列方程解应用题及相遇问题
列方程解应用题.doc
列方程解应用题——相遇问题1、小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2、小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3、王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4、两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6、甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7、甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。
8、AB两地相距900米。
甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?9、甲乙两地相距640千米。
一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从出发到相遇一共用了多少时间?*10、甲每分钟走70米,乙每分钟走60米,丙每分钟走50米,甲从A地,乙丙从B地同时出发,相向而行,甲在遇到乙2分钟后又遇见丙,求AB两地距离。
*11、AB两地相距1120千米,甲乙两列火车同时从两地出发,相向而行。
甲列火车速度是60千米每小时,乙列火车的速度是48千米每小时,乙列火车出发时,从火车里飞出一只鸽子,以每小时80千米的速度向甲列火车飞去,当鸽子和甲列火车相遇时,乙列火车距离A 地还有多远?*12、甲乙二人沿400米的圆形跑道跑步,他们从同一地点同时出发,背向而行。
列一元一次方程解应用题
列一元一次方程解应用题(一)和、差、倍、分问题:1、一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?2、七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?3、一群割草人要把两片草地的草割完.两片草地一大一小,大的比小的大一倍,大家都先在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完;另一半人到小片草地上割,到收工时还剩下一小块,这一小块次日由一个人去割,恰好需要一天工夫.问:这群割草者共有多少人?4、甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品,商品买来后,甲、乙分别比丙多拿了7、11件商品,最后结算时,甲付给丙14元,那么,乙应付给丙 元。
(二)等积变形问题:1. 已知圆柱的底面直径是60毫米,高为100毫米,圆锥的底面直径是120毫米,且圆柱的体积比圆锥的体积多一半,求圆锥的高是多少?2、请根据图中给出的信息,列出正确的方程.小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了! x 58老乌鸦,我喝不到大量筒中的x3、如图是一块在电脑屏幕上出现的矩形块图,由6个颜色不同的正方形组成,设最小的一个正方形边长为1,求这个矩形块图的面积。
(三)调配问题:1、学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?2、七年级三班学生参加义务劳动,原来每组8人,后来根据需要重新编组,每组14人,这样比原来减少3组。
问这个班共有学生多少人?3、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?4、甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地.已知甲、乙、丙每小时分别能植树8棵,6棵,10棵.若乙在A地植树10小时后立即转到B 地,则两块地同时开始同时结束;若要两块地同时开始,但A地比B地早9小时完成,则乙应在A地植树小时后立即转到B地.(四)行程问题。
(word完整版)五年级用方程解决相遇问题练习题
开出后几小时相遇?
开出后2.5
五年级《相遇问题》应用题练习
一、选择题
甲乙二人同时从相距38千米的两地相向行走,甲每时 行3千米,乙每时行5千米,经过几时后二人相距6千米?
正确算式是。①÷; ②÷;③6-38÷。
甲乙两个内河港口相距240千米,拖船顺水每时航行
Xupeisen110小学数学 五年级数学相遇问题练习题
1、一列货车和一列客车同时从两地相对开出。货车每 小时行48千米,客车每小时行52千米,2.5小时后相遇。 两地间的铁路长多少千米?
2、两个工程队共同开凿一条隧道,各从一端相向施 工。甲队每天开凿4米,乙队每天开凿3.5米,21天完工, 这条隧道长多少米?
甲乙两城相距855千米。从甲城往乙城开出一列慢 车,每小时行驶60千米;3小时后,从乙城往甲城开出一列快车,每小时行驶75千米。快车开出几小时后将同慢车相遇?根据题意,判断下列算式是否正确。正确的在方框里打“√”,错误的打“×”。
□855÷;
□÷;
□÷;
□÷75。
1、一辆客车和一辆货车同时从甲,乙两地相向而行.客 车每小时行80KM,货车每小时行65KM.货车先行51KM后客车才出发,结果两车正好在甲乙两地中点相遇,这时客车行了 多少KM?
10千米,逆水每时航行8千米。在甲乙两港之间往返一次需 要多少时间?
正确算式是。①240÷; ②240÷10+240÷8。 东西两城相距405千米。一列货车以每小时55千 米的速度从西城开往东城,开出3小时后,一列客车以每小时65千米的速度从东城开往西城。
A、405÷;
B、÷;
C、÷。
表示两车同时相对开出求相遇时间的算式是;表示货车开出3小时后,客车才开出,求货车再经过 几小时与客车相遇的算式是;表示客车开出了3小时后,货车才开出,求客车再经过几小时与货车相遇的算式是。
列方程解应用题相遇问题题型四
列方程解应用题相遇问题题型四1、两地铁路线长840千米,甲、乙两列火车同时从两地相对开出,甲车每时行驶120千米,乙车每时行驶90千米,经过几小时两车相遇2、一列快车和一列慢车同时从相距600千米的两地相向而行,经过5小时相遇,已知快车每小时行千米,慢车每小时行多少千米;3、两辆汽车从相距400千米的两地同时相对开出,3小时后还相距10千米,已知一辆汽车每小时行驶55千米,求另一辆汽车的速度。
4、AB两地相距400千米。
一列客车与一列货车同时从AB两地出发,相向而行,小时后两车还距50千米,客车每小时走80千米,货车每小时走多少千米%5、小明和小东同时从相距270米的两地出发,相对而行,小明每分钟行50米,小东每分钟行40米,两人几分钟相遇6、两地相距5600米,两车同时出发相向而行,摩托车每分钟行600米,自行车每分钟行驶200米。
几分钟相遇7、甲乙两地相距600千米,两车从两地同时出发相向而行,快车每分钟行6千米,6分钟相遇,慢车每分钟行多少米|8、甲乙两城相距千米。
两车同时出发相向而行,快车每小时行81千米,慢车每小时66千米,几小时相遇9、甲乙两车从相距270千米的两城同时出发相向而行,4小时相遇,快车是慢车的速度的倍,求快车慢车的速度|10、两地相距988千米,两车从两地同时出发相向而行,小时相遇,甲车每小时行93千米,乙车每小时行多少千米11、AB两地相距300千米,两车封鳖从两地同时出发,相向而行。
各自到达目的地后,又立即返回,即过8小时后他们第二次相遇,已知甲车每小时行45千米,乙车行多少千米12、甲乙两地相距700千米,甲乙两车分别从两地同时出发,相向而行,甲车每小时行85千米,乙车每小时行65千米,两车几小时相遇。
一元一次方程应用题,相遇及追击问题
追者路程=被追者路程+相隔距离
甲的路程+乙的路程=总路程
全效学习 P90、91
作业:
家
学 校
追 及 地
400米
80x米
180x米
例2、小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。 (1)爸爸追上小明用了多少时间? (2)追上小明时,距离学校还有多远?
精讲 例题
分 析
线段图分析:
甲
乙
A
B
80千米
第二种情况: A车路程+B车路程-相距80千米= 相距路程
路程角度:甲的路程 + 乙的路程 =AB之间的距离
问题二:甲、乙两人分别从相距50km的A、B两地同时出发,相向而行,甲每小时走3km,乙每小时走2km,相遇时,甲行走的路程是多少?
