奥数相遇追击问题教案

合集下载

专题4追击和相遇问题教学案

专题4追击和相遇问题教学案

专题4:追击和相遇问题一、目标⑴体会分析比较复杂的物理问题的方法⑵能灵活应用运动学公式和推论解决有关问题二、知识点追击和相遇问题的分析方法:1、选择同一参照物,分析物体的运动性质。

2、分析运动物体之间的时间关系、位移关系、.....等.,并利用..........速度关系....、.距离的变化这些关系列出方程。

追击问题中常用的条件:1、速度小的加速..追速度大的匀速运动的物体,在追上之前,两个物体速度相等时,有最大距离。

2、速度大的减速..追速度小的匀速运动的物体,在追不上的情况下,两个物体速度相等时,有最小距离。

即必须在此之前追上,否则就不能追上。

3、两个物体相遇时必须处于同一位置,它们的位移一定存在某种联系。

4、匀速运动的物体追赶运减速运动的物体,要判断是在停止运动前追上,还是在停止运动后追上。

三、课堂练习1、汽车正以10m/s的速度在平直公路上前进,发现正前方有一辆自行车以4m/s的速度同方向做匀速直线运动,汽车至少应在距离自行车多远时关闭油门,做加速度为6m/s2的匀减速直线运动,汽车才不至于撞上自行车?2、在平直公路上,一辆摩托车从静止出发,追赶在正前方100m处正以v0=10m/s的速度匀速前进的卡车。

若摩托车的最大速度为v m=20m/s,现要求摩托车在120s内追上卡车,求摩托车的加速度应满足什么条件?3、一车处于静止状态,车后距车x0=25m处有一个人,当车以1m/s2的加速度起动时,人以6m/s的速度匀速追车,人能否追上车?若追不上,人车之间最小距离是多少?4、高为h的电梯正以加速度a匀加速上升,忽然天花板上一螺钉脱落,求螺钉落到底板上的时间。

5、甲、乙两物体在同一直线上以10m/s的速度向同一方向运动,甲在前,乙在后,它们相距16m。

某时刻甲以2m/s2的加速度做匀减速运动,求经过多长时间乙追上甲?若它们之间的距离36m,则经过多长时间乙能追上甲?6、火车以30m/s的速度向前行驶,司机突然发现在其前方同一轨道上距离100m处有另一列火车,它正以20m/s的速度沿同一方向匀速运动,于是司机立即让火车做匀减速直线运动。

相遇、追及问题教学设计

相遇、追及问题教学设计

相遇、追及问题教学设计教学目标1.知识与能力会画物体运动图,能分析不同类型的相遇、追及问题中的位移和速度关系,列出方程,解决问题。

2.过程与方法通过活动引导学生积极参与、合作探究,使学生进一步掌握解决追及与相遇问题的方法步骤。

3.情感态度与价值观让学生感受到物理与生活息息相关,增加其对物理学习的兴趣,并通过小组合作,加强学生之间的交流以及团结互助的精神。

教学重点找到相遇、追及问题中的等量关系,列出方程。

教学难点寻找相遇、追及问题中的等量关系。

教学过程师生活动设计意图一.观看猎豹追羚羊和汽车追尾视频,导入新课。

观看视频提出问题思考问题激发学生学习兴趣二.例题分析,掌握新知(一)追及问题1、追及问题中两者速度大小与两者距离变化的关系。

思考1.匀加速追匀速,追上的条件是什么?观看图片总结结论:当两物体在同一时刻到达同一位置时,则表示追上。

思考2.在追赶的过程中,两者之间的距离如何变化?结合V-t图像,总结:在匀加速直线运动追赶匀速直线运动中,当两物体速度相等时,有最大距离。

学生思考,教师点拨培养学生分析问题解决问题的能力例1:一辆执勤的警车停在公路边。

当警员发现从他旁边以v0=8m/s的速度匀速行驶的货车有违章行为时,立即前去追赶。

警车以加速度a=2m/s2做匀加速运动。

试问:(1)警车要多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多大?总结解追及、相遇问题的思路:1.根据对两物体运动过程的分析,画出两物体运动的示意图;2.根据两物体的运动性质,分别列出两个物体的速度和位移方程,注意要将两物体运动时间的关系反映在方程中;3.由运动示意图找出两物体位移间的关联方程,这是关键;4.联立方程求解,并对结果进行简单分析.三、变式练习,巩固新知1.一辆值勤的警车停在公路边,当警员发现从他旁边以v0=8 m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经t0=2.5 s,警车发动起来,以加速度a=2 m/s2做匀加速运动.试问:(1)警车要多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多大?(二)避免相撞问题思考1:在躲避的过程中,两者之间的距离如何变化?思考2:在躲避的过程中,如何保证两者不相撞?安排学生讲解教师总结点拨。

