数及反函数的定义域:2x), D f ( ,0) ;() f ( x) 2x 1, 0 x 1()。

高等数学课后习题答案--第一章

高等数学课后习题答案--第一章

《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。

1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。

3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。

4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。

01第一章 函数与极限

01第一章 函数与极限

高等数学教学备课系统与《高等数学多媒体教学系统(经济类)》配套使用教师姓名:________________________教学班级:________________________2005年9月1至2006年1月10微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分.冯. 诺伊曼注:冯. 诺依曼(John von Neumann,1903-1957,匈牙利人),20世纪最杰出的数学家之一,在纯粹数学、应用数学、计算数学等许多分支,从集合论、数学基础到量子理论与算子理论等作多方面,他都作出了重要贡献. 他与经济学家合著的《博弈论与经济行为》奠定了对策论的基础,他发明的“流程图”沟通了数学语言与计算机语言,制造了第一台计算机,被人称为“计算机之父”.第一章函数、极限与连续函数是现代数学的基本概念之一,是高等数学的主要研究对象. 极限概念是微积分的理论基础,极限方法是微积分的基本分析方法,因此,掌握、运用好极限方法是学好微积分的关键. 连续是函数的一个重要性态. 本章将介绍函数、极限与连续的基本知识和有关的基本方法,为今后的学习打下必要的基础.第一节函数概念在现实世界中,一切事物都在一定的空间中运动着. 17世纪初,数学首先从对运动(如天文、航海问题等)的研究中引出了函数这个基本概念. 在那以后的二百多年里,这个概念在几乎所有的科学研究工作中占据了中心位置.本节将介绍函数的概念、函数关系的构建与函数的特性.内容分布图示★集合的概念★集合的运算★区间★例1 ★邻域★函数概念★例2 ★例3 ★例4★例5 ★例6★函数的表示法★分段函数举例★例7★函数关系的建立★例8 ★例9函数的特性★有界性★例10 ★单调性★例11★奇偶性★例12 ★例13★周期性★例14 ★例15★内容小结★课堂练习★ 习题 1- 1★ 返回内容要点:一、 集合:集合的概念;集合的表示;集合之间的关系;集合的基本运算;区间;邻域; 二、 函数的概念:函数是描述变量间相互依赖关系的一种数学模型. 函数的定义、函数的图形、函数的表示法三、 函数关系的建立:为解决实际应用问题, 首先要将该问题量化, 从而建立起该问题的数学模型, 即建立函数关系;四、 函数特性:函数的有界性;函数的单调性;函数的奇偶性;函数的周期性.例题选讲:函数举例例1 解下列不等式, 并将其解用区间表示.(1) ;312<-x (2) ;323≥+x (3) ().9102<-<x例2 函数2=y . 定义域),(+∞-∞=D , 值域{}.2=f R 例3(讲义例1) 绝对值函数 ⎩⎨⎧<-≥==0,,||x x x x x y 例4判断下面函数是否相同, 并说明理由. (1) 1=y 与;cos sin 22x x y += (2) 12+=x y 与12+=y x .例5求函数 2112++-=x xy 的定义域. 例6 求函数()()245sin 3lg x x xx x f -++-=的定义域. 例7 设(),21,210,1⎩⎨⎧≤<-≤≤=x x x f求函数()3+x f 的定义域.例8(讲义例4)某工厂生产某型号车床, 年产量为a 台, 分若干批进行生产, 每批生产准备费为b 元, 设产品均匀投入市场, 且上一批用完后立即生产下一批, 即平均库存量为批量的一半. 设每年每台库存费为c 元. 显然, 生产批量大则库存费高; 生产批量少则批数增多, 因而生产准备费高. 为了选择最优批量, 试求出一年中库存费与生产准备费的和与批量的函数关系.例9(讲义例5)某运输公司规定货物的吨公里运价为: 在a 公里以内,每公里k 元, 超过部分公里为k 54元. 求运价m 和里程s 之间的函数关系.例10 证明(1)(讲义例6)函数 12+=x xy 在),(+∞-∞上是有界的; (2) 函数21xy =在()1,0上是无界的.例11(讲义例7)证明函数xxy +=1在),1(∞+-内是单调增加的函数. 例12(讲义例8)判断函数)1ln(2x x y ++=的奇偶性. 例13 判断函数()()1111ln 11<<-+-+-=x xxe e xf xx 的奇偶性. 例14(讲义例9)设函数)(x f 是周期T 的周期函数,试求函数)(b ax f +的周期,其中b a ,为常数,且0>a .例15 若)(x f 对其定义域上的一切, 恒有),2()(x a f x f -=则称)(x f 对称于.a x =证明: 若)(x f 对称于a x =及),(b a b x <= 则)(x f 是以)(2a b T -=为周期的周期函数.例6(讲义例2)符号函数 ⎪⎩⎪⎨⎧<-=>==0,1,0,0,0,1s g nx x x x y 例3(讲义例3)取整函数 ],[x y = 其中,][x 表示不超过x 的最大整数.函数的有界性: 函数的增减性: 函数的奇偶性: 函数的周期性:课堂练习1. 用分段函数表示函数 .|1|3--=x y2. 判别函数⎪⎩⎪⎨⎧<+-≥+=0,0,)(22x x x x x x x f 的奇偶性.3.设b a ,为两个函数, 且b a <. 对于任意实数x , 函数()x f 满足条件: ()(),x a f x a f +=- 及()()x b f x b f +=-证明: ()x f 以()a b T -=2周期.第二节 初等函数内容分布图示★ 反函数 ★ 例1 ★ 例2 ★ 复合函数 ★ 例3-4 ★ 例5★ 例6 ★ 例7 ★ 例8★ 幂函数、指数函数与对数函数★ 三角函数 ★ 反三角函数★ 初等函数 ★ 函数图形的迭加与变换★ 内容小结 ★ 课堂练习 ★ 习题1-2 ★ 返回内容要点:一、 反函数:反函数的概念;函数存在反函数的条件;在同一个坐标平面内, 直接函数)(x f y =和反函数)(x y ϕ=的图形关于直线x y =是对称的.二、 基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数. 三、 复合函数的概念 四、初等函数:由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数. 初等函数的基本特征: 在函数有定义的区间内初等函数的图形是不间断的.例题选讲:求反函数例1(讲义例1)求函数xx y 411411+++-=的反函数.例2 已知x x x x x sgn ,0,10,00,1sgn ⎪⎩⎪⎨⎧<-=>=为符号函数,求()x x y sgn 12+=的反函数.函数的复合例3(讲义例2)设 u u f y sin )(==,1)(2+==x x u ϕ,求)]([x f ϕ. 例4 (讲义例3) 设 u u f y arctan )(==,tt u 1)(==ϕ,)(x t φ=12-=x ,求 )]}([{x f φϕ. 例5 设(),1+=x x f (),2x x =ϕ 求()[]x f ϕ及()[],x f ϕ 并求它们的定义域. 例6(讲义例4)将下列函数分解成基本初等函数的复合. (1) ;sin ln 2x y = (2) ;2arctan x e y =(3) ).12ln(cos 22x y ++= 例7(讲义例5)设,0,10,2)(,1,1,)(2⎩⎨⎧≥-<+=⎩⎨⎧≥<=x x x x x x x x e x f x ϕ求)].([x f ϕ例8 设 ,1122xx x x f +=⎪⎭⎫ ⎝⎛+ 求().x f课堂练习1.下列函数能否复合为函数)]([x g f y =若能, 写出其解析式、定义域、值域. .1sin )(,ln )()2(;)(,)()1(2-====-====x x g u u u f y x x x g u u u f y2.分析函数 32cos arctan x e y =的复合结构.第三节 常用经济函数用数学方法解决实际问题,首先要构建该问题的数学模型,即找出该问题的函数关系. 本节将介绍几种常用的经济函数.内容分布图示★ 单利与复利 ★ 例1★ 多次付息 ★ 贴现 ★ 例2 ★ 需求函数 ★ 供给函数★ 市场均衡 ★ 例3 ★ 例4 ★ 成本函数 ★ 例5★ 收入函数与利润函数 ★ 例6 ★ 例7 ★ 例8 ★ 例9★ 内容小结 ★ 课堂练习 ★ 习题1-3 ★ 返回内容要点:一、单利与复利利息是指借款者向贷款者支付的报酬, 它是根据本金的数额按一定比例计算出来的. 利息又有存款利息、贷款利息、债券利息、贴现利息等几种主要形式.单利计算公式设初始本金为p (元), 银行年利率为r . 则第一年末本利和为 )1(1r p rp p s +=+= 第二年末本利和为 )21()1(2r p rp r p s +=++=……第n 年末的本利和为 )1(nr p s n +=. 复利计算公式设初始本金为p (元), 银行年利率为r . 则 第一年末本利和为 )1(1r p rp p s +=+=第二年末本利和为 22)1()1()1(r p r rp r p s +=+++=……第n 年末的本利和为 .)1(nn r p s +=二、多次付息单利付息情形因每次的利息都不计入本金, 故若一年分n 次付息, 则年末的本利和为)1(1r p n r n p s +=⎪⎭⎫ ⎝⎛+=即年末的本利和与支付利息的次数无关.复利付息情形因每次支付的利息都记入本金, 故年末的本利和与支付利息的次数是有关系的. 设初始本金为p (元),年利率为r , 若一年分m 次付息, 则一年末的本利和为mm r p s ⎪⎭⎫ ⎝⎛+=1易见本利和是随付息次数m 的增大而增加的.而第n 年末的本利和为mnn m r p s ⎪⎭⎫ ⎝⎛+=1.三、 贴现票据的持有人, 为在票据到期以前获得资金, 从票面金额中扣除未到期期间的利息后, 得到所余金额的现金称为贴现.钱存在银行里可以获得利息, 如果不考虑贬值因素, 那么若干年后的本利和就高于本金. 如果考虑贬值的因素, 则在若干年后使用的未来值(相当于本利和)就有一个较低的现值.考虑更一般的问题: 确定第n 年后价值为R 元钱的现值.假设在这n 年之间复利年利率r 不变.利用复利计算公式有n r p R )1(+=,得到第n 年后价值为R 元钱的现值为nr Rp )1(+=,式中R 表示第n 年后到期的票据金额, r 表示贴现率, 而p 表示现在进行票据转让时银行付给的贴现金额.若票据持有者手中持有若干张不同期限及不同面额的票据, 且每张票据的贴现率都是相同的, 则一次性向银行转让票据而得到的现金nnr R r R r R R p )1()1()1(2210+++++++=式中0R 为已到期的票据金额, n R 为n 年后到期的票据金额.nr )1(1+称为贴现因子, 它表示在贴现率r 下n 年后到期的1元钱的贴现值. 由它可给出不同年限及不同贴现率下的贴现因子表.四、需求函数需求函数是指在某一特定时期内, 市场上某种商品的各种可能的购买量和决定这些购买量的诸因素之间的数量关系.假定其它因素(如消费者的货币收入、偏好和相关商品的价格等)不变, 则决定某种商品需求量的因素就是这种商品的价格. 