数学在生活、经济、科技中的应用
(1)学会借助线段图分析等量关系; (2)在探索解决实际问题时,应从多角度思考问题.
问题一:甲、乙两人分别从相距50km的A、B两地同时出发,相向而行,甲每小时走3km,乙每小时走2km,问他俩几小时可以相遇? 解:设他俩 小时后相遇, 由题意得 答:他们 小时后相遇。
问题二:甲、乙两人分别从相距50km的A、B两地同时出发,相向而行,甲每小时走3km,乙每小时走2km,相遇时,甲行走的路程是多少?
A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (1)若两车同时相向而行,请问B车行了多长时间后与A车相遇?
Байду номын сангаас
分 析
路程角度: 乙先行路程 + 乙后行路程 =甲的路程
2020年小升初数学专题复习训练—数与代数:应用题(3)(知识点总结+同步测试)
2020年小升初数学专题复习训练——数与代数应用题(3)知识点复习一.列方程解应用题(两步需要逆思考)【知识点归纳】列方程解应用题的步骤:①弄清题意,确定未知数,并用x表示.②找出题中数量之间的相等关系.③列方程,解方程.④检查或验算,写出答案.列方程解应用题的方法:①综合法:先把应用题中已知的数(量)和所设的未知数(量)列成有关的代数式,并找出它们之间的等量关系,列出方程.这是从部分到整体的一种思维过程,其思考的方向是从已知到未知.②分析法:先找出等量关系,再根据建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式,列出方程.这是从整体到部分的一种思维过程,其思考方向是从未知到已知.【命题方向】常考题型:例1:元旦期间,合益商场搞优惠活动,买一箱牛奶送一盒,五(1)班一共52人,如果买4分析:观察题干,分析数量关系,如果设每箱牛奶有x盒,则买的加送的牛奶盒数为4x+4,正好等于人数,则可得方程,解方程即可.解:设每箱牛奶有x盒,4x+4=52,4x=52-4,x=48÷4,x=12.答:每箱牛奶有12盒.故答案为:12.点评:观察题干,分析数量关系,设出未知数列方程解答即可.例2:同学们植树,一班比二班多植63棵,一班42人,平均每人植8棵,二班39人,平均每人植多少棵?(用方程解答)分析:根据题意可找出数量间的相等关系:一班植树的棵树-二班植树的棵数=一班比二班多植的63棵,已知一班的人数和平均每人植的棵数,二班的人数,所以设二班平均每人植x棵,列方程解答即可.解:设二班平均每人植x棵,由题意得,42×8-39x=63,39x=336-63,39x=273,x=7.答:二班平均每人植7棵.点评:此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.二.列方程解三步应用题(相遇问题)【知识点问题】甲速×相遇时间+乙速×相遇时间=路程(甲速+乙速)×相遇时间=路程甲走的路程+乙走的路程=总路程【命题方向】常考题型:例1:甲乙两列火车分别从相距600千米的两地同时相向而行,2.5小时后两车还相距220千米.已知甲车每小时行80千米,乙车每小时行多少千米?分析:由题意知,甲车所行的路程、乙车所行的路程和两车相距的距离三部分的和正好是两地之间的距离;已知甲车速度,相遇时间,设出乙车速度,分别表示出两车所行的距离,加上两车相距的距离等于两地之间的距离,列出方程解答即可.解:设乙车每小时行x千米,由题意得,80×2.5+2.5x+220=600,200+2.5x+220=600,2.5x+420=600,2.5x=600-420,2.5x=180,x=72;答:乙车每小时行72千米.点评:此题主要考查相遇问题中的基本数量关系:速度和×相遇时间=总路程或甲车所行的路程+乙车所行的路程=两地之间的距离;再由关系式列方程解决问题.例2:甲乙两城相距460千米,货车以每小时60千米的速度从甲城开往乙城,2小时后,客车才从乙城开往甲城,又经过3.4小时两车相遇,客车每小时行多少千米?分析:根据题意从问题出发,要求客车每小时行多少千米?因为客车行驶的时间知道(3.4小时)必须先求客车行驶的路程;要求客车的路程,必须再求货车(2+3.4=5.4)小时内行驶了多少千米(60×5.4);然后解答即可.解:设客车每小时行x千米,3.4x+60×(2+3.4)=460,3.4x+60×5.4=460,3.4x=460-324,3.4x=136,x=136÷3.4,x=40.答:客车每小时行40千米.点评:本题是相遇问题,要注意路程与时间的对应,“3.4小时两车相遇”表示各自都行了3.4小时,本题的解答思路是:可以从问题入手去分析.三.列方程解含有两个未知数的应用题【知识点归纳】列方程解应用题的步骤:①弄清题意,确定未知数,并用x表示.②找出题中数量之间的相等关系.③列方程,解方程.④检查或验算,写出答案.【命题方向】例1:车库中停放若干辆双轮摩托车和四轮小轿车,已知车的辆数与车轮数的比是2:5,摩托车与四轮小轿车的比是()A、4:1B、3:1C、2:1D、1:1分析:设四轮小轿车有x辆,则四轮小轿车一共有4x个轮子,双轮摩托车有y辆,则双轮摩托车一共有2y 个轮子,再根据“车的辆数与车轮数的比是2:5,”求出摩托车与四轮小轿车的比.解:设四轮小轿车有x辆,双轮摩托车有y辆,(x+y):(4x+2y)=2:5,(4x+2y)×2=5(x+y),8x+4y=5x+5y,8x-5x=5y-4y,3x=y,所以,y:x=3:1,答:摩托车与四轮小轿车的比是3:1.故选:B.点评:解答此题的关键是,根据题意设出未知数,并根据数量关系写出比例,再根据比例的基本性质作答.例2:红星小学五年级有学生110人,男生人数是女生人数的1.2倍,男生、女生各有多少人?(用方程解)分析:根据题意数量间的相等关系为:女生人数+男生人数=110,设女生有x人,则男生有1.2x人,根据题意列出方程求解即可.解:设女生有x人,则男生有1.2x人,x+1.2x=110,2.2x=110,2.2x÷2.2=110÷2.2,x=50;男生人数:50×1.2=60(人).答:男、女生各有60人、50人.点评:此题考查列方程解应用题,解决此题的关键是女生人数+男生人数=110,由此得出答案.四.比例尺应用题【知识点归纳】分数比例尺和线段比例尺缩小比例尺和放大比例尺比例尺各部分的关系:图上距离:实际距离=比例尺图上距离:比例尺=实际距离实际距离×比例尺=图上距离.【命题方向】常考题型:例1:在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()A、15B、17C、21分析:先依据“实际距离=图上距离÷比例尺”求出两地的实际距离,再据“路程÷速度=时间”360÷24=15(小时),6+15=21(时);答:货轮到达B港的时间是21时.故选:C.点评:此题主要考查图上距离、实际距离和比例尺的关系以及基本的数量关系“路程÷速度=答:这幢教学楼的实际面积是720平方米.点评:分别求出长和宽的实际距离,是解答本题的关键.五.按比例分配应用题【知识点归纳】把一个数按一定的比(或连比)分成若干部分,叫做按比例分配.解答这类题的方法是:把一个总数A分成几部分,使顺次与几个已知数的连比成正比例关系,只要求出总份数,然后,把A分别乘以各部分量所占总量的几分之几,或者求出总份数后,再求平均每份是多少,然后,按照各个量所占的份数,求出几份是多少.【命题方向】常考题型:例1:一个三角形三个内角度数的比是3:2:1,这是一个()三角形.