人脸识别综述

合集下载

《2024年基于深度学习的人脸识别方法研究综述》范文

《2024年基于深度学习的人脸识别方法研究综述》范文

《基于深度学习的人脸识别方法研究综述》篇一一、引言随着科技的进步,人脸识别技术已经成为了人工智能领域的研究热点。

基于深度学习的人脸识别方法以其高精度、高效率的特点,在众多领域得到了广泛应用。

本文旨在全面梳理和总结基于深度学习的人脸识别方法的研究现状、主要技术、应用领域及未来发展趋势。

二、人脸识别技术的发展历程人脸识别技术自诞生以来,经历了从传统的手工特征提取方法到基于深度学习方法的演变。

早期的人脸识别主要依靠人工设计的特征提取算法,如主成分分析(PCA)、线性判别分析(LDA)等。

随着深度学习技术的崛起,卷积神经网络(CNN)等人脸识别算法得到了广泛应用。

三、基于深度学习的人脸识别方法(一)深度卷积神经网络(Deep Convolutional Neural Network, DCNN)DCNN是目前应用最广泛的人脸识别方法之一。

通过训练大量的数据,DCNN可以自动学习和提取人脸特征,从而提高识别的准确性。

同时,DCNN具有较好的泛化能力,可以应对不同的人脸表情、光照、姿态等变化。

(二)深度学习与特征融合在人脸识别中,特征提取是关键的一步。

通过将深度学习与其他特征提取方法相结合,如基于局部二值模式(LBP)的特征提取方法,可以进一步提高人脸识别的准确性和鲁棒性。

此外,多模态特征融合技术也可以提高人脸识别的性能。

(三)基于深度学习的无约束人脸识别无约束人脸识别是近年来研究的热点。

由于实际应用中的人脸图像往往存在光照、姿态、表情等变化,因此基于深度学习的无约束人脸识别技术显得尤为重要。

该技术通过训练大量的无约束人脸数据,使得模型能够适应各种复杂的人脸变化。

四、主要技术应用领域(一)安防领域基于深度学习的人脸识别技术在安防领域得到了广泛应用。

例如,公安系统可以通过该技术对犯罪嫌疑人进行快速检索和比对,提高破案效率。

此外,该技术还可以应用于门禁系统、监控系统等场景。

(二)金融领域在金融领域,基于深度学习的人脸识别技术可以用于身份验证、支付等方面。

人脸识别技术大总结22篇

人脸识别技术大总结22篇

人脸识别技术大总结2人脸识别技术大总结2精选2篇(一)人脸识别技术是一种基于人脸特征的生物特征识别技术,通过分析和比对人脸图像来识别和验证人的身份。

随着计算机视觉和模式识别技术的发展,人脸识别技术在各个领域得到了广泛应用。

下面将对人脸识别技术的原理、方法、应用以及面临的挑战进行总结。

人脸识别技术的原理主要基于人脸的独特性,即每个人的脸部特征都是独一无二的。

人脸识别技术的主要步骤包括人脸检测、人脸对齐、特征提取和特征比对等。

在人脸检测阶段,系统会通过图像处理技术找到图像中可能存在的人脸区域。

在人脸对齐步骤中,系统会将检测到的人脸准确地对齐,以保证后续的特征提取和比对的准确性。

在特征提取阶段,系统会通过各种算法和技术提取人脸图像中的重要特征,常用的特征提取方法包括局部二值模式(LBP)、主成分分析(PCA)和线性判别分析(LDA)等。

最后,在特征比对阶段,系统会将提取到的特征与数据库中的已知特征进行比对,从而识别和验证人的身份。

人脸识别技术的方法主要分为基于图像的方法和基于视频的方法。

在基于图像的方法中,系统只需要获取一个静态的人脸图像进行识别。

这种方法适用于对图像进行身份验证,例如解锁手机或门禁系统等。

而在基于视频的方法中,系统需要获取一段连续的视频进行识别。

这种方法适用于对视频中的人脸进行跟踪和识别,例如视频监控和人脸签到等。

人脸识别技术在许多领域得到了广泛应用。

在公安领域,人脸识别技术可以用于犯罪嫌疑人的追踪和抓捕,以及失踪人员的寻找和找回。

在安防领域,人脸识别技术可以用于门禁系统、智能家居和智能安防设备等,提高安全性和便利性。

在金融领域,人脸识别技术可以用于银行的身份验证和交易安全,保护用户的财产和隐私。

在医疗领域,人脸识别技术可以用于识别和追踪病人和医务人员,提高服务效率和医疗质量。

在娱乐领域,人脸识别技术可以用于人脸换脸和面部表情识别等,增加娱乐性和趣味性。

然而,人脸识别技术也面临一些挑战。

人脸识别技术综述

人脸识别技术综述

一、计算机人脸识别技术的基本 原理
计算机人脸识别技术的基本原理是利用图像处理和模式识别的方法,通过对人 脸图像进行预处理、特征提取和分类器设计,来对人脸进行识别。
1、人脸预处理
人脸预处理是计算机人脸识别技术的第一步,它的目的是去除图像中的噪声、 光照、表情等因素,使得人脸图像更加清晰和规整。人脸预处理的方法包括灰 度化、二值化、去噪、归一化等。
人脸识别技术综述
基本内容
随着科技的不断发展,人脸识别技术已经成为了日常生活中不可或缺的一部分。 从安防领域的身份认证到金融风控领域的风险控制,再到人机交互和智能客服 领域的用户体验优化,人脸识别技术都有着广泛的应用。本次演示将对人脸识 别技术进行综述,探讨其发展历程、现状、优缺点、挑战和未来发展方向。
相信在未来的发展中,人脸识别技术将会不断完善和提升,为人类的生活和工 作带来更加便捷和安全的应用体验。
参考内容
基本内容
随着科技的进步,计算机人脸识别技术得到了广泛的应用和发展。人脸识别技 术是一种利用计算机视觉技术来对人脸进行识别和认证的技。术,它的应用范 围已经涉及到安全监控、门禁系统、身份认证、人机交互等众多领域。本次演 示将对计算机人脸识别技术进行综述,介绍其基本原理、实现方法和发展趋势。
2、特征提取
特征提取是人脸识别的关键步骤之一,它的目的是从预处理后的图像中提取出 有效的特征,用于区分不同的人脸。特征提取的方法包括基于几何特征的方法、 基于统计特征的方法和基于深度学习的方法等。
3、分类器设计
分类器设计是人脸识别的最后一步,它的目的是利用已经训练好的分类器对人 脸特征进行分类和识别。分类器设计的方法包括支持向量机、神经网络、决策 树等。
随着人们对个人隐私保护的重视,未来的人脸识别技术将会更加注重隐私保护, 例如采用盲生化和隐私保护技术来保护用户的隐私。