此时, 需求函数表示的就是商品需求量和价格这两个经济量之间的数量关系)(p f q =其中, q 表示需求量, p 表示价格.需求函数的反函数)(1q fp -=称为价格函数, 习惯上将价格函数也统称为需求函数.五、 供给函数供给函数是指在某一特定时期内, 市场上某种商品的各种可能的供给量和决定这些供给量的诸因素之间的数量关系. 六、市场均衡对一种商品而言, 如果需求量等于供给量, 则这种商品就达到了市场均衡. 以线性需求函数和线性供给函数为例, 令s d q q =d cp b ap +=+0p ca bd p ≡--=这个价格0p 称为该商品的市场均衡价格(图1-3-3).市场均衡价格就是需求函数和供给函数两条直线的交点的横坐标. 当市场价格高于均衡价格时, 将出现供过于求的现象, 而当市场价格低于均衡价格时,将出现供不应求的现象.. 当市场均衡时有,0q q q s d ==称0q 为市场均衡数量.根据市场的不同情况,需求函数与供给函数还有二次函数、多项式函数与指数函数等. 但其基本规律是相同的, 都可找到相应的市场均衡点(0p ,0q ).七、成本函数产品成本是以货币形式表现的企业生产和销售产品的全部费用支出, 成本函数表示费用总额与产量(或销售量)之间的依赖关系, 产品成本可分为固定成本和变动成本两部分. 所谓固定成本, 是指在一定时期内不随产量变化的那部分成本; 所谓变动成本, 是指随产量变化而变化的那部分成本. 一般地, 以货币计值的(总)成本C 是产量x 的函数, 即)0()(≥=x x C C称其为成本函数. 当产量0=x 时, 对应的成本函数值)0(C 就是产品的固定成本值.设)(x C 为成本函数, 称)0()(>=x xx C C 为单位成本函数或平均成本函数. 成本函数是单调增加函数, 其图象称为成本曲线.八、 收入函数与利润函数销售某种产品的收入R , 等于产品的单位价格P 乘以销售量x , 即,x P R ⋅= 称其为收入函数. 而销售利润L 等于收入R 减去成本C , 即,C R L -= 称其为利润函数.当0>-=C R L 时, 生产者盈利; 当0<-=C R L 时, 生产者亏损;当0=-=C R L 时, 生产者盈亏平衡, 使0)(=x L 的点0x 称为盈亏平衡点(又称为保本点).例题选讲:单利与复利例1(讲义例1)现有初始本金100元, 若银行年储蓄利率为7%, 问: (1) 按单利计算, 3年末的本利加为多少? (2) 按复利计算, 3年末的本利和为多少?(3) 按复利计算, 需多少年能使本利和超过初始本金的一倍?贴现例2(讲义例2)某人手中有三张票据, 其中一年后到期的票据金额是500元, 二年后到期的是800元, 五年后到期的是2000元, 已知银行的贴现率6%, 现在将三张票据向银行做一次性转让, 银行的贴现金额是多少?市场均衡例3(讲义例3)某种商品的供给函数和需求函数分别为P Q P Q s d 5200,1025-=-=求该商品的市场均衡价格和市场均衡数量.例4(讲义例4)某批发商每次以160元/台的价格将500台电扇批发给零售商, 在这个基础上零售商每次多进100台电扇, 则批发价相应降低2元, 批发商最大批发量为每次1000台, 试将电扇批发价格表示为批发量的函数, 并求零售商每次进800台电扇时的批发价格.成本函数例5(讲义例5) 某工厂生产某产品, 每日最多生产200单位. 它的日固定成本为150元, 生产一个单位产品的可变成本为16元. 求该厂日总成本函数及平均成本函数.收入函数与利润函数例6(讲义例6)某工厂生产某产品年产量为x 台, 每台售价500元, 当年产量超过800台时, 超过部分只能按9折出售. 这样可多售出200台, 如果再多生产,本年就销售不出去了. 试写出本年的收益(入)函数.例7 已知某厂单位产品时,可变成本为15元,每天的固定成本为2000元,如这种产品出厂价为20元,求(1)利润函数;(2)若不亏本,该厂每天至少生产多少单位这种产品. 例8(讲义例7)某电器厂生产一种新产品, 在定价时不单是根据生产成本而定, 还要请各销售单位来出价, 即他们愿意以什么价格来购买. 根据调查得出需求函数为.45000900+-=P x 该厂生产该产品的固定成本是270000元, 而单位产品的变动成本为10元. 为获得最大利润, 出厂价格应为多少?例9 已知该商品的成本函数与收入函数分别是xR x x C 113122=++=试求该商品的盈亏平衡点, 并说明盈亏情况.课堂练习 1.(1)设手表的价格为70元, 销售量为10000只, 若手表每只提高3元, 需求量就减少3000只, 求需求函数d Q .(2)设手表价格为70元, 手表厂可提供10000只手表, 当价格每只增加3元时, 手表厂可多提供300只, 求供应函数s Q . (3)求市场均衡价格和市场均衡数量.第四节 数列的极限极限思想是由于求某些实际问题的精确解答而产生的. 例如,我国古代数学家刘徽(公元3世纪)利用圆内接正多边形来推算圆面积的方法----割圆术(参看光盘演示), 就是极限思想在几何学上的应用. 又如,春秋战国时期的哲学家庄子(公元4世纪)在《庄子.天下篇》一书中对“截丈问题”(参看光盘演示)有一段名言:“一尺之棰, 日截其半, 万世不竭”,其中也隐含了深刻的极限思想.极限是研究变量的变化趋势的基本工具,高等数学中许多基本概念,例如连续、导数、定积分、无穷级数等都是建立在极限的基础上. 极限方法又是研究函数的一种最基本的方法. 本节将首先给出数列极限的定义.内容分布图示★ 极限概念的引入 ★ 数列的定义 ★ 数列的极限 ★ 例1★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 收敛数列的有界性★ 极限的唯一性 ★ 例7★ 收敛数列的保号性 ★ 子数列的收敛性★ 内容小结★ 习题1-4 ★ 返回内容要点:一、 数列的定义 二、 数列的极限:N -ε论证法,其论证步骤为:(1) 任意给定的正数ε, 令 ε<-||a x n ;(2) 上式开始分析倒推, 推出 )(εϕ>n ; (3) 取 )]([εϕ=N ,再用N -ε语言顺述结论. 三、 收敛数列的有界性 四、极限的唯一性五、收敛数列的保号性 六、子数列的收敛性例题选讲:数列的极限例1(讲义例1) 证明 .1)1(lim1=-+-∞→nn n n 例2 设C C x n (≡为常数), 证明C x n n =∞→lim .例3 证明 ,0lim 0=→nn q 其中.1<q例4 设,0>n x 且,0lim >=∞→a x n n 求证 .lima x n n =∞→例5 用数列极限定义证明 323125lim-=-+∞→n n n .例6(讲义例2)用数列极限定义证明 .112lim 22=++-∞→n n n n 例7(讲义例3)证明数列1)1(+-=n n x 是发散的.课堂练习 1.设,0>p 证明数列pn n x 1=的极限是0.第五节 函数的极限数列可看作自变量为正整数n 的函数: )(n f x n =, 数列{}n x 的极限为a ,即:当自变量n 取正整数且无限增大(∞→n )时,对应的函数值)(n f 无限接近数a . 若将数列极限概念中自变量n 和函数值)(n f 的特殊性撇开,可以由此引出函数极限的一般概念:在自变量x 的某个变化过程中,如果对应的函数值)(x f 无限接近于某个确定的数A ,则A 就称为x 在该变化过程中函数)(x f 的极限. 显然,极限A 是与自变量x 的变化过程紧密相关,自变量的变化过程不同,函数的极限就有不同的表现形式. 本节分下列两种情况来讨论: 1、自变量趋于无穷大时函数的极限; 2、自变量趋于有限值时函数的极限.内容分布图示★ 自变量趋向无穷大时函数的极限★ 例1 ★ 例2 ★ 例3★ 自变量趋向有限值时函数的极限★ 例4 ★ 例5 ★ 例6★ 左右极限 ★ 例7★ 例8 ★ 例9 ★ 例10★ 函数极限的性质 ★ 子序列收敛性 ★ 函数极限与数列极限的关系 ★ 内容小结 ★ 课堂练习 ★ 习题1-5 ★ 返回内容要点:一、自变量趋于无穷大时函数的极限 二、 自变量趋于有限值时函数的极限 三、 左右极限的概念四、函数极限的性质:唯一性 有界性 保号性 五、子序列的收敛性例题选讲:自变量趋于无穷大时函数的极限例1(讲义例1)用极限定义证明 .0sin lim=∞→xxx例2(讲义例2)用极限定义证明 .021lim =⎪⎭⎫⎝⎛+∞→xx例3 证明 .111lim-=+-∞→x xx自变量趋于有限值时函数的极限例4(1)(讲义例3)利用定义证明 C C x x =→0lim (C 为常数).(2) 证明 .lim 00x x x x =→例5(讲义例4)利用定义证明 211lim 21=--→x x x .例6 证明: 当00>x 时, 00lim x x x x =→.例7 验证xx x 0lim→不存在.左右极限的概念例8(讲义例5)设,0,10,)(⎩⎨⎧<+≥=x x x x x f 求 )(lim 0x f x →. 例9 设(),0,10,12⎩⎨⎧≥+<-=x x x x x f 求 ().lim 0x f x → 例10(讲义例6)设 ,2121)(11xx x f +-=求 ).(lim 0x f x →子序列的收敛性例7(讲义例7)证明 xx 1sinlim 0→ 不存在.课堂练习 1. 设函数⎪⎪⎩⎪⎪⎨⎧<+=>=0,80,20,1sin )(2x x x x x x x f ,试问函数在0=x 处的左、右极限是否存在? 当0→x 时, )(x f 的极限是否存在?2. 若,0)(>x f 且.)(lim A x f =问: 能否保证有0>A 的结论? 试举例说明.第六节 无穷小与无穷大没有任何问题可以像无穷那样深深地触动人的感情,很少有别的观念能像无穷那样激励理智 产生富有成果的思想,然而也没有任何其它的概 念能像无穷那样需要加于阐明.-------大卫. 希尔伯特对无穷小的认识问题,可以远溯到古希腊,那时,阿基米德就曾用无限小量方法得到许多重要的数学结果,但他认为无限小量方法存在着不合理的地方. 直到1821年,柯西在他的《分析教程》中才对无限小(即这里所说的无穷小)这一概念给出了明确的回答. 而有关无穷小的理论就是在柯西的理论基础上发展起来的.内容分布图示★ 无穷小★ 无穷小与函数极限的关系 ★ 例1 ★ 无穷小的运算性质 ★ 例2 ★ 无穷大★ 例3 ★ 例4 ★ 例5 ★ 无穷大与无界变量★ 无穷小与无穷大的关系 ★ 例6★ 内容小结★ 习题1-6 ★ 返回内容要点:一、 无穷小的概念二、无穷小的运算性质有限个无穷小的代数和仍是无穷小 有界函数与无穷小的乘积是无穷小. 三、无穷大的概念四、 无穷小与无穷大的关系例题选讲:无穷小的概念与无穷小的运算性质例1 根据定义证明: xx y 1sin 2=当0→x 时为无穷小. 例2(讲义例1)求 x xx sin lim ∞→.无穷大的概念例3(讲义例2)证明 ∞=-→11lim1x x .例4 证明 ()().11lim >+∞=-+∞→a a xx例5(讲义例3)当0→x 时, xx y 1sin 1=是一个无界变量, 但不是无穷大. 无穷小与无穷大的关系 例6(讲义例4)求 5lim 34+∞→x x x .课堂练习1. 求 .)1(22lim22--∞→x xx x第七节 极限运算法则本节要建立极限的四则运算法则和复合函数的极限运算法则. 在下面的讨论中,记号“lim ”下面没有表明自变量的变化过程,是指对0x x →和∞→x 以及单则极限均成立. 但在论证时,只证明了0x x →的情形.