一个数乘分数的意义,求出最大角,进而判断即可.所以这个三角形是直角三角形故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角六.正、反比例应用题【知识点归纳】正比例和反比例都是两种相关联的量,一种量在变化,另一种量也随着变化.反比例:如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系,简称反比例.形式如:xy=k(一定)【命题方向】常考题型:例1:把1.5米长的竹竿直立在地上,量得它的影长是1.2米,同时量得学校的旗杆的影长是6.4米.学校的旗杆高多少米?分析:根据题意知道,物体的长度和它的影子的长度的比值一定,即物体的长度和它的影子的长度的成正比例,由此列式解答即可.解:设旗杆的高是x米.1.5:1.2=x:6.4,1.2x=1.5×6.4,x=8;答:旗杆的高是8米.点评:解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.例2:用边长15厘米的方砖给教室铺地,需要200块,如果改用边长25厘米的方砖铺地,需要多少块砖?分析:教室的面积是不变的,每一块方砖的面积与所需块数的乘积是一定的,即两种量成反比例,由此设出未知数,列出比例式解答即可.解:设需要x块砖,由题意得,25×25x=15×15×200,625x=45000,x=45000÷625,x=72;答:需要72块砖.点评:此题首先利用正反比例的意义判定两种量的关系,解答时关键不要把边长当做面积进行计算.2020年小升初数学专题复习同步测试卷题号一二三四五六总分得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)甲乙两筐苹果,甲筐重60千克,乙筐重x千克,从甲筐中取出8千克放入乙筐,两筐苹果就一样重.下列方程正确的是()A.60﹣x=8 B.x﹣60=8 C.x+8=60 D.x+8=60﹣82.(2分)农具厂要赶制500件农具,前10天平均每天制造32件.改进技术后,余下的每天制造36件,还要几天可以完成任务?列出方程错误的是()解:设还要x天可以完成任务.A.36x=500﹣32×10 B.(500﹣36x)÷10=32C.500﹣36x÷10=32 D.500﹣36x=32×103.(2分)两地相距128千米,甲、乙两人骑自行车同时从两地出发,相对而行4小时后相遇,甲每小时行14.5千米,甲每小时比乙慢()A.32千米B.17.5千米C.5千米D.3千米4.(2分)张宁和王晓星一共有画片86张.王晓星给张宁8张后,两人画片数同样多.王晓星原来有()张画片.A.15 B.51 C.745.(2分)小洋家客厅长5米,宽3.8米,画在练习本上,选用比例尺()较合适.A.B.C.6.(2分)要把实际距离缩小到原来的,应选择的比例尺为()A.1:50000000 B.1:5000 C.5000:17.(2分)用48厘米长的铁丝围成一个长方形,长方形长与宽的比是5:3,这个长方形的面积是()A.100平方厘米B.315平方厘米C.153平方厘米D.135平方厘米8.(2分)一个三角形的三个内角度数的比是1:2:3,这是()三角形.A.锐角B.直角C.钝角9.(2分)配制一种药水,药粉和水的质量比是1:40,要配制205千克的药水,需要药粉()A.5千克B.10千克C.20千克10.(2分)如右图所示,一个大长方形被两条线段分成四个小长方形.如果其中图形A、B、C的面积分别是2cm2、4cm2和5cm2那么阴影部分的面积为()cm2.A.1 B.C.D.二.填空题(共10小题,满分15分)11.(1分)看图列方程:列方程:.12.(1分)一根黄瓜30克,一支香蕉30克,它们的质量和是60克,等量关系是.13.(1分)列方程:.14.(3分)两辆汽车同时从相距522千米的两地相向而行,甲车每小时行50千米,乙车每小时行40千米,行了几小时后两车________?设行了x小时后两车.根据方程选择合适的信息.50x+40x+72=522;50x+40x﹣72=522.A.离中点72千米处相遇B.还相距72千米C.又相距72千米15.(2分)“姐姐和弟弟一共有180张邮票,其中姐姐的邮票数是弟弟的3倍,弟弟有多少张邮票?(列方程解答)”淘气在解决这道题时这样设未知数并列方程.解:设弟弟有x张邮票,姐姐有3x张邮票①这样设未知数并列方程是否正确?在括号内填“正确”或“不正确”.②如果不正确,请指出原因,并填在括号里..16.(2分)在一幅地图上,用3厘米代表150千米,这幅图纸的比例尺是;在这幅地图上量得甲、乙两地之间的距离是4.5厘米,则甲、乙两地实际相距千米.17.(1分)一个长方形零件,按比例尺1:50将它画在图纸上,长是15厘米,宽是8厘米,求这个零件的实际面积是平方米.18.(2分)六年级有42人,负责学校的两块卫生区.第一块卫生区30平方米,第二块卫生区40平方米.如果按照面积的大小分配值日生,两块卫生区各应派多少人?第一块、第二块(按第一块、第二块卫生区的顺序填写)19.(1分)操场边一棵小树的高度是1.5米,影子长度是0.8米,一棵大树的影子长度是4.8米,这棵大树的高度是米.20.(1分)如图,支架两侧每个孔的距离是4厘米,如果在支架右侧第4个孔挂4个珠子,那么在支架左侧第2个孔挂个这样的珠子才能保持支架平衡.三.判断题(共5小题,满分10分,每小题2分)21.(2分)计算图中两条彩带一共长多少米,列出的方程是6.9=x+2.7.(判断对错)22.(2分)门老师发给甲班每人4本故事书,乙班每人3本故事书,共发故事书716本;若发给甲班每人3本故事书,乙班每人4本故事书,则共发705本.两班共有203人.(判断对错)23.(2分)图上1厘米相当于地面上实际距离100米,这幅图的比例尺是..(判断对错)24.(2分)一块长方形菜地有984平方米,计划按3:5中茄子和西红柿,茄子要种369平方米.(判断对错)25.(2分)把一根木料锯成3段需要9分钟,如果锯成5段,需要l8分钟.列成比例式是:9:(3﹣1)=18:(5﹣1).(判断对错)四.计算题(共3小题,满分15分,每小题5分)26.(5分)看图列方程解决问题.27.(5分)看图列式计算.28.(5分)甲、乙两地相距1075km,一辆慢车从甲地开往乙地,每小时行90km;一辆快车从乙地出发,每小时比慢车多行35km.两车同时开出相向而行,出发后多长时间相遇?(用方程解)五.应用题(共4小题,满分20分,每小题5分)29.(5分)共享单车的广泛使用正不断改变人们的出行方式.目前某市四个品牌共享单车的投放量已达5.4万辆,期中A共享单车投放了1.2万辆,比B共享单车多60%,B共享单车投放了多少万辆?(用方程解答)30.(5分)小红买4块橡皮5枝铅笔,共用去3.82元.已知一块橡皮一枝铅笔共需要0.83元,一块橡皮需要多少元.(用方程解)31.(5分)在比例尺是1:6000000的地图上,甲、乙两地之间的距离是12厘米,一辆汽车从甲地开往乙地用了8小时,这辆汽车平均每小时行驶多少千米?32.(5分)小芳买了一本新书,计划每天读12页,20天正好读完.实际她只用15天就读完了,实际每天读了多少页?(用比例解)六.解答题(共4小题,满分20分,每小题5分)33.(5分)客车每时行46千米,比自行车每时行的3.5倍少1.6千米,自行车每时行多少千米?(用方程解答)34.(5分)看图列方程,并求出方程的解.35.(5分)在一块平行四边形小麦试验田.