(完整版)相遇问题与追及问题

(完整版)相遇问题与追及问题

相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。

苏科版四(下)奥数教案第3讲~多人多次相遇与追及

苏科版四(下)奥数教案第3讲~多人多次相遇与追及

四(下)奥数第3讲~多人多次相遇与追及【知识精讲】在之前的课程中,我们已经学过了如何处理两个对象之间的相遇与追及问题,本讲我们进一步学习过程更为复杂的三个对象之间的行程问题。

本讲中画线段图非常重要。

第一部分:复习基本相遇问题:速度和×相遇时间=路程和路程和÷速度和=相遇时间路程和÷相遇时间=速度和1:甲、乙两车从相距1500千米的两地同时出发,相向而行。

甲车每小时行40千米,乙车每小时行60千米,请问:出发多少小时后两车相遇?2:一辆巴士和一辆小轿车同时从A、B两地出发,相向而行。

巴士每小时行50千米,小轿车每小时行60千米,3小时后两车相遇,请问:A、B两地相距多少千米?3:A、B两艘船同时从相距150千米的两个码头出发,相向而行,3小时相遇,A船每小时航行25千米,请问:B船每小时航行多少千米?基本追及问题:速度差×追及时间=路程差路程差÷速度差=追及时间路程差÷追及时间=速度差1:圆圆、乐乐两人分别从相距30千米的两地同时向南行驶,圆圆骑自行车每小时行14千米,乐乐步行每小时走4千米,请问:多少小时后圆圆可以追上乐乐?2:蚂蚁在蜘蛛前面几百米处,同时出发同向而行,蜘蛛每分钟跑55米,蚂蚁每分钟爬1米,10分钟后蜘蛛追上了蚂蚁,请问:开始时蚂蚁距蜘蛛多少米?第二部分:多人相遇例1: 有A、B、C三个人,A每分钟走20米,B每分钟走40米,C每分钟走30米。

甲、乙两地相距3000米。

A从甲地,B、C从乙地同时出发相向而行。

请问:A在与B相遇之后多少分钟又与C相遇?练1:有圆圆、乐乐、静静三人,圆圆每秒钟走2米,乐乐每秒钟走4米,静静每秒钟走6米。

A、B 两地相距4800米。

圆圆从A地,乐乐、静静从B地同时出发相向而行,请问:圆圆与静静相遇后多少秒又与乐乐相遇?例2:有A、B、C三人,A每分钟走30米,B每分钟走70米,C每分钟走20米。

相遇与追及问题教学设计

相遇与追及问题教学设计

相遇、追及问题教学设计教学目标 1.知识与能力: 会画线段图,能分析不同类型的相遇、追及问题中的相等关系,列出一元一次方程解应用题。

2.过程与方法:通过数学活动引导学生积极参与、合作探究, 使学生进一步掌握用一元一次方程解决实际问题的方法步骤。

3.情感态度与价值观: 让学生感受到数学与生活息息相关,增加其对数学学习的兴趣,并通过小组合作,加强学生之间的交流以及团结互助的精神。

教学重点 找到相遇、追及问题中的等量关系,列出一元一次方程。

教学难点寻找相遇、追及问题中的等量关系。

教学过程(师生活动)一.创设情境,导入新课。

1、A 、B 两车分别从相距S 千米的甲、乙两地同时出发,相向而行,两车会相遇吗?2、如果两车相遇,则相遇时两车所走的路程与A 、B 两地的距离有什么关系?3、如果两车同向而行,B 车先出发a 小时,在什么情况下两车能相遇?为什么?4、如果A 车能追上B 车,你能画出线段图吗?二.例题分析,掌握新知例1、、A 、B 两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。

(1)若两车同时相向而行,请问B 车行了多长时间后与A 车相遇?A 的路程+B 的路程=相距路程解:设B 走x 小时后与A 车相遇,根据题意列方程得50x+30x=240解得 x=3答:行走3小时后两车相遇。

(2) 若两车同时出发,相向而行,请问行走多长时间后两车相距80米?A 的路程+B 的路程+80米=相距路程 A 的路程+B 的路程-80米=相距路程解:设行走x 小时后两车相距80米,①相遇前相距80米50x+30x+80=240解得 x=2 A B 体育馆教学楼 A B 甲 乙 80米 A B 80米甲乙②相遇后相距80米50x+30x-80=240解得 x=4答:行走2小时/4小时后两人相距80千米。

(1)若两车同时出发,同向而行,请问行走多长时间后A追上B?A B甲乙A的路程-B的路程=相距路程解:设行走x小时后A追上B,根据题意列方程得50x-30x=240解得 x=12答:行走12小时后A追上B。