内容分布图示★ 极限运算法则 ★ 例1 ★ 例2★ 例3-4 ★ 例5 ★ 例6★ 例7 ★ 例8 ★ 例9 ★ 例 10 ★ 例 11 ★ 复合函数的极限运算法则 ★ 例 12 ★ 例 13★ 内容小结 ★ 课堂练习★ 习题1-7 ★ 返回内容要点:一、 极限的四则运算:定理1 推论1 推论2 二、复合函数的极限运算法则:定理2定理2 (复合函数的极限运算法则)设函数)]([x g f y =是由函数)(u f y =与函数)(x g u =复合而成, )]([x g f 在点0x 的某去心邻域内有定义, 若,)(lim ,)(lim 00A u f u x g u u x x ==→→且存在,00>δ 当),(00δx U x∈时, 有0)(u x g ≠, 则.)(lim )]([lim 0A u f x g f u u x x ==→→例题选讲:极限的四则运算例1(讲义例1)求 )53(lim 22+-→x x x .例2(讲义例2)求 27592lim 223---→x x x x .例3(讲义例3)求 3214lim21-+-→x x x x .例4(讲义例4)求 321lim 221-+-→x x x x .例5(讲义例5)求 147532lim 2323-+++∞→x x x x x .例6(讲义例6)计算.231568lim323-+++∞→x x x x x例7(讲义例7)求 .21lim 222⎪⎭⎫ ⎝⎛+++∞→n n n n n例8 计算 ()()()();1111lim3431x x x x x ----→例9(讲义例8)求 ).sin 1(sin lim x x x -++∞→例10 计算下列极限:(1);1!sin lim32+∞→n n n n (2).2tan lim /10x x ex+→ 例11(讲义例9)已知 ⎪⎩⎪⎨⎧≥+-+<-=0,1130,1)(32x x x x x x x f , 求 ).(lim ),(lim ),(lim 0x f x f x f x x x -∞→+∞→→复合函数的极限运算法则例12(讲义例10)求极限 ⎥⎦⎤⎢⎣⎡--→)1(21ln lim 21x x x . 例13(讲义例11)已知2)5(lim 2=+--+∞→c bx ax x x , 求b a ,之值.课堂练习1. 求极限: .231lim)2(;lim )1(31sinxx ex xx x +-++∞→→2.在某个过程中, 若)(x f 有极限, )(x g 无极限, 那么)()(x g x f +是否有极限? 为什么?第八节 极限存在准则 两个重要极限内容分布图示★ 夹逼准则★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8★ 例9★ 单调有界准则 ★ 例10 ★ 例11 ★1sin lim0=→xxx★ 例12★ 例13 ★ 例14★ 例15 ★ 例16★ 例17★ 例18★ e n xx =⎪⎭⎫⎝⎛+∞→11lim ★ 例19 ★ 例21 ★ 例22★ 例23★ 例24 ★ 25★ 柯西极限存在准则 ★ 连续复利(例26) ★ 内容小结 ★ 课堂练习 ★ 习题 1-8★ 返回内容要点:一、准则I (夹逼准则):如果数列n n y x ,及n z 满足下列条件:a) ),3,2,1( =≤≤n z x y n n n ; b) ,lim ,lim a z a y n n n n ==∞→∞→那末数列n x 的极限存在, 且.lim a x n n =∞→注:利用夹逼准则求极限,关键是构造出n y 与n z , 并且n y 与n z 的极限相同且容易求. 二、 准则II (单调有界准则):单调有界数列必有极限. 三、 两个重要极限:1. 1sin lim 0=→x x x ; 2.e x xx =⎪⎭⎫⎝⎛+∞→11lim四、连续复利设初始本金为p (元), 年利率为r , 按复利付息, 若一年分m 次付息, 则第n 年末的本利和为mnn m r p s ⎪⎭⎫ ⎝⎛+=1如果利息按连续复利计算, 即计算复利的次数m 趋于无穷大时, t 年末的本利和可按如下公式计算rt mtm pe m r p s =⎪⎭⎫ ⎝⎛+=∞→1lim若要t 年末的本利和为s , 则初始本金rt se p -=.例题选讲:夹逼准则的应用例1(讲义例1)求 .12111lim 222⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 例2 求.)321(lim 1n n n n ++∞→例3 求 ()().1111lim 222⎪⎪⎭⎫ ⎝⎛+++++∞→n n n n n 例4 求 ().1lim >∞→a a nn n例5 求 ().0!lim >∞→a n a nn 例6(讲义例2)求 .!limnn n n ∞→ 例7(讲义例3)求 .lim n n n ∞→例8(讲义例4)求证).0(1lim >=∞→a a n n例9(讲义例5)求极限.1lim 0⎥⎦⎤⎢⎣⎡→x x x单调有界准则的应用例10(讲义例6)设有数列31=x ,,,312 x x +=13-+=n n x x ,求 .lim n n x ∞→例11 设 0>a 为常数, 数列 n x 由下列定义: ),2,1(2111 =⎪⎪⎭⎫ ⎝⎛+=--n x a x x n n n 其中0x 为大于零的常数,求.lim n n x ∞→ 两个重要极限的应用例12(讲义例7)求 xxx tan lim0→.例13 求 .5sin 3tan lim0xxx →例14(讲义例8)求 .cos 1lim 20xxx -→ 例15 下列运算过程是否正确: 1sin lim tan lim sin .tan lim sin tan lim===→→→→xxx x x x x x x x x x x x x x x x例16 计算 .3cos cos lim 20x xx x -→例17 计算 ;cos sin 1lim2xx x x x -+→例18(讲义例9)求 3sin 2tan 2limxxx x +-+→. 例19(讲义例10)求 311lim +∞→⎪⎭⎫⎝⎛+n n n .例20(讲义例11)求 ().21lim /10xx x -→例21(讲义例12)求 xx x ⎪⎭⎫ ⎝⎛-∞→11lim 例22(讲义例13)求 .23lim 2xx x x ⎪⎭⎫⎝⎛++∞→例23 求 .1lim 22xx x x ⎪⎪⎭⎫⎝⎛-∞→ 例24 计算 ().lim /10xxx xe +→例25 求极限 ().tan lim 2tan 4/xx x π→连续复利例26(讲义例14) 一投资者欲用1000元投资5年, 设年利率为6%,试分别按单利、复利、每年按4次复利和连续复利付息方式计算, 到第5年末, 该投资者应得的本利和A .注: 连续复利的计算公式在其它许多问题中也常有应用如细胞分裂、树木增长等问题.课堂练习1. 求极限 .sin sin tan lim20xx xx x -→ 2. 求极限.)93(lim 1x x xx ++∞→第九节 无穷小的比较内容分布图示★ 无穷小的比较 ★ 例1-2 ★ 例3 ★ 常用等价无穷小 ★ 例4 ★ 等价无穷小替换定理 ★ 例5★ 例6★ 例7 ★ 例8 ★ 例9 ★ 例 10 ★ 例 11★ 例1 2 ★ 等价无穷小的充要条件★ 例13★ 内容小结 ★ 课堂练习 ★ 习题1-9 ★ 返回内容要点:一、 无穷小比较的概念:无穷小比的极限不同, 反映了无穷小趋向于零的快慢程度不同.二、 常用等价无穷小关系:)0(~1)1()0(ln ~1~1~)1ln(21~cos 1~arctan ~arcsin ~tan ~sin 2是常数≠-+>--+-αααx x a a x a xe xx x x x x x x x x x x x x三、 关于等价无穷小的两个重要结论:定理1 β与α是等价无穷小的充分必要条件是).(ααβo +=定理2 设,是同一过程中的无穷小ββαα'',,,且ββαα''~,~,αβ''lim存在, 则 .lim limαβαβ''=例题选讲:无穷小比较概念的应用:例1(讲义例1)证明: 当0→x 时, x x 3tan 4为x 的四阶无穷小. 例2(讲义例2)当0→x 时, 求x x sin tan -关于x 的阶数.例3 当1→x 时,将下列各量与无穷小量1-x 进行比较. (1);233+-x x (2);lg x (3)().11sin1--x x 例4 证明.~1x e x -例5(讲义例4) 求极限.1211lim nn n ⎪⎭⎫ ⎝⎛+-∞→例6(讲义例6)求 xxx 5sin 2tan lim0→.例7(讲义例7)求 .2sin sin tan lim30xxx x -→ 例8求 ().1cos 11lim3/120--+→x x x例9(讲义例8)求 121tan 1tan 1lim-+--+→x xx x例10计算 ().1ln lim 2cos 0x x e e xx x x +-→例11 计算 .sin cos 12lim2xxx +-→ 例12 求 ()().cos sec 1ln 1ln lim220xx x x x x x -+-+++→ 例13(讲义例9)求 xx x x 3sin 1cos 5tan lim 0+-→等价无穷小的应用:例3(讲义例3) 证明: 11lim0=-→xe x x . 例5(讲义例5)设,0≠α证明: .11)1(lim 0=-+→xx x αα无穷小等价替换定理的应用:课堂练习1. 求极限 βαβαβα--→e e lim .2. 任何两个无穷小量都可以比较吗?第十节 函数的连续性与间断点客观世界的许多现象和事物不仅是运动变化的,而且其运动变化的过程往往是连绵不断的,比如日月行空、岁月流逝、植物生长、物种变化等,这些连绵不断发展变化的事物在量的方面的反映就是函数的连续性. 本节将要引入的连续函数就是刻画变量连续变化的数学模型.16、17世纪微积分的酝酿和产生,直接肇始于对物体的连续运动的研究. 例如伽利略所研究的自由落体运动等都是连续变化的量. 但直到19世纪以前,数学家们对连续变量的研究仍停留在几何直观的层面上,即把能一笔画成的曲线所对应的函数称为连续函数. 19世纪中叶,在柯西等数学家建立起严格的极限理论之后,才对连续函数作出了严格的数学表述.连续函数不仅是微积分的研究对象,而且微积分中的主要概念、定理、公式法则等,往往都要求函数具有连续性.本节和下一节将以极限为基础,介绍连续函数的概念、连续函数的运算及连续函数的一些性质.内容分布图示★ 函数的连续性 ★ 例1 ★ 例2 ★ 左右连续 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 连续函数与连续区间 ★ 例7★ 函数的间断点 ★ 例8 ★ 例9 ★ 例 10 ★ 例 11 ★ 例12 ★ 例 13 ★ 例14★ 内容小结 ★ 课堂练习★ 习题1-10 ★ 返回内容要点:一、函数的连续性:函数的增量 连续性的三种定义形式二、左右连续的概念定理1 函数)(x f 在0x 处连续的充要条件是函数)(x f 在0x 处既左连续又右连续. 三、 连续函数与连续区间四、函数的间断点及其分类:第一类间断点 跳跃间断点 可去间断点;第二类间断点 无穷间断点 振荡间断点;例题选讲:函数的连续性例1(讲义例1)试证函数⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )(x x xx x f 在0=x 处连续. 例2设)(x f 是定义于[a , b ]上的单调增加函数, ),,(0b a x ∈如果)(lim 0x f x x →存在, 试证明函数)(x f 在点0x 处连续.例3(讲义例4)讨论⎩⎨⎧<-≥+=,0,2,0,2)(x x x x x f 在0=x 处的连续性.。