底长120米,高80米,用1:4000 的比例尺画在平面图上,这块试验田在图纸上的面积是多少?36.(5分)长方形的周长为192cm,长方形的长与宽的比是5:3,这个长方形的面积为多少平方厘米?参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.【分析】根据题意,设乙筐原来有x千克,有关系式:乙筐原来的质量+8千克=甲筐原来的质量﹣8千克,列方程即可.【解答】解:设乙筐原来有x千克,x+8=60﹣8x=60﹣8﹣8x=44答:乙筐原来有44千克.所以方程为:x+8=60﹣8.故选:D.【点评】本题主要考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.2.【分析】设还需要x天可以完成任务,根据题意,有关系式:前10天制造的农具数量+后x天制造的农具数量=500件,据此解答.【解答】解:设还需要x天可以完成任务,有关系式:后x天制造的农具数=总数﹣前10天制造的数量列方程为:36x=500﹣32×10所以A选项正确;由关系式:总数量﹣后x天生产的数量=前10他生产的数量列方程为:500﹣36x=32×10变形为:(500﹣36x)÷10=32所以选项B、D正确.所以选项C错误.故选:C.【点评】本题主要考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.3.【分析】设乙每小时行x千米,然后根据等量关系式:速度和×相遇时间=总路程,然后列方程解答求出乙的速度,再进一步解答即可.【解答】解:设乙每小时行x千米,(14.5+x)×4=12814.5+x=32x=17.517.5﹣14.5=3(千米)答:甲每小时比乙慢3千米.故选:D.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.4.【分析】根据题意,两人一共有画片86张.王晓星给张宁8张后,两人画片数同样多,由此可知:王晓星比张宁多(8×2)张,根据和差问题,(两数和﹣差)÷2=较小数,然后用和减去较小数就是较大数,据此解答.【解答】解:86﹣(86﹣8×2)÷2=86﹣70÷2=86﹣35=51(张),答:王晓星原来有51张画片.故选:B.【点评】此题属于“和差问题”,根据,(两数和﹣差)÷2=较小数,据此解答即可.5.【分析】实际距离和比例尺已知,依据“图上距离=实际距离×比例尺”即可求出操场的长和宽的图上距离,再与练习本的实际长度比较即可选出合适的答案【解答】解:因为5米=500厘米,3.8米=380厘米,A、500×=50厘米,380×=38厘米,画在练习本上,尺寸过大,不符合实际情况,故不合适;B、500×=5厘米,380×=3.8厘米,画在练习本比较合适;C、500×=0.5厘米,380×=0.38厘米,画在练习本上太小,故不合适.故选:B.【点评】此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意结合实际情况.6.【分析】根据比例尺的意义,即比例尺=图上距离:实际距离,再根据“把实际距离缩小到原来的,”是把原来的实际距离看做“1”,那现在图上距离是,由此即可解答.【解答】解::1=1:5000,故选:B.【点评】这道题主要考查比例尺的定义:比例尺是图上距离与实际距离的比.7.【分析】根据题意可知,48厘米是围成长方形的周长,则长与宽的和为:48÷2=24(厘米),利用按比分配原则,先计算其长和宽各是多少,然后利用长方形面积公式计算其面积即可.【解答】解:48÷2÷(5+3)=24÷8=3(厘米)(3×5)×(3×3)=15×9=135(平方厘米)答:这个长方形的面积为135平方厘米.故选:D.【点评】本题主要考查按比分配原则的应用,关键根据铁丝的长求出长方形的长和宽.8.【分析】三个内角度数的比是1:2:3,份数最大的角占,三角形的内角和为180°,用乘法得出最大角的度数,进而按照三角形的分类解答即可.【解答】解:180×=180×=90(度),根据直角三角形的含义可知:该三角形是直角三角形;答:这个三角形是直角三角形.故选:B.【点评】此题主要利用三角形的内角和与按比例分配来解答问题;用到的知识点:直角三角形的含义.9.【分析】首先求药粉和水的总份数,再求药粉占总份数的几分之几,最后根据乘法的意义求出药粉的千克数,列式解答即可.【解答】解:总份数:1+40=41,药粉的千克数205×=5(千克),答:需要药粉5千克.故选:A.【点评】此题解答的关键在于求出药粉占总数的几分之几,运用乘法即可求出药粉的重量.10.【分析】由于长方形A与长方形B等长,长方形B与长方形C等宽,设阴影所在的长方形的面积为x 平方厘米,即可列比例求出这个长方形的面积,阴影部分占这个长方形面积的一半,由此即可求出阴影部分面积.【解答】解:设阴影所在的长方形的面积为x平方厘米.2:x=4:54x=10x=2.52.5÷2=(平方厘米)答:阴影部分面积是厘米.故选:C.【点评】关键是求出阴影部分所在的长方形的面积.也可这样理解,长方形A与长方形B等长,长方形B与长方形C等宽,由于长方形A的面积是长方形B的一半,因此阴影部分所在的长方形的面积是长方形C的一半,从而求出阴影所在的长方形的面积,进而求出阴影部分面积.二.填空题(共10小题,满分15分)11.【分析】根据题干,设《三只小猪》有x本,则《十万个为什么》就是3x本,根据等量关系:《三只小猪》本数+《十万个为什么》本数=120本,据此列出方程即可解答问题.【解答】解:设《三只小猪》有x本,则《十万个为什么》就是3x本,根据题意可得:x+3x=1204x=120x=3030×3=90(本)答:《三只小猪》有30本,《十万个为什么》有90本,故答案为:x+3x=120.【点评】解答此题容易找出基本数量关系,由此列方程解决问题.12.【分析】根据题意可得等量关系式:一根黄瓜的质量+一支香蕉的质量=总质量60克,据此解答即可.【解答】解:一根黄瓜的质量+一支香蕉的质量=总质量60克故答案为:一根黄瓜的质量+一支香蕉的质量=总质量60克.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系.13.【分析】根据题意可得等量关系式:每盒的单价×盒数+一本书的价钱=总价,设每盒的单价是x元,然后列方程解答即可.【解答】解:设每盒的单价是x元,3x+7=283x=21x=7答:每盒的单价是7元.故答案为:3x+7=28.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.14.【分析】(1)根据:50x+40x+72=522,可得:甲车行的路程+乙车行的路程+72=两地之间的距离,所以是还相距72千米.(2)根据50x+40x﹣72=522,可得:甲车行驶的路程+乙车行驶的路程﹣72=两地之间的路程,也就是甲乙所行路程比全程多了72千米,所以为:又相距72千米.【解答】解:(1)由算式50x+40x+72=522可知:即甲车行的路程+乙车行的路程+72=两地之间的距离,所以是还相距72千米.(2)由算式50x+40x﹣72=522,可得:甲车行驶的路程+乙车行驶的路程﹣72=两地之间的路程,也就是甲乙所行路程比全程多了72千米,所以为:又相距72千米.故答案为:B;C.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.15.