(word完整版)人脸识别综述

(word完整版)人脸识别综述

人脸识别综述1 引言人脸识别技术的研究始于20世纪50年代,当时的研究人员主要涉及的是社会心理学领域;最早AFR(Auto Face Recognition)的研究论文见于 1965 年陈(Chan)和布莱索(Bledsoe)在Panoramic Research Inc.发表的技术报告。

近年来,人脸识别研究得到了诸多研究人员的青睐,涌现出了诸多技术方法。

尤其是 1990 年以来,人脸识别更得到了长足的发展。

几乎所有知名的理工科大学和主要IT产业公司都有研究组在从事相关研究。

人脸识别研究的发展可分为以下三个阶段:第一阶段(1964 年~1990年)。

这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometric feature based)的方法。

第二阶段(1991 年~1997年)。

这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的 FERET 人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的 Visionics(现为Identix)的 FaceIt 系统。

美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。

第三阶段(1998 年~现在)。

FERET’96 人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。

因此,光照、姿态、表情、遮挡问题逐渐成为研究热点。

人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题.国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用,人脸识别技术的研究对模式识别,人工智能,计算机视觉,图像处理等领域的发展有巨大的推动作用。

人脸识别方法综述

人脸识别方法综述

人脸识别方法综述一、引言随着人工智能技术的不断发展,人脸识别技术已经成为了一个非常热门的领域。

在各个领域中,都有着广泛的应用,比如安防、金融、医疗等等。

本文将对人脸识别方法进行综述,包括传统的方法和深度学习方法。

二、传统方法1. 特征提取特征提取是人脸识别过程中最重要的一步。

传统的特征提取算法主要包括LBP(局部二值模式)、HOG(方向梯度直方图)和SIFT(尺度不变特征变换)等。

2. 降维由于原始图像数据维数较高,需要进行降维处理。

PCA(主成分分析)和LDA(线性判别分析)是两种常见的降维算法。

3. 分类器分类器是将输入样本映射到输出类别的关键组件。

常见的分类器包括SVM(支持向量机)、KNN(k近邻算法)和决策树等。

三、深度学习方法1. 卷积神经网络卷积神经网络是目前应用最广泛的深度学习算法之一。

卷积神经网络主要包括卷积层、池化层和全连接层等。

其中,卷积层和池化层可以提取图像的特征,全连接层则用于分类。

2. 人脸检测人脸检测是人脸识别过程中的第一步。

常见的人脸检测算法包括Haar 特征和基于深度学习的方法,比如Faster R-CNN、YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)等。

3. 人脸对齐由于不同人的面部特征存在差异,需要进行人脸对齐处理。

常见的人脸对齐算法包括基于特征点的方法和基于深度学习的方法。

4. 人脸识别在完成前面三个步骤后,就可以进行人脸识别了。

常见的深度学习模型包括FaceNet、DeepID系列和VGGFace等。

四、总结本文对传统方法和深度学习方法进行了综述。

传统方法主要包括特征提取、降维和分类器等步骤;而深度学习方法则主要采用卷积神经网络进行特征提取和分类。

无论是传统方法还是深度学习方法,都有着广泛的应用前景。

在未来,人脸识别技术将会在更多领域中发挥重要作用。

人脸识别文献综述

人脸识别文献综述

人脸识别文献综述
人脸识别技术的文献综述可以从以下几个方面展开:
1.人脸识别技术的发展历程:介绍人脸识别技术的起源、发展历程以及各个阶段的技术特
点和应用领域。