《高等数学一》第一章-函数--课后习题(含答案解析)

《高等数学一》第一章-函数--课后习题(含答案解析)

第一章函数历年试题模拟试题课后习题(含答案解析)[单选题]1、设函数,则f(x)=()A、x(x+1)B、x(x-1)C、(x+1)(x-2)D、(x-1)(x+2)【正确答案】B【答案解析】本题考察函数解析式求解.,故[单选题]2、已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是().A、[1,3]B、[-1,5]C、[-1,3]D、[1,5]【正确答案】A【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题]3、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为().A、[0,2]B、[0,16]C、[-16,16]D、[-2,2]【正确答案】D【答案解析】根据f(x)的定义域,可知中应该满足:[单选题]4、函数的定义域为().A、[-1,1]B、[-1,3]C、(-1,1)D、(-1,3)【正确答案】B【答案解析】根据根号函数的性质,应该满足:即[单选题]写出函数的定义域及函数值().A、B、C、D、【正确答案】C【答案解析】分段函数的定义域为各个分段区间定义域的并集,故D=(-∞,-1]∪(-1,+∞).[单选题]6、设函数,则对所有的x,则f(-x)=().A、B、C、D、【正确答案】A【答案解析】本题考察三角函数公式。

.[单选题]7、设则=().A、B、C、D、【正确答案】B【答案解析】令则,故[单选题]8、则().A、B、C、D、【正确答案】D【答案解析】[单选题]9、在R上,下列函数中为有界函数的是().xA、eB、1+sin xC、ln x【正确答案】B【答案解析】由函数图像不难看出在R上e x,lnx,tanx都是无界的,只有1+sinx可能有界,由于|sinx|≤1,|1+sinx|≤1+|sinx|≤2所以有界.[单选题]10、不等式的解集为().A、B、C、D、【正确答案】D【答案解析】[单选题]11、().A、B、C、D、【正确答案】A【答案解析】根据二角和公式,[单选题]12、函数的反函数是().A、B、C、D、【正确答案】A【答案解析】由所以,故.[单选题]13、已知则().A、B、C、D、【正确答案】C【答案解析】[单选题]14、已知为等差数列,,则().A、-2B、1C、3D、7【正确答案】A因为同理可得:故d=a4-a3=-2.[单选题]15、计算().A、B、C、D、【正确答案】A【答案解析】根据偶次根式函数的意义,可知,故[单选题]16、计算().A、0B、1C、2D、4【正确答案】C【答案解析】原式=[单选题]将函数|表示为分段函数时,=().A、B、C、D、【正确答案】B【答案解析】由条件[单选题]18、函数f(x)=是().A、奇函数B、偶函数C、有界函数D、周期函数【正确答案】C【答案解析】易知不是周期函数,,即不等于,也不等于,故为非奇、非偶函数.,故为有界函数.[单选题]19、函数,则的定义域为().A、[1,5]C、(1,5]D、[1,5)【正确答案】A【答案解析】由反正切函数的定义域知:,故定义域为[1,5].[单选题]20、下列等式成立的是()A、B、C、D、【正确答案】B【答案解析】A中(e x)2=,C中,D中[单选题]21、下列函数为偶函数的是()A、y=xsinxB、y=xcosxC、y=sinx+cosxD、y=x(sinx+cosx)【正确答案】A【答案解析】sinx是奇函数,cosx是偶函数。

中国人民大学出版社(第四版)高等数学一第1章课后习题详解

中国人民大学出版社(第四版)高等数学一第1章课后习题详解

中国人民大学出版社(第四版)高等数学一第1章课后习题详解第一章函数、极限与连续内容概要名称主要内容(1.1、1.2)函数邻域(){}δδ<-=axxaU,(即(){},U a x a x aδδδ=-<<+)(){}0,0U a x x aδδ=<-<((){}0,,0U a x a x a xδδδ=-<<+≠)函数两个要素:对应法则f以及函数的定义域D由此,两函数相等⇔两要素相同;(与自变量用何字母表示无关)解析表示法的函数类型:显函数,隐函数,分段函数;特性局部有界性对集合DX⊂,若存在正数M,使对所有Xx∈,恒有()Mxf<,称函数()xf在X上有界,或()xf是X上的有界函数;反之无界,即任意正数M(无论M多大),总存在(能找到)Xx∈,使得()Mxf>局部单调性区间DI⊂,对区间上任意两点21xx,当21xx<时,恒有:()()21xfxf<,称函数在区间I上是单调增加函数;反之,若()()21xfxf>,则称函数在区间I上是单调减小函数;奇偶性设函数()xf的定义域D关于原点对称;若Dx∈∀,恒有()()xfxf=-,则称()xf是偶函数;若Dx∈∀,恒有()()xfxf-=-,则称()x f是奇函数;周期性若存在非零常数T,使得对Dx∈∀,有()DTx∈±,且()()x fTxf=+,则称()x f是周期函数;初等函数几类基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数;反函数求法和性质;复合函数性质;初等函数课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① alog□,( □0>) ② /N □, ( □0≠) ③ (0)≥④ arcsin([]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ; (2)31121121arcsin ≤≤-⇒≤-≤-⇒-=x x x y ;(3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,xx g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数; 思路:注意自变量的不同范围;解:216sin )6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。

大学高数第一章函数和极限

大学高数第一章函数和极限

x1
x1
x1
x1
3lim x2 2 lim x 1
x1
x1
312 2 11 2
可见,上例求极限,可以直接用定理 1.1 中的(1).
只须将 x x0 之 x0 代入函数中的 x 处运算即可。
例 求 limx(x 2) x2 x2 1
解:lx im 2 x(xx2 12)
limx(x2) xl i2m (x2 1)
必经过点(0,1)
f(x)log2 x
f (x)log0.5 x
正弦、余弦函数基本性质
解析式: ysinx/cosx
基本特征:定义域为实数集R,值域为[-1,1],最小正
周期T为 2
正切、余切函数基本性质
解析式: ytanx/cotx
基本性质:正切函数定义域为 {x|x2k,,余kZ}
医用高等数学
第1章 函数和极限
1.1 函数 1.1.1函数的概念
定义 1.1 设 X ,Y 是非空数集,对于集合 X 中的任意一个数 x , 在集合 Y 中均有确定值 y 与其对应,则称 y 是 x 的函数,记为:
y f (x) ,其中 x 称为自变量, y 称为因变量,
其中,集合 X 称为定义域,集合 Y 称为值域。
无界的。
如:函数 y sin x ,在 ,内有界,且:| y | 1
1.1.3复合函数
定义 1.2 如变量 y 是变量 u 的函数,变量 u 又是 变量 x 的函数,即: y f (u), u (x) , 且 u (x) 的值域与 y f (u) 的定义域有公共部分, 则称 y 是 x 的复合函数,记作: y f [(x)]
例 讨论函数 f (x) | x | 当 x 0 时的极限. x

高等数学第一章函数部分的知识点及例题

高等数学第一章函数部分的知识点及例题


2 −1
(6)lim 2
→1 2 −−1
3
2 +1
− 1 > 0
(8) = ቐ 2 +2+1
3 +1
1
→∞ 2
(9) lim
+
2
2
≤0
+⋯

2
,求在0处的极限
五、两个重要极限
sin
lim
→0
一般形式:当 →
=1
sin
0时

,求k=
−3
→3
2 +1
(6) lim
→∞ +1
− + = 0,求a,b。
七、无穷小的比较
设和都是同一过程的无穷小

→0
= 0,则是的高阶无穷小 = 0
若 lim

→0
= ≠ 0,则是的同阶无穷小

若 lim
→0
= 1,则是的等价无穷小~
重点:利用函数连续性求极限
若()为初等函数且在有定义
则 lim = 0
→0
若()是连续的
则 lim
→0
= lim
→0
例题、求下列函数的极限
(1)lim ln
x→0
(4)
sin x
x
2x+3 x+1
lim
x→∞ 2x+1
(2)x→0
lim 1 + 2x
结论:
除0以外,无穷小于无穷大互为导数
无穷小与常数的乘积为无穷小
无穷小与有界函数的乘积为无穷小
例题、求下列函数的极限

《高等数学》函数考点精讲与例题解析

《高等数学》函数考点精讲与例题解析

《高等数学》函数考点精讲与例题解析 第一部分 函数 极限 连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。

它们是每年必考的内容之一。

第一节 函 数内容考点一、函数的定义给定两个非空数集D 和M ,若有对应法则f ,使得对于D 内的每一个x ,都有唯一确定的M y ∈与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,D x ∈,数集D 成为函数的定义域,)(D)(M f ⊂称为值域。

【考点一】会求函数的定义域及其表达式,特别是复合函数的定义域。

二、函数的奇偶性(1)首先必须要求函数的定义域关于原点对称。

例如,)(x f y =的定义域为),(a a -)0(>a 关于原点对称。

(2)验证对于任),(a a x -∈,都有)()(x f x f =-,称)(x f 为偶函数;偶函数)(x f 的图形关于y 轴对称。

(3)验证若对于任),(a a x -∈都有)()(x f x f -=-,称)(x f 为奇函数;奇函数)(x f 的图形关于坐标原点对称。

【考点二】会判定函数)(x f 的奇偶性,不管)(x f 的具体形式是什么,都需要计算)(x f -的值。

如果)()(x f x f =-,则由定义知)(x f 为偶函数;如果)()(x f x f -=-,则由定义知)(x f 为奇函数。

三、函数的周期性对函数)(x f y =,若存在常数0>T ,使得对于定义域的每一个x ,T x +仍在定义域内,且有)()(x f T x f =+,则称函数)(x f y =为周期函数,T 称为)(x f 的周期。