【分析】根据题干,设弟弟有x张,则姐姐就是3x张,再利用等量关系:姐姐的张数+弟弟的张数=总张数180,据此列出方程解决问题.【解答】解:设弟弟有x张,姐姐有3x张x+3x=1804x=180x=45答:弟弟45张邮票.由以上可知:①这样设未知数是正确的,但是没列方程,所以是不正确的.②没列方程,再添加上方程x+3x=180.故答案为:不正确,没列方程,再添加上方程x+3x=180.【点评】本题考查了运用方程解应用题的方法,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.16.【分析】根据比例尺的意义,=比例尺,据此求出这幅图的比例尺,再根据实际距离=图上距离÷比例尺,即可求出甲、乙两地相距多少千米.【解答】解:3厘米:150千米=3厘米:15000000厘米=3:15000000=1:50000004.5÷=4.5×5000000=22500000(厘米)22500000厘米=225千米答:这幅图纸的比例尺是1:5000000,甲、乙两地实际相距225千米.故答案为:1:5000000;225.【点评】此题主要考查比例尺的意义及已知比例尺和图上距离求实际距离.注意单位的换算.17.【分析】根据实际距离=图上距离÷比例尺,分别求出这个零件和实际的长和宽,再根据长方形的面积公式进行计算.据此解答.【解答】解:实际的长是:15÷=750(厘米)=7.5(米),实际的宽是:8=400(厘米)=4(米),实际面积是:7.5×4=30(平方米);答:这个零件的实际面积是30平方米.故答案为:30.【点评】本题的关键是根据实际距离=图上距离÷比例尺,求出这个长方形的长和宽,再根据长方形的面积公式进行计算.18.【分析】先求出两块卫生区的总面积,再分别求出两块卫生区的面积各占总面积的几分之几,把六年级学生人数看作单位“1”,根据一个数乘分数的意义,用乘法解答.【解答】解:30+40=70(平方米),42×=18(人),42×=24(人),答:第一块卫生区应分配值日生18人,第二块卫生区应分配值日生24人.故答案为:派18人、派24人.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律,即先求出总份数,再分别求出各部分占总数的几分之几,然后根据一个数乘分数的意义解答.19.【分析】影长与树高成正比,设这棵大树的高度是x米,先表示出小树影长和树的高度的比,再表示出大树影长和树的高度的比,组成比例,依据比例基本性质解答.【解答】解:设这棵大树的高度是x米,0.8:1.5=4.8:x0.8x=4.8×1.5x=9答:这棵大树的高度是9米.故答案为:9.【点评】本题考查了正反比例应用题,解答此题的关键是:表示出影长与树的高度的比.20.【分析】根据题意可知,支架平衡时,左边的孔数×挂的珠子数量=右边的孔数×挂的珠子数量,据此列反比例解答.【解答】解:设支架左侧第2个孔挂x个珠子,2x=4×42x=16x=8答:在支架左侧第2个孔挂8个这样的珠子才能保持支架平衡.故答案为:8.【点评】解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.三.判断题(共5小题,满分10分,每小题2分)21.【分析】设第一条彩带长x米,则第二条长x+2.7米,又知第二条长6.9米,所以可得方程6.9=x+2.7,解方程得到的x为第一条彩带长,再与第二条长度相加才得两条彩带一共长多少米.【解答】解:设第一条彩带长x米,x+2.7=6.9x+2.7﹣2.7=6.9﹣2.7x=4.2,4.2+6.9=11.1(米),答:两条彩带一共长11.1米.所以原题说法错误.故答案为:×.【点评】本题考查了列方程解应用题,注意求得的x不是两条彩带一共的长度.22.【分析】首先根据题意,如果甲班比乙班每人多发1本故事书,则共发故事书716本;如果甲班比乙班每人少发1本故事书,则共发故事书705本,所以甲班比乙班的人数多,甲班比乙班每多1人,则甲班就比乙班多发1本故事书,据此判断出甲班比乙班多11(716﹣705=11)人,设甲班有x人,则乙班有x﹣11人;然后根据:甲班的人数×4+乙班的人数×3=716,列出方程,求出甲班有多少人;然后用甲班的人数减去11,求出乙班有多少人,再把两个班的人数求和,求出两班一共有多少人即可.【解答】解:甲班比乙班多:716﹣705=11(人)设甲班有x人,则乙班有x﹣11人,4x+3(x﹣11)=7167x﹣33=7167x﹣33+33=716+337x=7497x÷7=749÷7x=107107﹣11+107=96+107=203(人)。
四年级上册相遇问题应用题
四年级上册相遇问题应用题1、甲乙两车从相距450千米的两地同时相向行驶。
甲车每小时行驶45千米,5小时后还相距25千米。
求乙车每小时行驶多少千米?解题思路:根据相遇问题的思路,设乙车每小时行驶x千米,则甲车行驶的路程为45×5=225千米,乙车行驶的路程为5x千米。
因为两车相向而行,所以它们的路程之和为450千米。
因此,可以列出方程:225+5x+25+x=450,解得x=40.因此,乙车每小时行驶40千米。
2、甲乙两城相距7100千米。
一架飞机以每小时850千米的速度从甲城飞往乙城,2小时后,另一架飞机以每小时950千米的速度从乙城飞往甲城。
又经过几小时后两机相遇?解题思路:两架飞机相遇时,它们的路程之和为7100千米。
设两架飞机相遇的时间为t小时,则第一架飞机的飞行距离为850×(2+t)千米,第二架飞机的飞行距离为950t千米。
因此,可以列出方程:850×(2+t)+950t=7100,解得t=6.因此,两架飞机相遇时,已经飞行了8小时。
3、甲乙二人同时从相距51千米的两地相对出发。
甲车每小时行3.5千米,乙车每小时行3.3千米。
经过几小时两车相遇?解题思路:设两车相遇的时间为t小时,则甲车行驶的路程为3.5t千米,乙车行驶的路程为3.3t千米。
因为两车相对而行,所以它们的路程之和为51千米。
因此,可以列出方程:3.5t+3.3t=51,解得t=15.因此,两车相遇时,已经行驶了15小时。
4、两个工程队修121千米的路。
甲队每天修3.8千米,乙队每天修4.7千米。
甲队先工作5天,后两队合修。
还需要几天才能修完?解题思路:甲队先工作5天,共修了5×3.8=19千米的路程。
剩下的路程为121-19=102千米。
设两队合修的时间为t 天,则甲队共修了5+t天,乙队共修了XXX。
因此,可以列出方程:3.8×(5+t)+4.7t=102,解得t=12.因此,两队合修共需要17天才能修完。
相遇问题应用题及答案
相遇问题应用题及答案相遇问题应用题及答案相遇问题是指两个运动的物体同时由两地出发相向而行,在途中相遇的问题。
下面我们收集了一些相遇问题的应用题及答案,供大家参考。
计算相遇时间和总路程计算相遇时间的公式是:相遇时间=总路程÷(甲速+乙速);计算总路程的公式是:总路程=(甲速+乙速)×相遇时间。
对于简单的题目,可以直接利用公式进行计算,而对于复杂的题目,则需要进行变通后再利用公式进行计算。
例如:例1:南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解:相遇时间=392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2:XXX和XXX在周长为400米的环形跑道上跑步,XXX每秒钟跑5米,XXX每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解:二人从出发到第二次相遇可以理解为二人跑了两圈。