奥数相遇追击问题教案

奥数相遇追击问题教案
考点及考试要求
行程类问题多以应用题的形式出现
教学内容
本讲重点讲相遇问题和追及问题。在这两个问题中,路程、时间、速度的关系表现为:
在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
一、
例1甲车每小时行40千米,乙车每小时行60千米。两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。求A,B两地的距离。
点拨 抛开繁琐的条件,深入题中精髓,应该得到这么三个条件:
(1) 三人同时出发,最后同时相遇。
(2) 小东和小希不间断地行完全程。
(3) 小辉在小东和小希之间往返行走,小东和小希行完全程用的时间就是小辉往返行走所用的时间。
小东和小希行完全程用了多长时间?
小辉6小时一共走了多少千米?
答:............。
教师签字:___________
王涛跑步回到队尾用的时间:
答:.............。
3、课后作业
相关小升初和奥数原题、模拟题(自备打印)
四、学生对于本次课的评价:
○ 特别满意 ○ 满意 ○ 一般 ○ 差
学生签字:___________
五、教师评定:
1、 学生上次作业评价: ○ 好 ○ 较好 ○ 一般 ○ 差
2、 学生本次上课情况评价: ○ 好 ○ 较好 ○ 一般 ○ 差
分析与解:先画示意图如下:
图中C点为相遇地点。因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。
这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是 (40+60)×2=200(千米)。
例2小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平Fra bibliotek提前多少分钟出门?

奥数追及问题教案

奥数追及问题教案

奥数追及问题教案教案标题:奥数追及问题教案教案目标:帮助学生解决在奥数学习中遇到的追及问题,提高他们的解题能力和思维能力。

教学目标:1. 学生能够理解什么是追及问题,并能够应用相关的数学知识解决问题。

2. 学生能够运用合适的数学模型和方法解决不同类型的追及问题。

3. 学生能够培养逻辑思维和分析问题的能力。

教学重点:1. 理解追及问题的概念和特点。

2. 学习运用数学知识解决追及问题。

3. 培养学生的逻辑思维和问题分析能力。

教学准备:1. 教师准备相关的追及问题的例题和练习题。

2. 准备黑板、白板或投影仪等教学工具。

教学过程:Step 1: 引入追及问题的概念和背景 (5分钟)教师通过实例引入追及问题的概念,解释追及问题的特点和应用领域。

让学生了解追及问题的重要性和解决方法。

Step 2: 解决简单的追及问题 (15分钟)教师给出一些简单的追及问题,并引导学生思考并解答。

通过这些问题,学生可以熟悉追及问题的解题思路和方法。

Step 3: 学习运用数学知识解决复杂的追及问题 (20分钟)教师给出一些较复杂的追及问题,引导学生运用相关的数学知识和技巧解决。

教师可以通过讲解和讨论,帮助学生理解解题过程和方法。

Step 4: 练习与巩固 (15分钟)教师布置一些追及问题的练习题,让学生独立或小组完成。

教师可以提供一些提示和指导,帮助学生解决问题。

Step 5: 总结与反思 (5分钟)教师与学生一起总结本节课所学的内容,回顾解题方法和思路。

鼓励学生思考如何将所学的知识应用到实际生活中。

教学延伸:1. 学生可以自主寻找更多的追及问题,并尝试解决。

2. 学生可以尝试将追及问题与其他数学知识结合,拓展解题思路。

教学评估:教师可以通过学生的课堂表现、课后作业和小组讨论等方式进行评估。

评估的重点是学生是否能够独立解决追及问题,并能够合理运用数学知识和方法。

教学反思:在教学过程中,教师应注重培养学生的问题解决能力和思维能力。

(小学奥数)多次相遇和追及问题

(小学奥数)多次相遇和追及问题

1. 學會畫圖解行程題2. 能夠利用柳卡圖解決多次相遇和追及問題3. 能夠利用比例解多人相遇和追及問題板塊一、由簡單行程問題拓展出的多次相遇問題所有行程問題都是圍繞“=⨯路程速度时间”這一條基本關係式展開的,多人相遇與追及問題雖然較複雜,但只要抓住這個公式,逐步表徵題目中所涉及的數量,問題即可迎刃而解.【例 1】 甲、乙兩名同學在周長為300米圓形跑道上從同一地點同時背向練習跑步,甲每秒鐘跑3.5米,乙每秒鐘跑4米,問:他們第十次相遇時,甲還需跑多少米才能回到出發點?【巩固】 甲乙兩人在相距90米的直路上來回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他們同時分別從直路兩端出發,10分鐘內共相遇幾次?知識精講 教學目標3-1-4多次相遇和追及問題【巩固】甲、乙兩人從400米的環形跑道上一點A背向同時出發,8分鐘後兩人第五次相遇,已知每秒鐘甲比乙多走0.1米,那麼兩人第五次相遇的地點與點A沿跑道上的最短路程是多少米?【例 2】甲、乙二人從相距60千米的兩地同時相向而行,6時後相遇。