【考点三】判断函数是否为周期函数,主要方法是根据周期函数的定义,要先找到一个非零常数T ,计算是否有等式)()(x f T x f =+成立。

特别要求掌握三角函数的周期性四、函数的有界性设函数)(x f y =在数集X 上有定义,若存在正数M ,使得对于每一个X x ∈,都有M x f ≤)( 成立,称)(x f 在X 上有界,否则,即这样的M 不存在,称)(x f 在X 上无界。

高等数学 函数(习题)

高等数学 函数(习题)

第一章 函数习题1-113、用区间表示满足下列不等式的所有x 的集合(1)3||≤x ; ]3,3[-(2)1|2|≤-x ; ]3,1[(3)ε<-||a x ; ),(εε+-a a(4)5||≥x ; ),5[]5,(+∞--∞(5)2|1|>+x . ),1()3,(+∞--∞14、用区间表示满足下列点集,并在数轴上表示出来:(1)}2|3||{<+=x x A ; )1,5(--(2)}3|2|1|{<-<=x x B . )5,3()1,1( -习题1-22、求下列函数的自然定义域 (2)2112++-=x xy ; 解:⎩⎨⎧≥+≠-02012x x ⇒⎩⎨⎧-≥±≠21x x ⇒),1()1,1()1,2[)(+∞---= f D . (4)21arcsin-=x y ; 解:121≤-x ⇒2|1|≤-x ⇒]3,1[)(-=f D . (6)1||)3ln(--=x x y ;⎩⎨⎧>->-01||03x x ⇒⎩⎨⎧><1||3x x ⇒)3,1()1,()( --∞=f D . (6)6712arccos 2---=x x x y . 解:⎪⎩⎪⎨⎧>--≤-0617122x x x ⇒⎩⎨⎧>+-≤-0)2)(3(712x x x ⇒⎩⎨⎧>-<≤≤3 243x x x 或- ⇒]4,3()2,3[)( --=f D .4、确定函数⎪⎩⎪⎨⎧<<-≤-=.2||1,1,1|| ,1)(22x x x x x f 的定义域并作出函数图形. 解:函数的定义域为 )2,2()(-=f D .其图形为 图形> plot(max((max(1-x^2,0))^(1/2),x^2-1),x=-2..2);7、下列各函数中哪些是周期函数?对周期函数指出其周期(1) x y 2sin =; 解:22cos 1sin )(2x x x f y -===,由于 )(22cos 12)22cos(1)(x f x x x f =-=+-=+ππ, 所以, x y 2sin =是以π为周期的周期函数.注:x T x T x T 2cos )22cos()(2cos 22π=+=+令(2) )cos(θω+=t y (θω,为常数);解:)cos()(θω+==t x f y ,由于)cos()2cos()2(θωθπωωπ+=+±=+t t t f ,, )cos(θω+=t y 是以ωπ2为周期的周期函数.注:)cos()cos()(2θωθωωπω+++=+=t T t T t f T 令 (3) xy 1cos =. 解:x x f y 1cos)(==不是周期函数.因为假设有T ,使得)()(x f T x f =+, 那么 x T x 1cos 1cos =+⇒πk x T x 211+=+ (k 为某整数) ⇒)(2T x x k T x x +++=π⇒)(2T x x k T +=π ⇒ 0=k ⇒0=T .8、设)(x f 为定义在),(l l -内的奇函数,若)(x f 在),0(l 内单调增加,证明)(x f 在)0,(l -内也单调增加.解:)0,(21l x x -∈<∀,有),0(12l x x ∈-<-, ↑)(x f ),0(l ,)()(12x f x f -<-∴,又)(x f 为奇函数,则)()()()(2211x f x f x f x f =--<--=,所以)(x f 在)0,(l -内也单调增加.习题1-33、指出下列函数的复合过程(1)x y 2cos =;解:u y cos =,x u 2=.(2)x e y 1=;解:u e y =,xu 1=.x e y 3sin =;解:u e y =,3v u =,x v sin =.(3))]12arcsin[lg(+=x y ;解:u y arcsin =,v u lg =,12+=x v .4、(1)设12cos )(sin +=x x f ,求)(cos x f . 解:由于2sin 2222cos 12)(sin 2+-=+-⋅-=x x x f , 可见22)(2+-=t t f ,所以x x x f 22sin 22cos 2)(cos =+-=.解2:令x t sin =,则221)sin 21(12cos )(22+-=+-=+=t x x t f ,所以x x x f 22sin 22cos 2)(cos =+-=.(2)设221)1(x x x x f +=+,求)(x f . 解:由于2)1(1)1(222-+=+=+xx x x x x f , 可见2)(2-=t t f , 所以2)(2-=x x f .解2:令xx t 1+=,则22)1(1)(2222-=-+=+=t x x x x t f , 所以2)(2-=x x f .5、已知x x x f -=3)(,x x 2sin )(=ϕ,求)]([x f ϕ,)]([x f ϕ.解:x x x f x f 2sin 2sin )2(sin )]([3-==ϕ,)(2sin ][)]([33x x x x x f -=-=ϕϕ.习题1-42、下列函数中哪些是初等函数?哪些不是初等函数?(1) x x e y 2sin 2+-=;此函数显然是初等函数.(2) )cos 212ln(x x y -+=; 解:此函数显然是初等函数.(3) ⎩⎨⎧<≥-=.0 ,3,0 ,1x x y 解:此函数不是初等函数.(简单的判断:因为函数不连续,由后面知识知函数不是初等函数)(4) ⎩⎨⎧<<+-≤≤-+=.10 ,12,01 ,1x x x x y 图形> plot([x+1,-2*x+1],x=-1..1); 解:令1+=x u ,12+-=x v ,11≤≤-x ,有 2||},min{v u v u v u y --+== 2)]12()1[()12()1(2+--+-+-++=x x x x 2)3(22x x --=, 11≤≤-x ,故此函数是初等函数.3、函数⎩⎨⎧>≤-=.1,,1 ,2x x x x y 能用一个解析式表示吗?为什么? 图形> plot([2-x,x],x=-1..3); 解:令x u -=2,x v =,有 2||},max{v u v u v u y -++== 2])2[()2(2x x x x --++-=1)1(2)22(222+-=-+=x x , 故此函数能用一个解析式表示,当然是初等函数.4、由xy 2=的图形作下列函数的图形x y 23⋅=; 图形> plot([3*2^x,2^x],x=-2..2);(2) 42+=x y ; 图形> plot([2^x+4,2^x],x=-2..2);(3) x y 2-=; 图形> plot([-2^x,2^x],x=-2..2);(4) x y -=2. 图形> plot([2^(-x),2^x],x=-2..2);5、由x y lg =的图形作下列函数的图形(1) x y lg 3=;图形> plot([3*ln(x)/ln(10),ln(x)/ln(10)],x=0..2,-2.5..2);(2) 2lg x y =;图形> plot([2*ln(abs(x))/ln(10),ln(x)/ln(10)],x=-2..2,-2.5..2); (3) x y lg =; 图形> plot([1/2*ln(x)/ln(10),ln(x)/ln(10)],x=0..2,-1..1); (4) xy 1lg =. 图形> plot([-ln(x)/ln(10),ln(x)/ln(10)],x=0..2,-1..1);6、由x y sin =的图形作下列函数的图形(1) x y 2sin =; 图形> plot([sin(2*x),sin(x)],x=-2*Pi..2*Pi);(2) x y 2sin 2=; 图形> plot([2*sin(2*x),sin(x)],x=-2*Pi..2*Pi);(3) x y 2sin 21-=; 图形> plot([1-2*sin(2*x),sin(x)],x=-2*Pi..2*Pi);习题1-51、某运输公司规定货物的吨公里运输价为:在a 公里以内,每公里k 元;超过a公里,超过部分每公里k 54元.求运价m 和里程s 之间的函数关系. 解:⎪⎩⎪⎨⎧>-+≤≤=. ),(54,0 ,a s a s k ka a s ks m2、拟建一个容积为v 的长方体水池,设它的底为正方形,如果池底所用材料单位面积的造价是四周单位面积造价的2倍,试将总造价表示成底边长的函数,并确定此函数的定义域.,设底边长为x ,四周单位面积造价为a ,则水池高为2x v , 那么总造价为 )2(242222xv x a x v x a ax y +=⋅⋅⋅+=, ),0(+∞∈x .3、设一矩形面积为A ,试将周长s 表示为宽x 的函数,并求其定义域. 解:依题意,矩形的长为x A ,于是周长s 为 )(2xA x s +=, ),0(+∞∈x .4、在半径为r 的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域.解:依题意,设圆柱的高为h ,圆柱的半径为22)2(hr -,那么圆柱的体积为 )4()2(22222h r h h h r y -=⎥⎦⎤⎢⎣⎡-=ππ, )2,0(r h ∈.5、用铁皮做一个容积为v 的圆柱形罐头筒,试将它的全面积表示成底半径的函数,并确定此函数的定义域.解:依题意,设底半径为r ,则圆柱形底面积为2r π,高为2r v π,那么全面积为 )(222222rv r r v r r S +=⋅+=ππππ, ),0(+∞∈r .6、按照银行规定,某种外币一年期存款的年利率为%2.4,半年期存款的年利率为%0.4,每笔存款到期后,银行自动将其转为同样期限的存款,设将总数为A 单位货币的该种外币存入银行,两年后取出,问存何种期限的存款能有较多的收益?多多少?解:依题意,半年期存款两年后本利和为41%)0.45.01(⨯+=A A ,一年期存款两年后本利和为22%)2.41(+=A A ,由于 A A A A A 00333184.0%)0.45.01(%)2.41(4212=⨯+-+=-.所以, 一年期存款有较多的收益,多A 00333184.0.7、某工厂生产某种产品,年产量为x ,每台售价250元,当年产量600台以内时,可以全部售出, 当年产量超过600台时,经广告宣传又可再多售出200台,每台平均广告费20元,生产再多,本年就售不出去了,建立本年的销售总收入R 与年产量x 的函数关系.解:(1)当6000≤≤x 时, x R 250=;(2)当800600≤<x 时,12000230)600(20250+=--=x x x R ;(3)当800>x 时,19600012000800230=+⨯=R .所以⎪⎩⎪⎨⎧>≤<+≤≤=.800 ,196000,800600 ,12000230,6000 ,250x x x x x R习题1-61、某厂生产录音机的成本为每台50元,预计当以每台x 元的价格卖出时,消费者每月购买x -200台,请将该厂的月利润表达为价格x 的函数.解:依题意,月收入为)200(x x R -=,成本为)200(50x C -=,则月利润为)50)(200()200(50)200(--=---=-=x x x x x C R L .2、当某商品价格为P 时,消费者对该商品的月需求量为P P D 20012000)(-=.(1)画出需求函数图形;(2)将月销售额(即消费者购买此商品的支出)表达为价格的函数;(3)销售额的图形,并解释其经济意义.解:(1) 图形> plot(12000-200*p,p=0..61);(2)月销售额220012000)()(P P P D P P R -=⋅=.(3) 图形> plot(12000*p-200*p^2,p=0..61);由于180000)30(20020012000)(22+--=-=P P P P R ,于是 ①当商品价格不超过30时,月销售额随价格上涨而增加;②当商品价格达到30时,月销售额随价格达到最大180000;③当商品价格超过30时,月销售额随价格上涨而减少;④当商品价格达到60时,因无需求量而使得月销售额0.3、报纸的发行量以一定的速度增加,三个月前发行量为32000份,现在为44000份.(1)写出发行量依赖于时间的函数关系,并画出图形;2个月后的发行量是多少?解:(1)依题意,报纸的发行量每月增加400033200044000=-份,若以现在为时间起点,用x 表示报纸发行的月份数,那么发行量为440004000+=x y . 图形> plot(4000*x+44000,x=0..2);(2)2个月后的发行量是520004400024000=+⨯=y 份.4、某厂生产的手掌游戏机每台可卖110元,固定成本为7500元,可变成本为每台60元.(1) 要卖多少台手掌机,厂家才可保本(收回投资)?(2) 卖掉100台的话,厂家赢利或亏损了多少?(3) 要获得1250元利润,需要卖多少台?解:依题意,设手掌机卖掉x 台,则厂家赢利为750050)607500(110-=+-=-=x x x C R L .(1)令0750050=-=x L ,有150=x ,即要卖150台手掌机,厂家才可保本.(2)因2500750010050-=-⨯=L ,可见卖掉100台的话,厂家亏损2500元.(1)令1250750050=-=x L ,有175=x ,即要获得1200元利润,需要卖175台.5、有两家健身俱乐部,第一家每月会费300元,每次健身收费1元, 第二家每月会费200元,每次健身收费2元,若只考虑经济因素,你会选择哪一家俱乐部(根据年每月健身次数决定)?解:依题意,设每月健身次数为x 次,则第一家与第二家消费费用差额为x x x y -=+-+=100)2200()300(.所以,当每月健身次数小于100次时,0>y ,说明第一家比第二家消费费用要高,当然选择第二家,否则应选择第一家.6、设某商品的需求函数与供给函数分别为PP D 5600)(=和10)(-=P P S . (1)找出均衡价格,并求此时的供给量与需求量;(2)在同一坐标中画出供给与需求曲线;(3)何时供给曲线过P 轴,这一点的经济意义是什么?(1)令)()(P S P D =,即105600-=P P,得均衡价格80=P . 此时的供给量70805600)80(==D ,需求量701080)80(=-=S . (2) 图形> plot([5600/p,p-10],p=8..100);(3)令010)(=-=P P S ,得10=P ,说明只有当商品的价格超过10时,才有厂家愿意生产并提供该商品出售.7、某化肥厂生产某产品1000吨,每吨定价为130元,销售量在700吨以内时,按原价出售,超过700吨时超过的部分需打9折出售,请将销售总收益与总销售量的函数关系用数学表达式表出.解:设总销售量为Q 吨, 销售总收益为R 元,依题意有(1)当7000≤≤Q 时, Q R 130=; (2)当1000700≤<x 时,9100117)700(%90130700130+=-⨯⨯+⨯=Q Q R .所以⎩⎨⎧≤<+≤≤=.1000700 ,9100117,7000 ,130Q Q Q Q R8、某饭店现有高级客房60套,目前租金每天每套200元则基本客满,若提高租金,预计每套租金每提高10元均有一套房间空出来,试问租金定为多少时,饭店房租收入最大?收入多少元?这时饭店将空出多少套高级客房?解:依题意,设每套租金提高n 10元,59,,2,1,0 =n ,饭店房租收入为1200040010)60)(10200(2++-=-+=n n n n R16000)20(102+--=n . 可见,当20=n 时, 房租收入达到最大16000=R 元,此时每套租金为4002010200=⨯+元,这时饭店将空出20=n 套高级客房.。