2.人脸识别的基本原理:阐述人脸识别的基本原理,包括人脸检测、特征提取和匹配识别
等关键技术。

3.人脸识别的应用领域:介绍人脸识别技术在各个领域的应用情况,如安全、金融、交通、
教育等。

4.人脸识别的技术挑战和解决方案:分析人脸识别技术面临的技术挑战,如光照、角度、
面部朝向、面部表情等,并介绍各种解决方案和技术进展。

5.人脸识别的未来展望:预测人脸识别技术的发展趋势和未来发展方向,包括深度学习、
多模态融合、隐私保护等方面的技术发展。

6.在撰写人脸识别技术的文献综述时,需要全面收集和阅读相关文献,包括学术论文、专
利、技术报告等,并对各种文献进行分类和整理。

同时,需要对各种技术和方法进行比较和分析,总结出它们的优缺点和应用场景。

最后,需要结合自己的理解和见解,对人脸识别技术的未来发展进行预测和展望。

需要注意的是,人脸识别技术是一个跨学科的领域,涉及到计算机视觉、机器学习、模式识别等多个学科。

因此,在撰写文献综述时需要有一定的专业背景和技术基础,以便更好地理解和分析相关文献。

《2024年基于深度学习的人脸识别方法综述》范文

《2024年基于深度学习的人脸识别方法综述》范文

《基于深度学习的人脸识别方法综述》篇一一、引言随着人工智能技术的飞速发展,人脸识别技术已成为当今社会关注的热点。

作为计算机视觉领域的重要分支,人脸识别技术在安全监控、身份认证、智能交互等多个领域得到了广泛应用。

深度学习技术的出现为人脸识别提供了新的解决方案,使得人脸识别的准确性和效率得到了显著提升。

本文旨在综述基于深度学习的人脸识别方法,分析其原理、技术特点及发展趋势。

二、深度学习在人脸识别中的应用深度学习是一种模拟人脑神经网络结构的机器学习方法,通过构建多层神经网络来提取数据的深层特征。

在人脸识别领域,深度学习主要应用于特征提取和分类识别两个阶段。

1. 特征提取特征提取是人脸识别的关键步骤,其目的是从原始图像中提取出能够表征人脸特征的有效信息。

深度学习通过构建卷积神经网络(CNN)等模型,自动学习从原始图像中提取出高维度的特征表示,这些特征对于人脸识别任务具有较好的鲁棒性和区分性。

2. 分类识别分类识别是利用已提取的特征进行人脸匹配和识别的过程。

深度学习通过构建全连接层、支持向量机(SVM)等模型,对提取的特征进行分类和识别。

在人脸识别任务中,深度学习可以有效地提高识别的准确性和效率。

三、基于深度学习的人脸识别方法基于深度学习的人脸识别方法主要包括基于深度神经网络的人脸识别方法和基于深度学习的三维人脸识别方法。

1. 基于深度神经网络的人脸识别方法该方法通过构建多层神经网络模型,对人脸图像进行特征提取和分类识别。

常见的模型包括卷积神经网络(CNN)、深度置信网络(DBN)等。

这些模型能够自动学习和提取出高维度的特征表示,提高了人脸识别的准确性和鲁棒性。

2. 基于深度学习的三维人脸识别方法该方法利用三维信息来提高人脸识别的准确性和鲁棒性。

通过构建三维模型来获取人脸的立体信息,再结合深度学习技术进行特征提取和分类识别。

这种方法对于姿态变化、表情变化等复杂场景具有较好的适应性和鲁棒性。

四、技术特点及发展趋势基于深度学习的人脸识别方法具有以下技术特点:1. 高效性:深度学习能够自动学习和提取出高维度的特征表示,提高了人脸识别的效率和准确性。

人脸识别综述

人脸识别综述

【 关键 词 】 人 脸识 别 ;特征 提取 ;机 器学 习
2 . 2 基 于统 计 学
1 引 言 人脸识别是图像理解和分析最重要的应用之一,也是人们在开发 自 身 生物 特 征 过程 中的 又 一 次伟 大 的 尝试 。所 谓 人脸 识 别 ,就 是 利 用计 算 机 分 析人 脸 视 频 或者 图像 , 并从 中提取 出有 效 的个 人 识 别信 息 ,最 终判 别 出 来 人脸 对 象 的 身份 。其 应 用 已经 融入 到 了生 活 中 的方 方 面面 ,诸 如视 觉 监 控 , 自动 身份 验 证 ,银 行 安全 , 门禁安 全 等领 域 。 随 着 人 们 对 图 像 识 别 领 域 的研 究 ,一 些 学 者 逐 渐 意 识 到 人 脸 识 别 的 巨 大 应 用 前 景 并 投 身 于 该 领 域 的研 究 , 人脸 识 别 的 发 展历 程 大致 可 分 为三个阶段 : ( 1 ) 第 一阶段 2 0 世纪6 O 年 代末至2 O 世纪 7 O 年代 初,人脸识 别研 究才处于起步 阶 段 。在 这 方 面 , 最 早 的 科 研 人 员 是 Bl e d s o e , 他 以人 脸 特 征 点 的 比 率 、 间距等参数为特征 ,建立 出来一 个半 自动 的人脸 识别系统。 ( 2 ) 第 二 阶段 9 O 年 代 初 , 随 着 计 算 机 软 硬 件 性 能和 信 息 技 术 的 不 断 地 提 高 , 基 于 整 体 的识 别 方 法 已成 为 研 究 重 点 。 例 如 特 征 脸 方 法 和 弹 性 图匹 配 方 法 。 而 到 了2 O 世纪9 O 年 代 中期 ,人 脸 识 别 的研 究 方法 分 别 向 整 体 识 别 和 部 件 分 析 相 结 合 的 方 向发 展 。如 弹 性 匹配 的方 法 、灰 度 和形 状 分 离 的 可 变形模型方法等 。 ( 3 ) 第 三 阶段 在9 O 年 代 末 , 人 脸 识 别 技 术 开 始 被 应 用 于 商 业 市 场 ,成 为 了世 界 范围 内研究的热点 。由于技术不够成熟 ,因此缺 点也很 明显。在市场 需 求不断变化的今天 ,虽然我 国人脸识别方法 的性 能有 了一定的提高,但 与 人 们 的 要 求 还 是 有 一 些 差 距 ,仍 将 不 断 发展 。