因此总路程为400×2.相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3:甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解:两人在距中点3千米处相遇是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此。
相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
记住关系式在解决相遇问题时,需要记住以下关系式:1)速度和×相遇时间=相遇路程2)相遇路程÷速度和=相遇时间3)相遇路程÷相遇时间=速度和其中,速度和指的是两人或两车速度的和;相遇时间指的是两人或两车同时开出到相遇所用的时间。
小学六年级应用题归类练习 相遇问题
相遇问题(一)求相遇路程1、两列火车从两个车站同时出发相对开出,甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?2、两列火车从两个车站同时相对开出。
甲车每小时行44千米,乙车每小时行52千米,经过2.5小时后两车还相距85千米。
两个车站之间的铁路长多少千米?3、甲、乙两列火车从两地相对行驶,甲车每小时行44千米,乙车每小时行52千米。
甲车开出1.5小时后乙车才开出,再经过2小时两车相遇。
甲乙两地相距多少千米?4、一列客车和一列货车同时从两地相对开出,4.5小时后相遇。
客车每小时行65千米,是货车的1.3倍。
两地间的铁路长多少千米?5、两辆汽车分别从甲乙两地同时出发相对而行。
甲车每小时行40千米,乙车每小时行45千米,两车在距中点20千米处相遇。
甲乙两地相距多少千米?6、甲、乙两辆汽车同时从A地出发去B地,甲车每小时行45千米,乙车每小时比甲车多行9千米,乙车到达B地后立即返回甲地,途中与甲车相遇,已知乙车共行驶了6小时,A、B两地相距多少千米?(二)求相遇时间1.甲乙两地相距6400米,两人同时从两地相对而行,一个人骑自行车每分钟行200米,另一个人骑摩托车每分钟行600米,经过几分钟两人相遇?2.甲乙两地相距6400米,两人同时从两地相对而行,一个人骑自行车每分钟行200米,另一个人骑摩托车每分钟行600米,经过几分钟两人还相遇800米?3.甲乙两地相距325.5千米,两车从两地相对而行,甲车每小时行45千米,乙车每小时行48千米,甲车开出2小时后乙车才出发,再经过几小时两车相遇?4.一辆汽车和一辆拖拉机同时从甲城出发开往乙城。
汽车每小时行49千米,拖拉机每小时行35千米。
出发后6小时,汽车先到达乙城。
再经过几小时拖拉机才能到达乙城?5.卡车每小时行45千米,轿车的速度是卡车的1.4倍,它们从相距189千米的两地同时相向行驶。
①经过几小时两车相遇?②相遇时两车各行了多少千米?③如果出发时间是上午8:15,相遇时是几时几分?(三)求相遇速度1、两地相距270米,小东和小英同时从两地出发,相对走来。
列方程解应用题的几种常见类型及解题技巧
列方程解应用题的几种常见类型及解题技巧(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,路程=速度×时间。
①相遇问题:快行距+慢行距=原距;②追及问题:快行距-慢行距=原距;③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?两车同时开出,相背而行多少小时后两车相距600公里?两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
) 例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。
这类问题要搞清人数的变化。
例.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?(4)工程问题:三个基本量:工作量、工作时间、工作效率;其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。
例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(5)利润问题:基本关系:①商品利润=商品售价-商品进价;②商品利润率=商品利润/商品进价×100%;③商品销售额=商品销售价×商品销售量;④商品的销售利润=(销售价-成本价)×销售量。
列方程解相遇问题应用题
课:《练习Байду номын сангаас分》
作
P20-21A级,B级选做
业
家:《教材金练》
P32-33,P34页选做
资料整理
• 仅供参考,用药方面谨遵医嘱
8x+10x=360
两只轮船同时从一个港口向相反的方向开 出,货轮每小时行24千米,5小时后,两只 轮船相距260千米。客轮每小时行多少千米?
5x+24×5=260 或 5 ×(x+24)=425
客
千米 24千米
船
货
船
260千米
特
相背而行也可以当作相 遇问题来分析
别
提
等量关系是:
醒
A的路程+B的路程=总路程
上海
一辆客车从南京开出,平均每小时行80千米; 同时一辆轿车从上海开出,平均每小时行100 千米,上海到南京的沪宁高速公路全长约270 千米,经过几小时两车相遇?
80x
客车的路程
100x 轿车的路程
总路程270米
客车的路程 + 轿车的路程 =总路程
解:x小时后两车相遇。
80x + 100x =270 x=1.5
学校有一条250米长的环形跑道,小丁丁 和小巧同时从同一点向相反方向跑去,小 丁丁的速度是6米/秒,小巧的速度是4米/ 秒。请问,几秒后他们第一次相遇?
1.相向而行或背向而行都可 以是相遇问题
课 2.合作完成一项工作也可以
堂 是相遇问题
总
结
3.分析相遇问题时,注意物
体的运动方向与运动结果
4.相遇问题的等量关系是: A的路程+B的路程=总路程
答:1.5小时后两车相遇。
• 告诉你个秘密
五年级上册第八单元 列方程解决问题二(相遇问题)
解:设乙队每天需要完成x米。 7×32+32x=480 224+32x=480 32x=480-224 32x=256 x=256÷32 x=8
答:乙队每天需要完成8米。 甲队32天完成的+乙队32天完成的=隧道总长
甲
例3:甲、乙两列火车分别从北京和上海同时开出,相 向而行,经过7小时相遇。甲车平均每小时行多少千米? 乙 ?千米/时 87千米/时
1463千米
解:设甲车平均每小时行x千米。 87×7=1463-7x
根据下面的等量关系,列方程(不需要计算) 乙车7小时的路程=总路程-甲车7小时的路程
试一试:甲乙两个工程队同时从两端开凿一条隧 道,计划32天完成。甲队计划每天完成7米,乙队 每天需要完成几米?(隧道长480米) 解:设乙队每天需要完成x米。 32x=480-7×32 32x=480-224 32x=256 x=256÷32 x=8 答:乙队每天需要完成8米。
回 忆 列方程解应用题的步骤
列方程解应用题的步骤: 1、根据题意,写出一个文字表达式。 2、设未知数,一般情况下问题问什 么,我们就把什么设为未知数。 (未知数一般用x) 3、把x和题目中给的数带入到文字表 达式中相应的位置并解方程。
例3:甲、乙两列火车分别从北京和上 海同时开出,相向而行,经过7小时相 遇。甲车平均每小时行多少千米?