高数第一章+习题详细解答

高数第一章+习题详细解答

习 题 1-11.求下列函数的自然定义域:(1)211y x =-;解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -=解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅.(3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<.(4)312x xy -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞.(6)1arctan y x =解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且.2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++-(0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-; 当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +; 当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+; 当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅.3.设21()1,f x x ⎛⎫= ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫=- ⎝,则 2211(2)142a f a a a a -⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4.设1||1,()0||1,()21|| 1.x x f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21x x xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,1012||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11 ||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1, 1.x x f f x x +<-⎧=⎨≥-⎩证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证.6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么?(1)))()ln,()ln3f x x g x ==- ;不是,因为定义域和对应法则都不相同. (2)()()f x g x == 是.(3)22()2,()sec tan f x g x x x ==-; 不是,因为对应法则不同. (4)2()2lg ,()lg f x x g x x ==; 不是,因为定义域不同.7.确定下列函数在给定区间内的单调性: (1)3ln y x x =+,(0,)x ∈+∞;解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x-=-,(,1)x ∈-∞.解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1x y x -=-是单调递减的.8. 判定下列函数的奇偶性.(1)lg(y x =;解:因为1()lg(lg(lg(()f x x x x f x --=-==-=-,所以lg(y x =是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数.(3)22cos sin 1y x x x =++-; 解:因为2()2c o s s i n 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22c o s s i n 1y x x x =++-既非奇函数,又非偶函数.(4)2x xa a y -+=.解:因为()()2x x a a f x f x -+==,所以函数2x xa a y -+=是偶函数. 9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数; (2)()f x 可表示成偶函数与奇函数之和的形式. 证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则 ()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证.10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界. 证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M ≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期: (1)|sin |y x =; 周期函数,周期为π. (2)1sin πy x =+; 周期函数,周期为2. (3)tan y x x =; 不是周期函数. (4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数:(1)331xx y =-;解:依题意,31x y y =-,则3log 1yx y =-,所以反函数为13()log ,(,0)(1,)1xf x x x -=∈-∞⋃+∞-.(2)()ax by ad bc cx d+=≠+;解:依题意,b dy x cy a -=-,则反函数1()()b dxf x ad bc cx a--=≠-.(3)(lg y x =;解:依题意,1(1010)2y y x -=+,所以反函数11()(1010),2x x f x x R --=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤ ⎪⎝⎭.解:依题意,arccos32yx =,所以反函数1arccos 3(),[0,3]2x f x x -=∈.13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-. 解:(1)215()e ,(0),(2)x y f x f e f e +====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πVh V r H r=∈.15.某城市的行政管理部门,在保证居民正常用水需要的前提下,为了节约用水,制定了如下收费方法:每户居民每月用水量不超过4.5吨时,水费按0.64元/吨计算.超过部分每吨以5倍价格收费.试建立每月用水费用与用水数量之间的函数关系.并计算用水量分别为3.5吨、4.5吨、5.5吨的用水费用.解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2, 4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以(3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+ , (1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-= 1022121||||,331393a -=-=100220121||||33013903a -=-=. (2) 要使 42||10,3n a --< 即 4113310<(n+1), 则只要9997,9n > 取N =99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立. (3)要使2||3n a ε-<成立,13,9n εε-> 取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-< 成立.2.根据数列极限的定义证明:(1)1lim 0!n n →∞=; (2)1n →∞=. 解:(1)0ε∀>, 要使111|0|!!n n n ε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使2212)nε-=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有1|ε<, 则1n →∞=. 3.若lim n n x a →∞=,证明lim||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0,由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对0ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim||||n n x a →∞=. 同理可证0a <时, lim||||n n x a →∞=成立.反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-, ||1n x =,显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=.证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>, 存在N ,当n N >时, |0|n y ε-<, 因为对上述N , 当n N >时, |0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=.5.设数列{}n x 的一般项(3)π2n n x +=,求lim n n x →∞.解: 因为0x =, (3)π|cos |12n +≤, 所以 (3)π02x n +=. 6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞.证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<, 同理,0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时,||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<?解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<,只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X 等于多少,使当||x X >时,|2|0.001y -<?解:要使222217|2||2|3|3|x y x x +-=-=--<0.001, 只要2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X ≥3.根据函数极限的定义证明:(1)3lim(21)5x x →-=; (2)35lim31x x x →∞+=-;(3)224lim 42x x x →--=-+; (4)lim0x =. 证明:(1) 由于|(21)5|2|xx --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim(21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时, 对0ε∀>,总有35|3|1x x ε+-<-,故有35lim 31x x x →∞+=-.(3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim 42x x x →--=-+.(4) 由于0|-=<,任给0ε>,要使0|ε-<,ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有|0|ε<,故lim 0x =. 4.用X ε-或εδ-语言,写出下列各函数极限的定义: (1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=; (3)lim ()x af x b +→=; (4)3lim ()8x f x -→=-. 解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<; (4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<. 5.证明:0lim ||0x x →=.证明: 由于0lim ||lim 0x x x x ++→→==, 0lim ||lim()0x x x x --→→=-=,所以0lim ||0x x →=. 6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则l i m ()x f x A →∞=.证明: 由于li m ()x f x A →+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A →-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M >时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x =为当x →∞时的无穷小;(3)13xy x+=为当0x →时的无穷大.证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故211lim 01x x x →-=+.(2) 0ε∀>,因为111|sin 0||sin |||||x x x x x -=≤,取1M ε=, 则当||x M >时, 总有1|sin |1|sin 0|||||x x x x x ε-=≤<, 故1lim sin 0x x x →∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x M x x x +=+>->,所以 013lim x x x→+=∞. 2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大?解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数 sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的. 0M ∀>,π2π2n x n ∃=+且()n x n →+∞→∞, πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,取[]01N M =+, 00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M =+≥,所以sin y x x =是无界的.3.证明:函数11cos y x x=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1t x=,类似第2题可得.习 题 1-51.求下列极限:(1)23231lim 41n n n n n →∞+++-;(2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ ; (3)22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭ ;(4)1132lim 32n nn n n ++→∞+-; (5)2211lim 54x x x x →--+;(6)3221lim 53x x x x →+-+;(7)limx →+∞;(8)2221lim 53x x x x →∞+++;(9)330()lim h x h x h→+-;(10)22131lim 41x x x x →+-+;(11)3131lim 11x x x →⎛⎫- ⎪--⎝⎭; (12)23lim 531x x xx x →∞+-+;(13)x →(14)3lim 21x x x →∞+;(15)3lim(236)x x x →∞-+;(16)323327lim 3x x x x x →+++-.解:(1) 23231lim 41n n n n n →∞+++- = 233311lim 0411n n n n n n→∞++=+-. (2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ = 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦ = 1lim(1)11n n →∞-=+. (3) 22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭=21(1)12lim 2n n n n →∞+=. (4) 1132lim 32n nn n n ++→∞+-=21()13lim 2332()3n n n →∞+=-⋅. (5) 2211lim 54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim 43x x x →+=--.(6) 3221lim 53x x x x →+-+=322132523+=--⨯+.(7) limx →+∞=limx=limx=111lim2x -=. (8) 2221lim53x x x x →∞+++=2212lim 2531x x x x→∞+=++. (9) 330()lim h x h x h →+-=322330(33)lim h x x h xh h x h→+++-=3220lim(33)3h x xh h x →++=.(10) 3131lim 11x x x →⎛⎫- ⎪--⎝⎭=2313(1)lim 1x x x x →⎛⎫-++ ⎪-⎝⎭=21(1)(2)lim (1)(1)x x x x x x →-+-++ =212lim 11x xx x →+=++. (11) 23lim 531x x x x x →∞+-+=22311lim 0315x x x x x→∞+=-+.(12) x →=x →=x →(13) 3lim 21x x x →∞+=2lim 12x x x→∞=+∞+.(14) 3lim(236)x x x →∞-+=32336lim (2)x x x x→∞-+=∞.(15) 323327lim 3x x x x x →+++-=32331lim(327)lim 3x x x x x x →→+++⨯=∞-.2.设,0,()2,0.x e x f x x a x ⎧<=⎨+≥⎩问当a 为何值时,极限0lim ()x f x →存在.解:因为0lim ()lim 1,lim ()lim(2)x x x x x f x e f x x a a --++→→→→===+=,所以,当0lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在.3.求当x 1→时,函数12111x x e x ---的极限. 解:因为11211111limlim(1)0,1x x x x x e x e x ----→→-=+=- 11211111lim lim(1),1x x x x x e x e x ++--→→-=+=+∞- 所以12111lim1x x x e x -→--不存在。