人脸识别技术概述

人脸识别技术概述

人脸识别技术概述人脸识别技术是一种通过分析和识别人脸特征来进行身份验证或身份识别的技术。

它基于人脸图像中的特定特征,例如:眼睛、鼻子和嘴巴的位置,以及面部轮廓等。

人脸识别技术已经在安防、金融、社交媒体等领域得到广泛应用。

人脸识别技术的核心流程包括两个主要步骤:面部检测和面部特征提取。

系统通过检测面部位置来确定图像中是否存在人脸。

然后,从面部图像中提取出的特征用于创建人脸模板,该模板可以用于比对和识别已知的人脸。

在面部特征提取过程中,常用的算法包括主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。

人脸识别技术具有几个关键特点:精度高、实时性好、非接触式、易于使用等。

相比于传统的身份证、密码等身份验证方式,人脸识别技术更加安全和方便。

人脸识别技术还可以与其他技术相结合,例如红外线摄像机用于提高在不同环境下的识别率。

人脸识别技术也存在一些挑战和争议。

由于人脸图像受多种因素(如光照、姿态、表情)的影响,人脸识别的准确度在不同情况下可能会有所下降。

人脸识别技术可能引发隐私问题,因为它要求在各种场景下进行人脸采集和存储。

人脸识别技术还会受到对抗攻击的影响,例如面具、照片等可以欺骗系统。

为了克服这些困难,研究人员正在开发新的算法和技术来改进人脸识别系统的准确性和安全性。

利用深度学习和神经网络等技术,可以提高人脸识别技术的性能。

多模态融合技术(如融合人脸和声纹)也可以提高整体的识别精度。

人脸识别技术在近几年取得了巨大的发展,并在各个领域都有广泛的应用。

尽管还存在一些挑战和争议,但随着技术的不断进步,人脸识别技术有望在将来发挥更重要的作用。

人脸识别技术的综述与比较分析

人脸识别技术的综述与比较分析

人脸识别技术的综述与比较分析引言:人脸识别技术作为一种生物识别技术,近年来得到了广泛的关注和应用。

它具有高准确率、快速响应和非侵入性等特点,被广泛应用于安防、人机交互、金融等领域。

本文旨在对人脸识别技术进行综述与比较分析,介绍其基本原理、应用场景、优缺点以及存在的挑战和问题。

一、人脸识别技术的基本原理人脸识别技术的基本原理是通过对人脸图像进行采集、特征提取和匹配,从而实现对人脸的自动识别。

通常涉及到的步骤包括人脸检测、人脸对齐、特征提取和特征匹配等。

1.1 人脸检测人脸检测是指在图像中找到人脸区域的过程。

常用的方法包括Haar特征、支持向量机、卷积神经网络等。

其中,卷积神经网络在人脸检测中取得了较好的效果,能够有效地处理不同角度、光照条件和遮挡等问题。

1.2 人脸对齐人脸对齐是指将检测到的人脸图像进行标准化处理,使其具有统一的姿态和尺度。

常用的方法包括基于特征点的对齐和基于形状模型的对齐等。

对齐后的人脸图像能够降低后续特征提取和匹配的误差,并提升识别准确度。

1.3 特征提取特征提取是指从对齐后的人脸图像中提取出具有辨识能力的特征。

常用的方法包括主成分分析、线性判别分析、局部二值模式等。

这些方法能够从图像中提取出具有信息含量较高的特征,用于后续的人脸匹配。

1.4 特征匹配特征匹配是指将待识别的人脸特征与数据库中的已知特征进行比对,找到最相似的特征。

常用的方法包括欧氏距离、余弦相似度、支持向量机等。

匹配过程中,需要进行适当的阈值设定来判断是否为同一个人脸。

二、人脸识别技术的应用场景人脸识别技术的应用场景非常广泛,如安防监控、门禁系统、人机交互、金融等。

以下为几个典型的应用场景:2.1 安防监控人脸识别技术在安防监控中起到了关键作用,能够实现对不同场景中的人员进行自动识别和监控。

通过与数据库中的人脸特征进行匹配,系统能够准确判断出是否为可疑人员,从而提升监控系统的效率和准确率。

2.2 门禁系统人脸识别技术在门禁系统中能够取代传统的卡片、密码等方式,提供更加便捷和安全的身份验证方式。

人脸识别技术综述论文

人脸识别技术综述论文

人脸识别技术综述论文本科生毕业论文(设计)题目人脸识别技术综述学院计算机学院专业计算机科学与技术学生姓名陶健学号 0643041077 年级 2006 指导教师周欣教务处制表二Ο年月日人脸识别技术综述计算机科学与技术学生陶健老师周欣[摘要]随着社会信息化,网络化得不断发展,个人身份趋于数字化,隐性化,如何准确的鉴定,确保信息安全得到越来越多的重视。

人脸识别,一种应用比较广泛的生物识别方法,在基于人脸固有的生物特征信息,利用模式识别和图行图像处理技术来对个人身份进行鉴定,在国家安全,计算机交互,家庭娱乐等其他很多领域发挥着举足轻重的作用,能提高办事效率,防止社会犯罪等,有着重大的经济和社会意义。

本文主要研究了人脸识别在图像检测识别方面的一些常用的方法。

由于图像处理的好坏直接影响着定位和识别的准确率,因此本文对图像的一些识别算法做了着重的介绍,例如基于二维Gabor小波矩阵表征人脸的识别算法,基于模型匹配人脸识别算法等。

此外,本文还提及了一般人脸识别系统的设计,并着重介绍了图像预处理环节的光线补偿,图像灰度化等技术,使图像预处理模块在图像处理过程中能取到良好的作用,提高图像识别和定位的准确率。