如果二人的速度各增加1千米/時,那麼相遇地點距前一次相遇地點1千米。

問:甲、乙二人的速度各是多少?板塊二、運用倍比關係解多次相遇問題【例 3】上午8點8分,小明騎自行車從家裏出發,8分鐘後,爸爸騎摩托車去追他,在離家4千米的地方追上了他.然後爸爸立即回家,到家後又立刻回頭去追小明,再追上小明的時候,離家恰好是8千米,這時是幾點幾分?【例 4】甲、乙兩車同時從A地出發,不停的往返行駛於A,B兩地之間。

已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都在途中C地。

問:甲車的速度是乙車的多少倍?【例 5】如圖,甲和乙兩人分別從一圓形場地的直徑兩端點同時開始以勻速按相反的方向繞此圓形路線運動,當乙走了100米以後,他們第一次相遇,在甲走完一周前60米處又第二次相遇.求此圓形場地的周長.【巩固】A、B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇.已知C離A有75米,D離B有55米,求這個圓的周長是多少米?【巩固】如右圖,A,B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇。

六年级《追及问题》奥数教案

六年级《追及问题》奥数教案

` 六年级备课教员:第12讲追及问题一、教学目标: 1. 理解和掌握简单的追及问题。

2. 熟悉行程问题中的速度、路程、时间之间的关系。

3. 借助“线段图”分析复杂问题中的数量关系。

4. 分析问题、解决问题的能力得到提升。

二、教学重点: 1. 熟悉行程问题中的速度、路程、时间之间的关系。

2. 借助“线段图”分析复杂问题中的数量关系。

三、教学难点:借助“线段图”分析复杂问题中的数量关系,建立等量关系。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,大家认识图片上这个人吗?(PPT出示)生:认识。

他是刘翔,奥运会跑步冠军。

师:不错!操场上,你站在刘翔前方30米处,你们一起跑,刘翔能追上你吗?生:能!师:为什么呢?生:因为刘翔速度比我快。

师:对,这样的情况刚好符合我们本节课要讲的“追及”问题。

师:那哪位同学来说下什么叫“追及”呢?生:“追及”就是慢的人在前面跑,快的人在后面追,速度快的人追上了速度慢的。

师:解释得很好。

一跑一追的两个人跑步方向是同向还是反向呢?生:同向。

师:对,今天我们就一起来学习“追及问题”。

板书:追及问题二、探索发现授课(40分)(一)例题一:(10分)阿派以每分钟50米的速度从学校步行回家,12分钟后欧拉从学校出发骑自行车去追阿派,结果在距学校1000米处追上阿派,求欧拉骑自行车的速度?(PPT出示)师:同学们,遇到追及问题时,我们最好用画线段图的方式来梳理题目的条件。

板书:师:我们再来想想是一圈还是半圈?这是个环形跑道哦!生:最远是半圈。

师:是的,同学们已经熟悉了环形封闭跑道的特性了,我们开始更难的追及问题的训练。

二、探索发现授课(40分)(一)例题三:(10分)甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙。

问:两人每秒钟各跑多少米?(PPT出示)师:同学们,我们来找找本题中的追及时间、追及路程、速度差。

五年级奥数专题 多人多次相遇与追及(学生版)

五年级奥数专题 多人多次相遇与追及(学生版)

学科培优数学“多人多次相遇与追及”学生姓名授课日期教师姓名授课时长知识定位本讲包含两个知识点,一是多次相遇追及问题,即两个对象在固定的长度上不断地往返运动,他们之间相遇追及问题;二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

【授课批注】多人多次是行程中重点,而画图是多人多次的重点,划出一个好的示意图,就等于问题已经解决三分之二了,剩下的三分之一才是解题技巧。

所以如何画图,如何画好图是行程问题的关键,需要反复练习,熟能生巧,做题才能得心应手,发挥自如。

知识梳理一、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;。

, 。

;第N次相遇,共走2N-1个全程;【授课批注】除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;。

, 。

;第N次相遇,共走2N个全程;二、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差【重点难点解析】1.多人多次相遇追及的画图2.多次多次相遇追及的解题关键【竞赛考点挖掘】1.近两年来杯赛的热门考点2.常常与数论结合出题例题精讲【试题来源】【题目】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【试题来源】【题目】A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?【试题来源】【题目】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?【试题来源】【题目】小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【试题来源】【题目】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【试题来源】【题目】小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?【试题来源】【题目】甲、乙、丙三人行路,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?习题演练【试题来源】【题目】快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用6分、9分、12分追上骑车人。

小学奥数之相遇与追及问题(完整版)

小学奥数之相遇与追及问题(完整版)