大学高等数学第一章函数习题精讲

大学高等数学第一章函数习题精讲

大学高等数学第一章函数习题精讲数学作为一门基础学科,在大学的学习中扮演着重要的角色。

其中,高等数学作为数学学科中的重要组成部分,对于提高学生的数学素养和培养逻辑思维能力具有至关重要的作用。

大学高等数学第一章函数是学习高等数学的第一步,是打好数学基础的关键。

本文将对大学高等数学第一章函数习题进行精讲,帮助学生更好地理解和掌握相关知识。

第一节求函数的定义域和值域在函数的相关概念中,定义域和值域是非常重要的内容。

定义域指的是函数在哪些实数上有定义,而值域则是函数所能取到的所有值的集合。

在求函数的定义域和值域时,需要根据函数的具体特点来进行分析。

例题1:对于函数f(x) = √(x + 1),求函数的定义域和值域。

解析:首先,要使函数有意义,要求x + 1 ≥ 0,即x ≥ -1。

所以函数的定义域为 [-1, +∞)。

然后,考虑函数的值域,由于x + 1 ≥ 0,所以函数的平方根√(x + 1) ≥ 0,即函数的值域为[0, +∞)。

例题2:对于函数 g(x) = 1 / (x - 3),求函数的定义域和值域。

解析:首先,要使函数有意义,要求 x - 3 ≠ 0,即x ≠ 3。

所以函数的定义域为 (-∞, 3) ∪ (3, +∞)。

然后,考虑函数的值域,由于 x - 3 ≠ 0,因此函数 g(x) 可以取到任意实数值,所以函数的值域为 (-∞, +∞)。

第二节求函数的奇偶性在函数的研究中,了解函数的奇偶性是十分重要的。

奇函数是指满足 f(-x) = -f(x) 的函数,而偶函数是指满足 f(-x) = f(x) 的函数。

通过判断函数的奇偶性,可以简化计算和图像的分析。

例题3:判断函数 f(x) = x^3 是否为奇函数。

解析:对于任意实数 x,有 f(-x) = (-x)^3 = -x^3。

而 f(x) = x^3。

由于 f(-x) = -f(x),所以函数 f(x) = x^3 是一个奇函数。

例题4:判断函数 g(x) = x^2 + 3 是否为偶函数。

高等数学习题[附答案解析与解析]

高等数学习题[附答案解析与解析]

第一章 函数与极限§1 函数必作习题P16-18 4 (5) (6) (8),6,8,9,11,16,17必交习题一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从出站经过T 时间后,又以等减速度a 2进站,直至停止。

(1) 写出火车速度v 与时间t 的函数关系式;(2) 作出函数)(t v v =的图形。

二、 证明函数12+=x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin)(2= ;(2)1212)(+-=x x x f ;(3))1ln()(2++=x x x f 。

四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

§2 初等函数必作习题P31-33 1,8,9,10,16,17必交习题一、 设)(x f 的定义域是]1,0[,求下列函数的定义域:(1))(x e f ;(2))(ln x f ;(3))(arcsin x f ;(4))(cos x f 。

二、(1)设)1ln()(2x x x f +=,求)(x e f -;(2)设23)1(2+-=+x x x f ,求)(x f ;(3)设xx f -=11)(,求)]([x f f ,})(1{x f f 。

)1,0(≠≠x x三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。

四、设⎩⎨⎧>+≤-=0,20,2)(x x x x x f ,⎩⎨⎧>-≤=0,0,)(2x x x x x g ,求)]([x g f 。

§3 数列的极限必作习题P42 3 (3) (4),4,5,6必交习题一、 写出下列数列的前五项 (1)3sin 31n n x n =;(2)n n n n x n ++++++=22212111 ;(3)nx n x n n n)1(1211122-=+++=-, 。

高等数学第一章习题集(函数与极限)

高等数学第一章习题集(函数与极限)

6
高等数学习题集
(5) lim 1 x 1 x ;
x0
x
(6)
lim
x1

x
1 1

3 x3 1


3.

lim
x

x2 1 x 1

ax

b


0,
求 a 和 b 的值.
7
高等数学习题集
§1.6 极限存在准则 两个重要极限
1. 选择题.
(1)
lim
x x0
f
(x )存在是
f (x) 在 x0 的某一去心领域内有界的______ 条件.
(2)
设函数
ax2 f (x)
2x 1
x 1, 且 lim f (x) 存在,则 a _____. x 1 x1
3* 根据函数极限的定义证明:
(1)
lim
x
1 x3 2x3
x x0
x x0
A) lim f x lim f x
x x0
x x0
C) lim f x 不一定存在 x x0
(2) lim x2 9 (
).
x3 x 3
).
B) lim f x lim f x
x x0
x x0
1 x sin x 1
(题集
§1.8 函数的连续性与间断点
1. 选择题.
(1) 设 f x 在 x x0 处 连 续 , 且 存 在 0 , 使 当 0 x x0 时 有 f x 0, 则
(
).
A) f x0 0

高等数学第一章习题

高等数学第一章习题

第一章 函数第一节 函数的概念1. 求下列函数的定义域:(1)y = (2)121y x =-(3)y =(4)sin y =(5)y =arcsin(x -3)(6)1ln(1)y x =-(7)y =(81arctan y x =)2.设f (x )的定义域是[0, 1], 求下列函数的定义域:(1) f (e x );(2) f (ln x );(3) f (arctan x );(4) f (cos x ).3.设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2)。

.4.设32(3)2251,()f x x x x f x +=-+-求;5.设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )]。

..第二节 函数的几种特性1.试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).2.设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.3.证明21()f x x=在()0,1内无界4.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1)y=cos(x-2);(2)y=cos 4x;(3)y=1+sin πx;(4)y=x cos x;(5)y=sin2x.第三节 初等函数1.在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; (2) y =sin u , u =2x , ,81π=x ,42π=x ; (3)u y =, u =1+x 2, x 1=1, x 2= 2;(4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=-1.2.下列初等函数由哪些基本初等函数复合而成?(1)()2arccos 1y x =-(2)2sec 24y x π⎛⎫=-⎪⎝⎭(3)(sin cos y ⎡⎤=⎣⎦(4)y =3.将下列三角函数积化和差:(1)sin 2sin8αα (2)sin5cos3αα(3)cos6sin 2αβ (4)cos3cos 4αβ4.证明:(1)arcsin arccos 2x x π+=(2)arctan cot 2x arc x π+=5.证明:(1)()sh x y shxchy chxshy ±=±(2)()ch x y chxchy shxshy ±=±6.证明:(1)反双曲正弦函数(ln y arshx x ==(2)反双曲余弦函数(ln y archx x ==7.下列函数是否为初等函数?(1)y x = (2)(sin y = (3)xy x x =+ (4)311112x x x y e x ⎧--≤≤=⎨<≤⎩第四节 两个常用不等式1. 设12,,...,n a a a 是n 个正数,称12111(...)n na a a +++为12,,...,n a a a 的调和平均值,利用算术平均值与几何平均值的关系证明几何平均值与调和平均值的关系:对任意n 个正数12,,...,n a a a有12111(...)nn a a a ≤+++2.证明下列不等式:(1)1212......n n x x x x x x +++≤+++(2)1212...(...)n n x x x x x x x x ++++≥-+++总复习题一1.填空题.(1)设()f x =,则()f x 的定义域为(2)设101(),212x f x x ≤≤⎧=⎨-<≤⎩则(2)f x +的定义域为 (3)设()1f x x =+,则1f f x ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=(4)设21()1424x x x f x xx x -∞<<⎧⎪=≤≤⎨⎪<<+∞⎩,则其反函数是2.选择题: (1)已知()f x 在[]2,2-上为偶函数 ,且()[]()222,0f x x x x =+∈-,那么当[]0,2x ∈时,()f x 的表达式为() ()()()()22222,2,2,2.A x x B x x C x x D x x +--+--(2)设()g x 在[],a b 上单调,()f x 在()(),g a g b ⎡⎤⎣⎦上单调,则()()f g x -( ) ()[]()[]()[]()[]A .在a,b 上单增,B 在a,b 上单减,C 在-b,-a 上单增,D 在-b,-a 上单减(3)下列函数中是偶函数的应为( )()()(()()[]()()()((()()()2ln ,22,sgn cos x x A f x x B f x x C f x D f x x x ===+=⋅(4)下列函数中不是周期函数的应为( )()()()()()()()()[]2sin ,sincos 23sin 2cos ,x x A f x x B f x C f x x x D f x x x π==+=+=-3.计算题。

高等数学各章知识要点及典型例题与习题详细精解

高等数学各章知识要点及典型例题与习题详细精解

第一章 函数、极限、连续第1节 函数★基本内容学习一 基本概念和性质1函数的定义设有两个变量x 和y ,变量x 的变域为D ,如果对于D 中的每一个x 值,按照一定的法则,变量y 有一个确定的值与之对应,则称变量y 为变量x 的函数,记作:()y f x =。

2函数概念的两要素①定义域:自变量x 的变化范围②对应关系:给定x 值,求y 值的方法。

3函数的三种表示方法①显式:形如()y f x =的称作显式,它最直观,也是初等函数一般采用的形式。

②隐式:有时有些关系用显式无法完全表达,这时要用到隐式,形如(,)0F x y =,如椭圆函数22221x y a b+=。

③参数式:形如平抛运动的轨迹方程212x vt y gt =⎧⎪⎨=⎪⎩称作参数式。

参数式将两个变量的问题转化为一个变量的问题,从而使很多难以处理的问题简化。

4函数的四个基本性质①奇偶性:设函数()f x 在对称区间X 上有定义,如果对于x X ∀∈恒有()()f x f x =- (或)()()f x f x =--,则称()f x 为偶函数(或()f x 奇函数)。