解:设甲车平均每小时行x千米。 7x=1463-87×7 7x=1463-609 7x=854 x=854÷7 x=122 答:甲车平均每小时行122千米。
甲车7小时的路程=总路程-乙车7小时的路程
1463千米
试一试:甲乙两个工程队同时从两端开凿一条 隧道,计划32天完成。甲队计划每天完成7米, 乙队每天需要完成几米?(隧道长480米)
列方程解应用题(相遇问题)专项练习
列方程解应用题(相遇问题)专项练习班级姓名学号一、基本练习(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时后两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?二、综合练习(1)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?(2)两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。
已知甲车的速度是乙车的1.5倍,求甲、乙两列火车每小时各行多少千米?(3) 甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(4)甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?(5)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(6)甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(7)A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?(8)两辆轿车同时从相距535.5千米的甲乙两个城市相向而行。
出租车每小时行48千米。
轿车每小时行78千米。
几小时后两车相遇又相距252千米?(9)甲、乙两列汽车同时从两地出发,相向而行。
七年级数学列方程解应用题
七年级数学列方程解应用题基本量之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题快行距+慢行距=原距速度和×相遇时间=相遇路程注意始发时间和地点(相向)(2)追及问题快行距-慢行距=原距速度差*追及时间=原距 (同向)(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系.1。
甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.(1)慢车先开出1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
2。
甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?3。
某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?6.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。
列方程解应用题常用公式
列方程解应用题中常用的基本等量关系1.行程问题:(1)追及问题:追及问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段图便于理解、分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;路程=速度×时间;速度=;时间=。
(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
顺风速度=无风速度+风速度逆风速度=无风速度-风速度2.工程问题:工作效率×工作时间=工作量.3.浓度问题:溶液质量×浓度=溶质质量.4.教育储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
⑥利息税:利息的税款叫做利息税。
(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。
④税后利息=利息×(1-利息税率)⑤年利率=月利率×12⑥月利率=年利率×。
注意:免税利息=利息5.销售中的盈亏问题:(1)利润=售价-成本(进价);(2);(3)利润=成本×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
6.优化方案问题:在解决问题时,常常需合理安排。
五年级下册数学列方程解应用题相遇问题
解得X=33
答:乙车每小时行33千米。
4、一辆轿车和一辆卡车从相距900千米的两地同时出发相向而行,轿车每小时行100千米,卡车每小时行80千米,多少小时后两车相遇?
解:设X小时后两车相遇。
80X+100X=900
X=5
答:5小时后两车相遇。
5、甲、乙两车同时分别从相距230千米的两地出发,相向而行,甲车每小时行70千米,乙车每小时行80千米,行驶几小时后两车还相距5千米?
1、一辆轿车和一辆客车从相距400千米的两地同时出发相向而行,途中轿车休息了0.5小时,2.5小时后客车与轿车相遇,客车每小时行80千米,轿车的速度是多少?
解:设轿车的速度是每小时X千米。
2.5×80+(2.5-0.5)X=400
解得X=1从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。已知汽车每小时行45千米,求自行车的速度。
解:设行驶X小时后两车还相距5千米。
70X+80X=230-5
150X=225
X= 1. 5
答:行驶1.5小时后两车还相距5千米
解:设自行车每小时行x千米
3x45+3X=172.5
3X=172.5-3x45
3X=37.5
X=12.5
答;自行车每小时行12.5km
3、AB两地相距565千米,甲车每小时行50千米,先出发3小时后,乙车才从B地出发且与甲车相向而行,两车共同行了5小时后相遇。乙车每小时行多少千米?
解:设乙车每小时行X千米。
沪教版 六年级(上)学期数学 列方程解应用题(二) (含解析)
沪教版六年级(上)数学辅导教学讲义1.主要复习、拓展小学阶段“行程问题”的解决方法;2.尝试用方程解决其他新类型的应用题;3.强化列方程解应用题的思想.复习回顾上次课的预习思考内容1.一般来说,行程问题会牵涉到“速度”、“时间”、“路程”这三个数量,关键的数量关系为:×=速度×时间=路程2.这个公式又可以演变为:“速度和×时间=”、“速度差×时间=”路程和,路程差3.相遇问题:相向而行同时出发到相遇时甲、乙两人所用的时间相等。
基本公式:速度和×相遇时间=相遇路程4.追击问题:同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等。
基本公式:速度差×追击时间=追击路程这部分如果学校进度慢,学生没有理解可以举一些例子,通过画图让学生理解基本公式的含义本讲重点复习应用题中最难的一类——行程问题,并且在课内的基础上进行拓展。
同时,也提供了一些没有见过的应用题类型让同学们进行挑战,掌握用方程解应用题的关键。
在解决行程问题时,往往通过“甲路程+乙路程=总路程”或是“甲路程-乙路程=总路程”这类等量关系来解决问题。
要找到这样路程间的关系,辅助的路程线段图就十分重要。
除此之外,“甲路程”“乙路程”则更多是通过“甲路程=甲速度×甲时间”这样的关系来得到。
分析清楚从开始到结果的整个过程,是解决行程问题的关键所在。
在分析行程问题时,还要注意“甲”“乙”的速度、时间之间的关系,往往设出其中一个后,其他都与其相关,能够写清。
所以在设未知数时,往往是设某个人的“时间”或者“速度”作为x,较少会出现设路程为x的情况。
这部分关于行程问题的分析可以强调下,但学生可能感觉不大。
在后面对例题的讲解是可以反过来进行强化。
除此之外,还有许多不属于之前学过的类型的应用题,同样可以用方程来解决。