1、 根据学习的“路程和=速度和× 时间”继续学习简单的直线上的相遇与追及问题2、 研究行程中复杂的相遇与追及问题3、 通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的4、 培养学生的解决问题的能力一、相遇 甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米三、在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

相遇与追及问题教学目标 知识精讲⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及模块一、直线上的相遇问题 【例 1】 一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

五年级《追及问题》奥数教案

五年级《追及问题》奥数教案

五年级备课教员:第六讲追及问题一、教学目标: 1.能充分利用行程中的速度、路程、时间之间的关系解应用题。

2.借助公式“追及路程=追及时间×速度差”来解决问题。

3.培养分析问题、解决问题的能力,提高应用数学的意识。

4.体验生活中数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学数学、用数学的兴趣。

二、教学重点: 1.利用速度、路程、时间之间的关系解应用题。

2.通过对具体问题情境的分析,列出算式,解决问题。

三、教学难点: 1.借助公式“追及路程=追及时间×速度差”解决问题。

2.借助“线段图”分析复杂问题中的数量关系,解决问题。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,大家应该都有听过龟兔赛跑的故事吧?生:听过。

师:最后是不是因为兔子睡觉偷懒,被乌龟赶上赢得了比赛呀?生:是的......师:那如果兔子没有偷懒,你们觉得兔子和乌龟谁会赢呢?生:兔子,因为兔子比乌龟跑得快。

师:没错,那老师为了比赛公平,让乌龟先跑出一段距离,再让兔子出发,你们认为现在谁会赢呢?生:不能确定。

师:怎么才能确定乌龟和兔子谁赢呢?我们今天就来研究这一类型的数学问题,好吗?生:好的!【板书课题:追及问题】二、探索发现授课(40分)(一)例题1:(13分)一名警察以每分钟400米的速度向一名小偷追去,小偷的速度是每分钟350米,现在警察和小偷的距离是500米,那么警察最快要几分钟能追上小偷?(PPT出示)师:同学们,看完题目,警察和小偷现在是相距多少米?生: 500米。

师:你们知道这个500米是什么吗?生:警察要追小偷的距离。

师:没错,那么这个500米就是追及路程。

生:是的,我明白了。

师:警察的速度是每分钟400米,小偷的速度是每分钟350米,所以我们可以发现警察速度比小偷速度快多少?生:每分钟50米。

师:是的。

追及路程是500米,速度差是每分钟50米。

【推荐】小学奥数训练专题 相遇与追及问题.学生版.doc

【推荐】小学奥数训练专题 相遇与追及问题.学生版.doc

1、 根据学习的“路程和=速度和× 时间”继续学习简单的直线上的相遇与追及问题2、 研究行程中复杂的相遇与追及问题3、 通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的4、 培养学生的解决问题的能力一、相遇 甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米三、在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

知识精讲教学目标相遇与追及问题|初一·数学·基础-提高-精英·学生版| 第1讲 第页 2⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及模块一、直线上的相遇问题 【例 1】 一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

追及问题教案

追及问题教案

追及问题教案一、教案概述本教案旨在帮助学生掌握“追及问题”的解决方法和相关概念。

通过举例、问题引导和练习,培养学生的逻辑思维能力和问题解决能力。

二、教学目标1. 理解并掌握“追及问题”的基本概念;2. 能够分析和解决不同情境下的追及问题;3. 培养学生的逻辑思维和解决问题的能力。

三、教学内容与过程第一节:引入追及问题1. 引入问题:小明和小红同时从同一地点出发,小明速度为10m/s,小红速度为8m/s,小明追上小红需要多长时间?2. 学生思考问题,进行讨论。