[主题词]:人脸识别;特征提取;图像预处理;光线补偿Face Recognition OverviewComputer ScienceStudent:TAO Jian Adviser: ZHOU Xin[Abstract] With the information society, network was growing, personal identity tends to digital, hidden, how to accurately identify, to ensure that information security is more and more attention. Face recognition, an application of biometric identification methods more widely, based on biometric facial information inherent in the use of pattern recognition and image processing techniques to map line of personal identity ,play a great role in the national security, computer interaction, family entertainment and many other areas. Face recognition can improve efficiency, prevent social crime, of course it has significant economic and social significance.This paper studies aspects of face recognition in image detection and some common methods of identification. As the image processing directly impact on the accuracy of location and identification, so some of image recognition algorithm will be focused presentation, such as Gabor wavelet-based two-dimensional matrix representation of face recognition algorithms, model-based matching face recognition algorithm. In addition,the article also mentioned a general recognition system design, and highlights the image preprocessing part of the light compensation, gray image techniques, the image preprocessing module in the image processing to get to the good , and improve image recognition and positioning accuracy.[Key Words] Face recognition; feature extraction; image preprocessing; light compensation目录1前言 (6)1.1 课题背景 (6)1.1.1 人脸识别技术研究的背景[1] (6)1.2人脸识别技术研究的意义 (6)1.3国内外现状与趋势 (7)1.3.1 人脸识别的发展阶段[1] (7)1.3.2 国内的发展概况 (8)2人脸识别技术 (9)2.1 人脸识别概述 (9)2.1.1 人脸识别的研究范围 (9)2.2 人脸检测算法 (10)2.2.1 基于肤色特征的检测方法 (10)2.2.2 基于启发式模型的方法 (10)2.2.3 基于特征空间的方法 (10)2.2.4 基于统计模型的方法 (10)2.3 人脸识别算法 (11)2.3.1 基于二维Gabor小波矩阵表征人脸的识别方法 (11)2.3.2 基于多特征融合和Boosting RBF神经网络的人脸识别方法..122.3.3 基于模型匹配人脸识别方法 (15)2.3.4 基于分块小波变换与奇异值阈值压缩的人脸特征提取与识别算法173 人脸图像预处理实验 (21)3.1 需求分析 (21)3.2 预处理技术 (21)3.2.1 光线补偿 (21)3.2.2 灰度变化 (21)3.2.3 高斯平滑处理 (21)3.2.4 对比度增强 (22)3.2.5 直方图均衡 (22)3.3 概要设计 (22)3.4 程序设计与实验 (22)3.4.1 光线补偿 (22)3.4.2 图像灰度化 (23)3.4.3 高斯平滑处理 (24)3.4.4 直方图均衡 (26)4 总结 (29)参考文献 (30)声明 (31)致谢 (32)附录(原文及译文) (33)1 前言1.1 课题背景1.1.1 人脸识别技术研究的背景[1]现在地球上居住着六七十亿人,其中几乎每一个人的脸都是由眉毛、眼睛、鼻子、嘴巴等部分组成,这些器官的大体位置基本是固定的,并且每张脸的大小面积也相差不是很大。

人脸识别技术及应用概览全在这里

人脸识别技术及应用概览全在这里

人脸识别技术及应用概览全在这里然而,你想过没有?未来其中一天,我们上街连手机都不用带了,只要“带脸”就行。

因为,我们正在迈向“刷脸时代”。

到时,把你的所有信息、财产都跟你的脸绑定了,出门“刷脸”就行。

今天,我们就来详细了解一下人脸识别技术:一、人脸识别概述人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。

用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。

人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等。

相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。

二、三大关键技术1、基于特征的人脸检测技术通过采用颜色、轮廓、纹理、结构或者直方图特征等进行人脸检测。

2、基于模板匹配人脸检测技术从数据库当中提取人脸模板,接着采取一定模板匹配策略,使抓取人脸图像与从模板库提取图片相匹配,由相关性的高低和所匹配的模板大小确定人脸大小以及位置信息。

3、基于统计的人脸检测技术通过对于“人脸”和“非人脸”的图像大量搜集构成的人脸正、负样本库,采用统计方法强化训练该系统,从而实现对人脸和非人脸的模式进行检测和分类。

三、四大特征1、几何特征从面部点之间的距离和比率作为特征,识别速度快,内存要求比较小,对于光照敏感度降低。

2、基于模型特征根据不同特征状态所具有概率不同而提取人脸图像特征。

3、基于统计特征将人脸图像视为随机向量,并用统计方法辨别不同人脸特征模式,比较典型的有特征脸、独立成分分析、奇异值分解等。

人脸识别技术概述

人脸识别技术概述

人脸识别技术概述
人脸识别技术是一种利用计算机视觉、图像处理和模式识别等学科技术来识别和管理
人脸信息的技术。

人脸识别技术主要基于人脸特征进行分类和识别,通过采集、分析和比对人脸图像,
实现对图像中的人脸进行准确的识别和验证。

其主要应用领域包括安全检测、人员管理、
金融支付、智能家居、智能手机、智慧城市等。

人脸识别技术的主要流程包括图像采集和预处理、特征提取和比对。

其中,图像采集
和预处理阶段主要包括对人脸图像的采集、预处理(包括图像去噪、裁剪和矫正)和标准
化等;特征提取阶段主要是将人脸图像转化为数字化的特征向量,其中包括主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等;比对阶段则主要是对人脸特征向量进行比对,判断是否匹配。

人脸识别技术的发展受到了技术、安全、隐私等因素的制约。

目前,人脸识别技术存
在的主要挑战包括:1、图像质量不佳或受到不同环境干扰导致的识别精度下降;2、人员
数量庞大导致的识别速度慢;3、跨领域人脸识别问题,如跨种族或跨年龄段等问题;4、
人员信息隐私和数据安全问题。

因此,在应用人脸识别技术时,需要考虑其应用场景和需求,同时合理设置认证流程、确保信息安全、保护用户隐私等。

人脸识别技术综述

人脸识别技术综述

人脸识别技术综述1、人脸识别技术概述近年来,随着计算机技术的迅速发展,人脸自动识别技术得到广泛研究与开发,人脸识别成为近30年里模式识别和图像处理中最热门的研究主题之一。