“找到关键量设x”、“用带x的式子表示其他量”、“找到等量关系列方程”的顺序来解决即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解的应用题教学目标1.使学生初步学会分析稍复杂的两步计算的应用题的数量关系,正确列出方程.2.学生会找出应用题中相等的数量关系.教学重点训练学生用方程解“已知比一个数的几倍多(少)几是多少,求这个数”的应用题.教学难点分析应用题等量关系,并会列出方程.教学过程一、复习准备(一)写出下面各题的式子.1.比的3倍多15 2.比的4倍少2 3.2个与34的和4.5个与0.6的3倍的差(二)解答复习题少年宫舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人.合唱队有多少人?(学生独立解答)23×3+15=69+15=84(人)答:合唱队有84人.二、新授教学(一)导入新课(改复习为例4)少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?1.比较:例4与复习题有什么相同点和不同点?相同点:“合唱队的人数比舞蹈队的3倍多15人”这句话没有变;不同点:复习题已知舞蹈队人数求合唱队人数,例4是已知合唱队人数求舞蹈队人数.2.教师说明:例4就是我们以前见过的“已知比一个数的几倍多几是多少,求这个数”的应用题.今天我们学习用方程解答这类应用题.教师板书:列方程解应用题(二)教学例41.画线段图分析题意.看图思考:舞蹈队人数和合唱队人数有什么关系?23.学生汇报讨论结果:舞蹈队人数的3倍加上15正好等于合唱队人数.(根据:合唱队人数比舞蹈队人数的3倍多15人)4.列方程解答教师板书:解:设舞蹈队有人.答:舞蹈队有23人.5.思考:还可以怎样列方程?(或)引导:例题的方法最简单,解题时要用简单的方法解.(三)变式练习少年宫合唱队有84人,合唱队的人数比舞蹈队的人数的4倍少8人,舞蹈队有多少人?三、课堂小结今天这节课你学到了什么知识?在学习中你有什么感想?四、巩固练习(一)只列式不计算.1.图书室有文艺书180本,比科技书的2倍多20本,科技书本.2.养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡只.(二)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只.去年养兔多少只?(三)一个等腰三角形的周长是86厘米,底是38厘米.它的腰是多少厘米?五、课后作业(一)地球绕太阳一周要用365天,比水星绕太阳一周所用时间的4倍多13天.水星绕太阳一周要用多少天?(二)买3枝钢笔比买5枝圆珠笔要多花0.9元.每枝圆珠笔的价钱是2.6元,每枝钢笔的价钱是多少钱?六、板书设计列方程解应用题例4.少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?解:设舞蹈队有人.答:舞蹈队有23人.模拟试题(答题时间:40分钟)1. 小华和小明分别从自己家出发,向对方的家走去,小华每分钟走50米,小明每分钟走60米,经过5分钟两人相遇。
(1)小华5分钟走了()米;小明5分钟走了()米;两人5分钟走了()米。
(2)小华和小明每分钟共走了()米;小华和小明各走了()分钟;小华和小明家相距()米。
2. 两辆汽车同时从甲乙两地同时出发相向而行,一辆每小时行65千米,另一辆每小时行70千米。
3小时后两车仍相距55千米,甲乙两地相距多少千米?3.两辆汽车同时从一个地方向相反的方向开出。
甲车每小时行70千米,乙车每小时行78千米,3.5小时后两车相距多少千米?4. 甲乙两个工程队合修一条隧道,各从隧道的一端开始施工,甲队每天开凿25米,乙队每天开凿20米,经过56天隧道凿通,这条隧道长多少米?5.甲乙两辆汽车同时从A、B两个车站出发相向而行,经过5小时在途中相遇,甲车每小时行85千米,乙车每小时行80千米,乙车在途中曾停车1.5小时,A、B两站相距多少千米6.李华和王明同时从学校出发,李华向东走,每分钟走35米,王明向西走每分钟走40米,几分钟后二人相距300米?7.甲乙两个打字员合打一份稿件共13125字,甲每小时打850字,乙每小时比甲多打50字,几小时打完?8. 王明从甲村去乙村,每小时行3.6千米,他出发2小时后,李立从乙村出发去甲村,每小时行3.8千米,又经过3.5小时二人相遇,甲乙两村相距多少千米?五年级《相遇问题》应用题练习一、选择题(1)甲乙二人同时从相距38千米的两地相向行走,甲每时行3千米,乙每时行5千米,经过几时后二相距6千米?正确算式是( )。
①(38+6)÷(5+3);②(38-6)÷(5+3);③6-38÷(5+3)。
(2)甲乙两个内河港口相距240千米,拖船顺水每时航行10千米,逆水每时航行8千米。
在甲乙两港之间往返一次需要多少时间?正确算式是( )。
①240÷(10+8);②240÷10+240÷8。
(3)东西两城相距405千米。
一列货车以每小时55千米的速度从西城开往东城,开出3小时后,一列客车以每小时65千米的速度从东城开往西城。
A、405÷(55+65)B、(405-55×3)÷(55+65);C、(405-65×3)÷(55+65)。
(1)表示两车同时相对开出求相遇时间的算式是();(2)表示货车开出3小时后,客车才开出,求货车再经过几小时与客车相遇的算式是();(3)表示客车开出了3小时后,货车才开出,求客车再经过几小时与货车相遇的算式是()。
(让学生根据应用题的条件和问题来选择正确算式的练习,它可以使学生建立条件、问题、算式间的对应关系,锻炼辨析能力。
)甲乙两城相距855千米。
从甲城往乙城开出一列慢车,每小时行驶60千米;3小时后,从乙城往甲城开出一列快车,每小时行驶75千米。
快车开出几小时后将同慢车相遇?根据题意,判断下列算式是否正确。
正确的在方框里打“√”,错误的打“×”。
□855÷(60+75)□(855-75×3)÷(60+75)□(855-60×3)÷(60+75)□(855-60×3)÷75。
1、一辆客车和一辆货车同时从甲,乙两地相向而行.客车每小时行80KM,货车每小时行65KM.货车先行51KM后客车才出发,结果两车正好在甲乙两地中点相遇,这时客车行了多少KM?三、说算理训练。
甲城到乙城的公路长470千米。
快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每时行44千米。
)表示;44+50÷(470①②470-50×[470÷(50+44)]表示③(50-44)×[470÷(50+44)]表示④470-(50+44)×3表示⑤(470-94)÷(50+44)表示四、题组变式训练。
基本题:甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
两地相距多少千米?(1)变条件:A.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的1.5倍,经过3小时相遇。
两地相距多少千米?B.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。
两地相距多少千米?C.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?4、一辆公交车和一辆客车同时从甲地开往乙地,公交车每小时行50千米,客车每小时行45千米,现在公交车比大客车早40分钟到达,问甲乙两地相距多少千米?(2)变问题:A、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
相遇时两车各行了多少千米?B、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3.3 小时相遇。
相遇时哪辆车行的路程多?多多少?C、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
乙车行完全程要多少小时?七、解决问题1、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?2、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?甲船比乙船每小时多航行多少千米?3、甲地到乙地的公路长436千米。
两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。
甲车开出2小时后,乙车才出发,再经过几小时两车相遇?4、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。
求甲、乙两站间的距离是多少千米?5、AB两地相距1050千米,甲乙两列火车从AB两地同时相对开出,甲列火车每小时行60千米,乙列火车每小时行48千米。
乙列火车出发时,从车厢里飞出一只鸽子,以每小时80千米的速度向甲列火车飞去,在鸽子与甲车相遇时,乙车距A地还有几千米?五、补题训练。
(1)两城之间的公路长255千米,两辆汽车同时从两地相对开出,甲车每小时行48千米,乙车每小时行37千米。
①补充一个问题使它成为两步计算应用题:问题解答:4 ②补充一个问题使它成为三步计算应用题:问题解答:③补充一个问题使它成为四步计算应用题:问题解答:。