第二节:追及问题的基本概念1. 解释追及问题的定义:当两个物体从相同或不同的地点同时出发,且按不同的速度运动时,求它们相遇或追及的时间或距离。

2. 指导学生分析追及问题时需要关注的要素:起点、速度、时间和距离。

第三节:解决追及问题的方法1. 简单情境下的追及问题解决方法:a. 列表法:将两个物体的位置、速度等信息制成表格,通过比较找到相遇的时间或距离。

b. 图像法:将两个物体的运动轨迹绘制在坐标系上,通过图像分析找到相遇的时间或距离。

2. 复杂情境下的追及问题解决方法:a. 建立数学模型:利用速度、时间和距离的关系,建立方程并解方程求解。

b. 利用相对速度:将一个物体视为参照物,计算其他物体相对于该参照物的速度,运用相对速度的概念解决问题。

第四节:练习与拓展1. 练习一:根据已知条件解决追及问题。

例题:小明和小红从不同地点出发,小明速度为6m/s,小红速度为8m/s。

已知小明比小红晚出发10秒,求小明追上小红需要多长时间?解题步骤:a. 确定并列出两个物体的运动速度与相对运动的关系;b. 建立方程求解。

2. 练习二:设计追及问题的情境与解题方法。

四、教学评估方式1. 学生课堂参与度评估。

2. 学生对于追及问题的解题情况评估。

3. 开展小组活动和讨论,评估学生的合作能力和问题解决能力。

五、教学延伸1. 引导学生思考运动追及问题在现实生活中的应用,如车辆相遇、人的步行追赶等情景。

追击与相遇问题教案

追击与相遇问题教案

选自行车为参照物,则从开始运动到两车相距最远过程中,以汽
车相对地面的运动方向为正方向,汽车相对此参照物的各个物理
量的分别为:v0=-6m/s,a=3m/s2,v=0
对汽车由公式 vv0 at
tvv0 0(6)2s
a
3
由v2 v02 2ax
xv2v0 20(6)2m6m 2a 23
以自行车为参照物, 公式中的各个量都 应是相对于自行车 的.注意:物理量的 正负号.
当t=t0两物体速度相等时: ①若Δx=x0,则恰能追及,且两 物体只能相遇一次。
这也是甲乙避碰的临界条件。
②若Δx<x0,则不能追及。 此时两物体最小距离为x0-Δx ③若Δx>x0,则相遇两次。 其中相遇时刻t1和t2由下列方程 求出:
x甲=x0+x乙
练习两辆完全相同的汽车,沿水平直路一前一后以相
2a1 21.5
x2=
v2 2
102
m =100 m
2a2 20.5
x=x1+x2=175 m 两车需在相隔175 m处刹车才不相碰.
2、考虑反应时间的避碰
例5.为了安全,在公路上行驶的汽车之间应保持必要的距离. 已知某高速公路的最高限速为120 km/h。假设前方车辆突 然停止,后车司机从发现这一情况开始,经操纵刹车到汽车 开始减速所经历的时间为(即反应时间)t=0.5 s,刹车时汽车加 速度为4 m/s2.则该段高速公路上汽车间应保持的最小距离 是多少
①t=t0以前,两物体间距离增 大
②t=t0时,两物体相距最 远为x0+Δx ③t=t0以后,甲物体比乙物体 快,两者间距减小
④只能相遇一次,相遇时刻 由方程求出:
x甲=x乙+x0

追及问题教案

追及问题教案

追及问题教案教案:追及问题目标:能够使用追及问题的方法解决相关问题。

教学步骤:1. 解释追及问题的概念和应用场景。

- 追及问题是指两个物体(通常是人或车辆)同时开始移动,一个追赶另一个,求出它们相遇的时间和位置。

- 应用场景:追及问题常常出现在日常生活和数学题目中,如两辆车从不同地点同时出发,其中一辆车想要追上另一辆车,我们需要计算它们相遇的时间和位置。

2. 介绍追及问题的解决方法。

- 首先,我们需要确定未知量。

通常情况下,未知量有三个:两个物体的初始位置和速度。

- 其次,我们需要建立方程。

根据问题的描述,可以建立两个方程来描述两个物体的位置和时间的关系。

一般情况下,我们使用物体到达目的地所需的时间作为变量。

- 最后,解方程求解未知量。

将建立的方程带入进行求解,得到未知量的值。

3. 进行案例分析。

- 通过解析具体的案例问题,让学生理解如何应用追及问题的解决方法。

- 示范解题过程,帮助学生掌握解决追及问题的步骤和技巧。

4. 练习和巩固。

- 提供一些追及问题练习题,让学生独立解答。

- 对学生的解答进行讨论和分析,强化学生对追及问题的理解和掌握。

5. 总结和拓展。

- 总结追及问题的解决方法和注意事项,强调解决问题的思维过程和方法。

- 鼓励学生尝试更复杂的追及问题,拓展其应用能力。

课堂实施建议:- 可以借助实物模型、图表或动画等辅助教具,帮助学生更好地理解和抽象问题。

- 鼓励学生互相分享和讨论解题思路,促进合作学习和相互学习。

- 引导学生在解决问题的过程中培养逻辑思维和问题分析能力。

小学奥数思维训练-追及问题 教案

小学奥数思维训练-追及问题 教案

教学过程一、课堂导入追及问题是行程问题中的一种类型,它符合行程问题的数量关系式,也有它独特的分析思路和解题方法,这节课我们就来学习追及问题。

二、复习预习1、行程问题:包括相遇问题、追击问题、流水行船问题和火车过桥几大问题.2、行程问题的数量关系式:路程=时间×速度时间=路程÷速度速度=路程÷时间三、知识讲解1、追及问题的特点:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时间出发,向同一方向运动)慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。