人脸识别的目的是从人脸图像中抽取人的个性化特征,并以此来识别人的身份。

一个简单的自动人脸识别系统,包括以下4个方面的内容:(1)人脸检测:即从各种不同的场景中检测出人脸的存在并确定其位置。

(2)人脸规范化:校正人脸在尺度、光照和旋转等方面的变化。

或者叫做alignment,人脸对齐,人脸校准。

(3)人脸校验:采取某种方式表示检测出人脸和数据库中的已知人脸,确认两张脸是否是同一个人。

(4)人脸识别:将待识别的人脸与数据库中的已知人脸比较,得出给你的脸是库里的谁。

2、人脸识别的发展历史及分类人脸识别的研究已经有相当长的历史,它的发展大致可以分为四个阶段:第一阶段:人类最早的研究工作至少可追朔到二十世纪五十年代在心理学方面的研究和六十年代在工程学方面的研究。

第二阶段:关于人脸的机器识别研究开始于二十世纪七十年代。

第三阶段:人机交互式识别阶段。

第四阶段:20世纪90年代以来,随着高性能计算机的出现,人脸识别方法有了重大突破,才进入了真正的机器自动识别阶段。

在用静态图像或视频图像做人脸识别的领域中,国际上形成了以下几类主要的人脸识别方法:1)基于几何特征的人脸识别方法。

2)基于相关匹配的方法。

基于相关匹配的方法包括模板匹配法和等强度线方法。

3)基于子空间方法。

常用的线性子空间方法有:本征子空间、区别子空间、独立分量子空间等。

此外,还有局部特征分析法、因子分析法等。

这些方法也分别被扩展到混合线性子空间和非线性子空间。

4)基于统计的识别方法。

该类方法包括有:KL算法、奇异值分解(SVD)、隐马尔可夫(HMM)法。

5)基于神经网络的方法。

人脸识别技术综述

人脸识别技术综述

人脸识别技术综述随着科技的不断进步,人脸识别技术已不再是仅属于探险电影的未来场景,它已成为现实。

人脸识别技术是一种自动识别的技术,它能够通过人脸部分或全部的特征进行身份的验证和鉴别,具有快速、准确、便捷等优势。

在各行业应用中得到广泛的推广和应用。

一、发展趋势1.智能手机智能手机成为人们日常生活中不可或缺的一部分,同时,智能手机已成为人脸识别技术的重要应用场景。

通过手机摄像头采集人脸特征,进行生物识别来解锁手机,支付账单等,这一功能的普及,将进一步推动人脸识别技术的发展。

2.视频监控系统随着社会安全意识的提高,视频监控系统已成为城市、道路、学校、公司、超市等重要场所的必备设备。

人脸识别技术在视频监控系统中的应用将使得视频监控系统的效果更加精准、快捷、高效,从而更好地增强社会安全。

3.金融安全随着金融业的发展和支付方式的多样化,金融安全也成为当今社会的趋势。

人脸识别技术应用于金融行业可以提高安全性能,防止金融欺诈和非法交易等行为。

银行ATM机、移动支付等交易场景,都可以使用人脸识别技术,取代传统的身份验证方式。

二、技术原理人脸识别技术基于计算机视觉和模式识别技术,按照一定的特征进行比对,来进行身份鉴别。

其基本的技术流程分为人脸检测、人脸特征提取、人脸匹配等环节。

在人脸识别技术中,深度学习技术的应用使得识别精度大大提高,目前的大多数应用中都采用了深度学习技术。

三、应用场景1.人脸识别门禁人脸识别门禁是人脸识别技术最早得到实际应用的场景之一,它可以替代传统的卡片、密码等方式的门禁系统,并且不会受到卡片遗失、密码泄露等问题的影响。

2.人证合一人证合一旨在利用人脸识别技术,提高证件验证的精确度,防止造假,随着技术的不断进步,人证合一场景的应用范围越来越广泛,如银行账户开户,政府部门的各类证件核验等。

3.人脸支付随着移动支付的快速普及,人脸支付逐渐成为主流支付方式之一。

人脸支付利用人脸识别技术,完成在线支付、电子商务等场景中的身份验证,其便捷性、安全性受到了广泛的认可。

人脸识别综述(模式识别论文)

人脸识别综述(模式识别论文)

人脸识别技术综述控制工程陈龙斌12013002342摘要:简要介绍了人脸识别技术的研究背景及其发展历程;对人脸识别技术的常用方法进行了分类总结;重点对近年来人脸识别方法的研究进展进行综述并对各种方法加以评价;总结了现阶段存在的研究困难并提出今后的发展方向。

关键词:人脸识别;人脸检测;人脸定位;特征提取1 引言随着计算机和生物医学工程技术迅速发展,利用生物特征来鉴别个人身份成为安全验证首选方式,具有普遍性、安全性、唯一性、稳定性等。

可选的生物特征包括生理特征(如人脸、指纹、虹膜掌纹等)或行为特征(如笔迹、语音、步态等)。

人脸识别技术是一种最友好的生物识别技术(非接触、非侵犯),它结合了图像处理、计算机图形学、模式识别、可视化技术、人体生理学、认知科学和心理学等多个研究领域。

人脸识别应用领域:身份鉴定、身份确认、视频监控、面部数据压缩。

从二十世纪六十年代末至今,人脸识别算法技术的发展共经历了如下四个阶段:1.基于简单背景的人脸识别人脸识别研究的初级阶段。

利用人脸器官的局部特征来描述人脸。

但由于人脸器官没有显著的边缘且易受到表情的影响,因此它仅限于正面人脸(变形较小)的识别。

2.基于多姿态/表情的人脸识别人脸识别研究的发展阶段。

探索能够在一定程度上适应人脸的姿态和表情变化的识别方法,以满足人脸识别技术在实际应用中的客观需求。

3.动态跟踪人脸识别人脸识别研究的实用化阶段。

通过采集视频序列来获得比静态图像更丰富的信息,达到较好的识别效果,同时适应更广阔的应用需求。

4.三维人脸识别为了获得更多的特征信息,直接利用二维人脸图像合成三维人脸模型进行识别,即将成为该领域的一个主要研究方向。

人脸识别系统,是指不需要人为干预,能够自动获取人脸图像并且辨别出其身份的系统。

包括:数据采集、人脸检测与跟踪、人脸识别这三个子系统。

目前国内比较成熟的人脸识系统有:1.中科奥森人脸识别系统 2.南京理工的人脸识别系统3.深圳康贝尔人脸识别系统人脸识别技术的研究范围主要包括以下几个方面:1.人脸检测:在输入的图像中寻找人脸区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人脸识别综述摘要:首先介绍了人脸识别的发展历程及基本分类;随后对人脸识别技术方法发展过程中一些经典的流行的方法进行了比较详细的阐述。