注:偶函数()f x 图形关于y 轴对称,奇函数()f x 的图形关于坐标原点对称。

②有界性:设函数()f x 在区间X 上有定义,如果0M ∃>,使得对一切x X ∈,恒有:()f x M ≤,则称()f x 在区间X 上有界;若不存在这样的0M >,则称()f x 在区间X 上无界.注:函数()f x 有无界是相对于某个区间而言的。

③周期性:设函数()f x 在区间X 上有定义,若存在一个与x 无关的正数T ,使对任一x X ∈,恒有()()f x T f x += 则称()f x 是以T 为周期的周期函数,把满足上式的最小正数T 称为函数()f x 的周期。

④单调性:设函数()f x 在区间X 上有定义,如果对1212,,x x X x x ∀∈<,恒有:()()12f x f x ≤(或()()12f x f x ≥)则称()f x 在区间X上是单调增加(或单调减少)的;如果对于1212,,x x X x x ∀∈<,恒有:()()12f x f x < (或()()12f x f x >)则称()f x 在区间X上是严格单调增加(或严格单调减少)的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 函 数§1.1 函数的概念与性质1. 绝对值与不等式(0>a ,0b >)(1)x x x -≤≤;x y x y x y -≤±≤+ (2)2112a ba b+≤≤+(调和平均值≤几何平均值≤算术平均值) 一般地,12212111nn n nx x x n x nx x x +++≤≤+++(3){}max ,22a b a b a b -+=+;{}min ,22a ba b a b -+=- 2. 函数概念与性质对变量D x ∈的每一个确定值,变量y 按某确定规则f ,都有且只有一确定值与之对应,则称变量y 是变量x 的函数,记为()y f x =,D x ∈。

注意:定义域D 和对应规则f 是函数相等的两要素。

(1)无关性 ()()y f x f t == D t x ∈, (2)单调性 1212,,x x I x x ∀∈<1212()()()()()()f x f x f x f x f x f x ≤⇒⎧⎨≥⇒⎩单调递增单调递减;1212()()()()()()f x f x f x f x f x f x <⇒⎧⎨>⇒⎩严格单增严格单减(3)奇偶性 ()()()()()()f x f x f x y f x f x f x -=⇒⎧⎨-=-⇒⎩为偶函数,对称于轴为奇函数,对称于原点注意:函数的奇偶性是相对于对称区间而言,若定义域关于原点不对称,则不是奇/偶函数。

(4)周期性 若()()f x T f x +=,0T >,则称为)(x f 的周期。

(5)有界性 若D x ∈∀,M x f ≤)(,()0>M ,则称)(x f 在D 上有界。

常用有界函数:sin 1x ≤,cos 1x ≤,(,)-∞+∞;arcsin 2x π≤,arccos x π≤,[]1,1-;arctan 2x π<,arccot x π<,(,)-∞+∞3. 复合函数设)(u f y =的定义域为f D ,)(x u ϕ=的值域为ϕZ ,且Φ≠ϕZ D f (空集),则称[])(x f y ϕ=为x 的复合函数。

4. 反函数 设1()()f f ffy f x D Z y f x Z D -=⎧⎪⎨=⎪⎩定义域为值域为定义域为值域为注意:正反函数的图形对称于直线x y =;严格单调函数必有反函数;1()f f x x -⎡⎤=⎣⎦()f x f x Z ∈的;[]1()f f x x -= ()f x f x D ∈的 5. 初等函数由基本初等函数经过有限次的四则运算和有限次复合而成的,并能用一个解析式表示的函数称为初等函数。

基本初等函数:幂函数μx y =(μ为实数);指数函数xa y =(0>a ,1≠a );对数函数x y a log =(0>a ,1≠a );三角函数x y sin =,x cos ,x tan ,x cot ,x sec ,x csc ;反三角函数x y arcsin =,x arccos ,x arctan ,x arc cot .6. 分段函数与幂指函数分段函数一般不属于初等函数,因为一般在其定义域内不能用一个解析式表示; 幂指函数xy x =一般不属于初等函数,因为它无法用初等函数复合而成;但若规定0x >,则ln x x x y x e ==,是初等函数。

§1.2 典型例题解析例3 已知不等式211x x +>-,用区间表示不等式的解集 分析 解此不等式应先去掉绝对值符号,由于12x =-,1x =分别为21x +,1x -的零值点,于是将区间划分为1(,)2-∞-,1[,1]2-,(1,)+∞,再考虑各小区间x 的取值范围及端点,最后综合得出结论。

解法1 1211(,)21211211(,1)2211(1,)x x x x x x x x ⎧-->--∞-⎪⎪⎪+>-=+>--⎨⎪+>-+∞⎪⎪⎩12(,)210(,1)22(1,)x x x ⎧<--∞-⎪⎪⎪=>-⎨⎪>-+∞⎪⎪⎩⇒ (,2)(0,)x ∈-∞-+∞解法2 22(21)(1)x x +>- ⇒ (2)0x x +> ⇒ (,2)(0,)x ∈-∞-+∞1. 函数定义域的求法解题思路(1)分式的分母0≠,对数的真数0>,偶次方根下的表达式0≥,反正弦、反余弦号内的表达式绝对值1≤;(2)复合函数的定义域=简单函数的定义域所构成的不等式组的解集。

例4 求下列函数的定义域(1)1arcsin4xy -=+; 解 21141lg(2)020340xx x x x ⎧-≤⎪⎪⎪--≥⎨⎪->⎪--≠⎪⎩ ⇒351221;4x x x x x -≤≤⎧⎪≤⎪⎨>⎪⎪≠-≠⎩ ⇒ (](2,4)4,5(2)已知()f x 的定义域是[]0,1,试求()()f x a f x a ++- (0)a >的定义域 解 ()f x a +的定义域:01x a ≤+≤ ⇒ 1a x a -≤≤-()f x a -的定义域:01x a ≤-≤ ⇒ 1a x a ≤≤+; ()()f x a f x a ++-的定义域:[][],1,1x a a a a ∈--+当1a a -<,12a >时,定义域为空集;当1a a -≥,12a ≤时,定义域为[],1a a -;故取交集定义域为[],1a a -2. 函数解析式的求法解题思路(1)将已知变量凑成与()f 内的中间变量一致的形式,利用函数的无关特性求解; (2)对()f 内作变量代换,再利用无关特性与原方程联立求解。

(3)由[]()f x ϕ的表达式求)(x f 的一般方法是令()u x ϕ=,从中解出1()x u ϕ-=,将其代入[]()fx ϕ中可得()f u例5 求下列函数解析式(2)已知x xbf x af sin )1()(=-+,()a b ≠, 求)(x f ; 解 令x t 1-=代入原式得 11()()sin()bf t af t t+-=-,则 1()()sin 11()()sin()af x bf x xbf x af x x ⎧+-=⎪⎪⎨⎪+-=-⎪⎩⇒ )1sin sin (1)(22x b x a b a x f +-= (3)已知411()ln ln(1)2f x x x x +=-+,求)(x f ; 解法12442221111111()ln ln(1)ln ln ln 1122122()2x f x x x x x x x x x+=-+===+++-令1x t x +=,则 211()ln 22f t t =- ⇒ 211()ln 22f x x =- 解法2 将x 换成1x,得4111()ln ln(1)2f x x x x +=--+,和原式相加得4411112()ln(1)ln(1)22f x x x x+=-+-+222211111()ln()ln ()242f x x x x x x ⎡⎤+=-+=-+-⎢⎥⎣⎦令1x t x +=,则 211()ln 22f t t =- ⇒ 211()ln 22f x x =- 例6 求下列函数解析式(1)已知221(ln )1x f x x -=+,()x ϕ的定义域为0x <,且[]()x f x e ϕ=,求()x ϕ解 令ln u x =,22ux e =,221()1u u e f u e -=+,且[]()xf x e ϕ=,则2()2()11x x x e e e ϕϕ-=+ ⇒ 2()11x x xe e eϕ+=- ⇒ 11()ln 21x x e x e ϕ+=-(0x <) (2)已知11(ln )ln 01x x f x x x ->⎧=⎨<≤⎩,求)(x f解 令ln u x =, ux e =,则110()010u u ue e uf u u e u ⎧->⇒>=⎨<≤⇒≤⎩ ⇒ 10()0x e x f x xx ⎧->=⎨≤⎩ 3. 利用定义确定函数的有关特性解题思路(1)若()()0f x f x +-=,则()f x 为奇函数;(2)若T 是()f x 的周期,则()b ax f +的周期为/T a ;若()f x ,()g x 分别是以1T ,2T 12()T T ≠为周期的函数,则()()f x g x ±的周期为1T ,2T 的最小公倍数。

(3)将函数取绝对值,由不等式的缩放法或求函数的最值确定函数的有界性; (4)若12x x <,且21()()0f x f x -≥,21()/()1f x f x ≥,则可确定()f x 单增性。

例7 设)()()(y F x F y x F +=+,求)1121)((xax F y +-=,(0,1)a a >≠的奇偶性 解 设)1(211121)(x x x a a a x g +-=+-=,11()()2(1)2(1)x x x x a a g x g x a a -----==-=-++ 由于)()()(y F x F y x F +=+,分别令0=y ,x y -=,得0)0(=F()()(0)0F x F x F +-== ⇒ )()(x F x F -=-即)(x F 为奇函数,故)1121)((xa x F y +-=为偶函数。

例8 设()f x 在[],a a -(0)a >上有定义,证明:()f x 可表示为一个奇函数与一个偶函数的和,且表示法唯一分析 若()()x x ϕϕ-=,()()x x ψψ-=-,则有()()()f x x x ϕψ=+,()()()f x x x ϕψ-=-,由此引入辅助函数证 设[]1()()()2x f x f x ϕ=+-,[]1()()()2x f x f x ψ=-- [][]11()()()()()()22x f x f x f x f x x ϕϕ-=-+=+-=[][]11()()()()()()22x f x f x f x f x x ψψ-=--=---=-故()x ϕ为偶函数,()x ψ为奇函数,且[][]11()()()()()()()22x x f x f x f x f x f x ϕψ+=+-+--=唯一性:设另有偶函数1()x ϕ及奇函数1()x ψ使得11()()()f x x x ϕψ=+,则1111()()()()()()()()x x x x x x x x ϕψϕψϕϕψψ+=+⎧⎨---=---⎩ ⇒ 1111()()()()()()()()x x x x x x x x ϕϕψψϕϕψψ-=-⎧⎨-=-+⎩ 解得1()()x x ϕϕ=,1()()x x ψψ=,即表示法唯一。

相关文档
最新文档