2、基本关系式:追及路程=追及时间×速度差追及时间=追及路程÷速度差速度差=追及路程÷追及时间四、例题精析.【例题1】【题干】一天早上,小康的爸爸步行去上班,每分钟走90米,5分钟后,小康发现爸爸忘了带公文包,于是骑车去追爸爸,每分钟行180米,经过多少分钟后小康能追上爸爸?【答案】90×5=450(米) 450÷(180-90)=450÷90=5(分钟)答:小康经过5分钟能追上爸爸。

【解析】分析:小康去追爸爸的时候,爸爸已经走了5分钟,也就是走了90×5=450(米),小康在追爸爸的时间里,爸爸也仍在走,小康也在追,那么小康必须用比爸爸快的速度,在追的这段时间里,走完爸爸和他同时走的路,还要再多走450米;又知小康每分钟比爸爸多行180-90=90(米),所以,小康每行1分钟就与爸爸拉近90米,他要比爸爸多行450米,就是求450里面有多少个90,用除法就求出用了多少分钟。

【例题2】【题干】一辆汽车和一辆摩托车同时从甲、乙两城出发,向一个方向前进。

汽车在前,每小时行50千米;摩托车在后,每小时行85千米,经过4小时摩托车追上汽车。

甲乙两城相距多少千米?【解答】(85-50)×4=140(千米)答:甲乙两城相距140千米。

追及相遇教案

追及相遇教案

追及和相遇问题教学目标:1.能灵活运用匀变速直线运动的位移速度公式2.能处置追及相遇问题。

判定追上的条件,及相距最近,最远时的条件。

教学重点:常见的几种相遇问题教学难点:判定可否被追上教学方式:分析法推理法一、新课教学一、追及问题1、追及问题中二者速度大小与二者距离转变的关系。

甲物体追赶前方的乙物体,假设甲的速度大于乙的速度,那么二者之间的距离。

假设甲的速度小于乙的速度,那么二者之间的距离。

假设一段时刻内二者速度相等,那么二者之间的距离。

例:一小汽车从静止开始以3m/s2的加速度启动,恰有一自行车以6m/s的速度从车边匀速驶过,(1)试定性分析汽车从开动后至追上自行车前两车间的距离随时刻转变的情形。

(2)汽车在追上自行车前通过量长时刻后二者距离最远?此刻距离是多少?分析:汽车追自行车先距离愈来愈大后距离愈来愈小直到追上汽车在追上自行车前通过2S钟二者距离最远。

解法一、利用二次函数极值法求解设通过时刻t 汽车和自行车之间的距离Δx,Δx=x自-x汽=v自t-at2/2=6t-3t2/2二次函数求极值的条件可知:当t=-b/2a=6/3=2s 时,两车之间的距离有极大值,且Δx m=6×2-3×22/2=6m解法二、利用分析法求解当汽车的速度与自行车的速度相等时,两车之间的距离最大。

由上述分析可知当两车之间的距离最大时有v汽=at=v自∴ t=v自 /a=6/3=2s∵Δx m=x自-x汽∴Δx m=v自t-at2/2=6×2-3×22/2=6m解法三、利用图象求解当t=t0 时矩形与三角形的面积之差最大。

Δx m=6t0/2 (1)因为汽车的速度图线的斜率等于汽车的加速度大小∴a=6/t0∴ t0=6/a=6/3=2s(2)由上面(1)、(2)两式可得Δx m=6m(3)何时追上自行车?此刻汽车的速度是多少?v自t =at2/26×t=3×t2/2t=4sv汽=at=3×4 =12m/s例2.车从静止开始以1m/s2的加速度前进,车后相距x0为25m处,某人同时开始以6m/s的速度匀速追车,可否追上?如追不上,求人、车间的最小距离。