最后介绍了人脸识别的应用及发展现状,总结了人脸识别所面临的困难。

关键词:人脸识别1引言人脸是人类最重要的生物特征之一,反映了很多重要的生物信息,如身份,性别,种族,年龄,表情等等。

随着计算机技术的飞速发展,基于人脸图像的计算机视觉和模式识别问题也成为近些年研究的热点问题。

其中包括人脸检测,人脸识别,人脸表情识别等各类识别问题。

对于人脸识别问题的研究已有几十年的时间,在理论研究和实际开发方面都取得了一定的进展,并且目前已有一些电子产品配备了人脸识别系统。

但是,对于人脸性别和种族识别的研究却比较少,但研究这个问题的意义和实际价值却是不可忽视的。

在实际公共场所的安检系统中,大多数情况下都是将多种模式识别系统结合在一起,以尽量提高检测识别的准确度,性别识别系统也是其中不可缺少的一部分。

对它的研究不仅有助于提供更多个性化的人机交互方式,还可以应用于各种监控系统、电子产品的用户身份鉴别和信息采集系统。

从理论意义上来说,也丰富了原有的人脸识别方法,使得人脸识别系统不但可以识别出被识别者是谁,还能自动给出其性别和种族,从而提高人脸识别的准确率和图像检索效率。

所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份。

人脸与人体的其他生物特征(指纹、虹膜等)一样与生俱来,它们所具有的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提;同其他生物特征识别技术相比,人脸识别技术具有操作简单、结果直观、隐蔽性好的优越性。

因此,人脸识别在信息安全、刑事侦破、出入口控制等领域具有广泛的应用前景。

2人脸识别的发展历程及方法分类关于人脸识别的研究最早始于心理学家们在20世纪50年代的工作,而真正从工程应用的角度来研究它则开始于20世纪60年代。

最早的研究者是Bledsoe,他建立了一个半自动的人脸识别系统,主要是以人脸特征点的间距、比率等参数为特征。

早期的人脸识别方法有两大特点:①大多数识别方法是基于部件的,它们利用人脸的几何特征进行识别,提取的信息是人脸主要器官特征信息及其之间的几何关系。

这类方法比较简单,但是很容易丢失人脸的有用信息,从而在视角、表情等变化的情况下识别能力差。

鉴于这种情况,后来出现了性能较优的模板匹配方法,即根据图像库中的人脸模板与待识别人脸模板在灰度上的相似程度来实现人脸识别,这类方法在一定时期内占据主流。

②人脸识别研究主要是在较强约束条件下的人脸图像识别。

假设图像背景单一或无背景,人脸位置已知或很容易获得,因此对现实场景产生的图像处理效果不佳。

90年代中期以来,人脸识别方法向着整体识别和部件分析相结合的趋势发展。

研究人员开始逐渐认识到人脸识别算法必须能够充分地利用人脸的各种特征信息,融合人脸的形状拓扑结构特征、局部灰度特征和全局灰度分布特征等多种特征。

因此,出现了很多新的算法,这些算法是将原先单一的算法结合起来,共同完成人脸的识别。

灰度和形状分离的可变形模型方法[8]就是其中之一。

90年代后期,一些商业性的人脸识别系统开始逐渐进入市场,人脸识别技术成为当今国际安全防范最重要的手段之一。

但是,这些技术和系统离实用化还有一定的距离,性能和准确率有待提高。

1991年Turk和Pentland首次提出著名的“特征脸”(Eigenface)方法,利用主成分分析(Principal Component Analysis,PCA)取得了不错的识别效果;Belhumer在他的论文中,成功地将Fisher判别准则应用到了人脸分类当中,提出了Fisherface方法;从此基于子空间和统计特征的人脸识别技术成了一种主流的技术,这种基于线性子空间的技术主要包括主成分分析、线形判别分析(Linear Discriminant Analysis,LDA)等方法。

总体来说,这一阶段的基于机器学习方法的人脸识别技术得到了迅速的发展,在一些识别系统里面获得了不错的识别效果。

最近几年,人脸识别的研究有了新的发展,基于机器学习的理论,研究者提出了许多新颖的方法,其中包括遗传算法(Genetic Algorithm,GA)、AdaBoost、贝叶斯分类器、支持向量机(Support Vector Machine,SVM)等方法。

2000年以后,人脸识别方法的性能虽然有了一定的提高,但仍与人们的要求还有一定的差距,现有方法对光照、年龄、表情、姿态、距离等条件的变化比较敏感,当某些条件发生变化时,识别效果很不理想。

目前,人脸识别技术仍只能用于某些对识别准确率要求不高的场合。

人脸识别从不同的角度有不同的分类方法,本文基于人脸识别的发展过程将其分为基于几何特征、基于代数特征和基于机器学习[1]三类人脸识别方法。

3人脸识别的几种主要方法3.1基于几何特征的人脸识别方法基于几何特征的方法是最早、最传统的方法。

它是基于部件的方法,通常需要与其他算法结合才能有比较好的效果。

这种方法首先将人脸用一个几何特征矢量表示,进而用模式识别中的层次聚类思想设计分类器达到识别目的。

识别所采用的几何特征是以人脸器官的形状和几何关系为基础的特征矢量,本质上是特征矢量之间的匹配,其分量通常包括人脸指定两点间的欧式距离、曲率、角度等。

Brunelli等用改进的积分投影法提取出欧几里德距离表征的35维人脸特征矢量用于模式分类。

人脸器官的关键点非别对应于不同的图像灰度积分用于模式分类。

基于几何特征的识别方法具有的优点:①符合人类识别人脸的机理,易于理解;②对每幅图像只需存储一个特征矢量,存储量小;③对光照变化不太敏感。

但同时存在如下问题:①没有形成统一的特征提取标准,从图像中抽取稳定的特征比较困难,特别是当特征受到遮挡时;②对较大的表情变化和姿态变化的鲁棒性较差;③一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息丢失。

其典型的算法主要有活动轮廓模型和可变形模板模型等。

3.2基于代数特征的方法基于代数特征的方法通常是将图像空间的像素点变换到一个投影空间。

用一定数量的基本图像对人脸进行线性编码。

此方法的目地就是寻找一种空间域到变换域之间的最优表示[1]。

基于代数特征的方法主要有奇异值分解方法、特征脸方法、独立分量分析和线性判别法。

3.3基于机器学习的方法在基于几何特征的方法中,人脸的特征是预先定义好的;而在基于机器学习的方法中,人脸的特征和类别利用统计分析和机器学习的技术从样本中学习来的。

学习所得的人脸特征和类别存在于由各种算法所保证的分布规律、模型和判别函数中,并被用于人脸的检测和识别。

基于学习的分类器是现今比较流行的技术,有很多研究者在从事该研究,主要包括人工神经网络,支持向量机,隐马尔可夫模型(Hidden Markow Model,HMM),贝叶斯决策和AdaBoost算法等技术;4人脸识别的主要方法4.1基于奇异值分解(SVD)的人脸识别方法奇异值特征是一种反映图像本质属性的代数特征。

在某种程度上,奇异值特征具有代数和几何上的双重稳定性,还具有比例不变性、旋转不变性等重要性质,因此将人脸图像矩阵进行奇异值分解可以很好地提取出图像的代数特征,然后进行匹配识别。

奇异值分解方法是在奇异值分解的基础上,产生多种人脸识别的方法。

例如基于图像集似然度的人脸识别[30],首先用图像集中每个图像的奇异值向量构造出一个新的矩阵———图像集特征矩阵,计算待检测人脸集的特征矩阵与已知的各类人脸集的特征矩阵的似然度,最终判断待检测人脸属于哪一类。

洪子泉和杨静宇[16]提出的基于奇异值分解(SVD)的人脸识别方法,建立了基于Sammon最佳判别平面的Bayes分类模型。

杜干等人[17]认为传统的基于SVD的方法只是利用全局信息,若将人脸分成不同区域,利用人脸的局部信息能够更好地描述人脸特征,从而提高识别率。

高全学等人[18]通过深入分析奇异值指出,图像奇异值是图像在特定基空间分解得到的,这个基空间是由图像本身决定的。

他们的研究还指出不同人脸图像对应的奇异值向量所在的基空间不一致、奇异值向量与人脸图像之间并不存在一一对应关系以及奇异值向量具有不可分割性,此三者导致了基于SVD人脸识别算法识别率低;最后他们提出了类估计基空间识别算法。

王宏勇[31]等利用奇异值提取人脸的全局特征和6个关键部分的局部特征进行加权融合得出特征融合矩阵有效解决了SVD识别率不高和LDA小样本空间问题。

由于奇异值向量包含的人脸图像的有效信息少,不足以进行有效的人脸识别,孙静静等[32]基于奇异值向量的人脸识别方法, 提出了一种新的基于奇异值分解的“秩一矩阵”的人脸识别方法,该方法在识别率、稳健性等方面的性能好,取得了很好的识别效果。

4.2特征脸方法特征脸方法,也即主元分析法(PCA)。

它实质上是K-L展开的递推实现,K-L 变换是数字图像压缩中的一种最优正交变换,通过K-L变换,可以把图像在高维空间表示转换到低维空间表示,而由低维空间恢复的图像和原图像具有最小的均方误差,从而可以以图像在低维空间的变换系数作为人脸图像的描述特征。

K-L 变换用于人脸识别的前提是人脸图像处于低维空间,并且不同人脸是线性可分的。

通常情况下,K-L变换的变换矩阵由训练样本类间散布矩阵的特征矢量生成,由类间散布矩阵得到的特征矢量类似于人脸,故将其称为特征脸。

将变换矩阵的特征矢量按特征值的大小进行排列,人脸图像排在前面的特征矢量上的投影具有较大的能量,称为主分量;在排在后面的特征矢量上的投影具有较小的能量,称为次分量。

当舍弃部分次分量时,称为主元素分析法(PCA)。

K-L变换从压缩角度看是最优的,但从分类角度来看却不是最优的。

虽然它考虑了人脸图像的所有差异(从压缩角度),但没有考虑这些差异是类内差异(如光照变化,表情变化或几何变化)还是类间差异(从分类角度)。

PCA方法最早由Sirovitch和Kirby[4、5]引入人脸识别领域。

20世纪90年代初,由Turk和Pentland[6、7]提出的特征脸(Eigenfaces)方法是该类别中最具代表性的方法,并成为应用于人脸识别问题的最流行的算法之一。

特征脸方法与经典的模板匹配算法一起成为测试人脸识别系统性能的基准算法。

Belhumeur等人[8]提出了Fisherfaces方法。

Fisherfaces由Fisher线性判别式(Fisher’s lineardiscriminant, FLD)思想派生而来,同时考虑类间离散度和类内离散度,使这两者的比率达到最大。

Belhumeur的实验证明,Fisherfaces 的性能优于Eigen-faces。

相关文档
最新文档