四年级奥数教案第3讲:追及问题

四年级奥数教案第3讲:追及问题

米德、卡尔两人围绕一条长400米的环形跑道练习长跑。

米德每分钟跑300米,卡尔每分钟跑200米。

两人从起跑线同方向出发,经过多长时间米德第一次追上卡尔?讲解重点:理解环形追及问题第一次追上,路程差就是一圈的长度。

师:仔细读题,你得到了什么信息?生:他们是围绕着一条长400米的环形跑道练习长跑。

米德每分钟跑300米,卡尔每分钟跑200米。

两人从起跑线同方向出发。

师:条件中我们看到米德跑的比卡尔快,怎么才能够追上卡尔呢?生:只要米德比卡尔多跑了1圈才可以追上。

师:没错,很聪明,这样的问题我们把它们叫做环形跑道的追及问题。

米德比卡尔多跑了1圈,就是多跑多少米?生:1圈就是400米,说明米德比卡尔多跑400米。

师:我们知道是一个追及问题,问题是经过多长时间米德第一次追上卡尔?要求的是追及问题的什么?生:追及时间。

师:要求追及时间就必须知道什么?生:路程差和速度差。

师:米德比卡尔多跑400米。

就是追及问题中的什么?生:路程差。

师:知道了路程差,速度差怎么求呢?生:根据两人跑步的速度,可知速度差为:300-200=100(米/分钟)。

师:追及时间怎么求?生:由追及时间=路程差÷速度差,求得追及时间为400÷(300-200)=4(分钟)。

板书:400÷(300-200)=4(分钟)答:经过4分钟米德第一次追上卡尔。

练习3:(5分)在200米的环形跑道上,欧拉在阿派后面40米处,两人同时同方向出发,欧拉的速度是6米/秒,阿派的速度为8米/秒,问多少秒后阿派第一次追上欧拉?分析:从条件中可以看出阿派的速度比欧拉快,而要我们求经过多长时间阿派第一次追上欧拉,因为欧拉在阿派后面40米同时同方向出发,说明阿派比欧拉多跑了(200-40)米才可以追上,即:(200-40)米就是路程差,再根据两人跑步的速度,可知速度差为:8-6=2(米/秒),再由追及时间=路程差÷速度差,求得追及时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学员姓名:刘骑成年 级:六年级下第3课时
学校:新世界教育辅导科目:奥数教师:刘鹏飞
课题
相遇、追及问题
授课时间:4月05上午8:00—10:00
备课时间:4月04日
教学目标
1、理解和掌握简单的追及问题;2、提高学生对行程问题的认识;3、提高学生对数学的学习兴趣
重点、难点
掌握追及问题的基本公式并利用公式求简单追及类问题;能够仔细分析、灵活求解,切忌生搬硬套关系式。
考点及考试要求
行程类问题多以应用题的形式出现
教学内容
本讲重点讲相遇问题和追及问题。在这两个问题中,路程、时间、速度的关系表现为:
在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
一、
例1甲车每小时行40千米,乙车每小时行60千米。两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。求A,B两地的距离。
点拨抛开繁琐的条件,深入题中精髓,应该得到这么三个条件:
(1)三人同时出发,最后同时相遇。
(2)小东和小希不间断地行完全程。
(3)小辉在小东和小希之间往返行走,小东和小希行完全程用的时间就是小辉往返行走所用的时间。
小东和小希行完全程用了多长时间?
小辉6小时一共走了多少千米?
答:............。
难题点拨2
通信员原计划用5小时从甲地到乙地,因为任务紧急,他每小时比原计划多行了3千米,结果4小时就到了。求甲、乙两地之间的路程。
点拨:每小时比原计划多行了3千米,4小时就多行了 ,比原计划提前了 ,即原计划每小时行12千米。甲、乙两地之间的路程是:
答:.............。
难题点拨3
一点拨:要正确解答本题,必须理解这样几个概念:(1)王涛跑步用6分钟赶到队首将信送到,其速度是王涛跑步与队伍行进的速度差;(2)王涛在原地等了24分钟回到队尾,队伍行进的路程就是队伍的长度;(3)他跑步回到队尾,其速度是王涛跑步和队伍行进的速度和。本题是对一般行程问题、同向追及问题、相向行相遇问题的综合运用。
王涛跑步回到队尾用的时间:
答:.............。
3、课后作业
相关小升初和奥数原题、模拟题(自备打印)
四、学生对于本次课的评价:
○ 特别满意 ○满意○ 一般 ○ 差
学生签字:___________
五、教师评定:
1、学生上次作业评价:○ 好 ○较好○ 一般 ○ 差
2、 学生本次上课情况评价: ○ 好○较好○ 一般 ○ 差
教师签字:___________
由上面的分析理出本题的解题思路:(1)由题中第一句话可以求出王涛跑步和队伍行进的速度差;(2)由第二句话可以求出队伍行进的速度;(3)由(1)和(2)可以求出王涛跑步和队伍行进的速度和;(4)由速度与队伍的长度可以求出王涛跑步回到队尾用的时间。
王涛和队伍行进的速度差:
队伍行进的速度:
王涛跑步和队伍行进的速度和:
分析与解:
在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),
从而求出火车的速度为19-2=17(米/秒)。
二、
难题点拨1
东、西两城相距75千米,小东步行从东城向西城走,每小时走千米;小希步行从西城向东城走,每小时走6千米;小辉骑自行车从东城向西城走,每小时走15千米。三人同时动身,途中小辉遇见小希又折回向东城走,遇见小东又折回向西城走,再遇见小希又折回向东城走,这样往返,一直到三人在途中相遇为止。小辉共走了多少千米?
分析与解:先画示意图如下:
图中C点为相遇地点。因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。
这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是 (40+60)×2=200(千米)。
例2小明每天早晨按时小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?
分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),
所以小明比平时早出门900÷60=15(分)。
例3小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。已知火车全长342米,求火车的速度。
相关文档
最新文档