信号与线性系统分析_(吴大正_第四版)习题答案

合集下载

信号与线性系统分析吴大正:第四版习题答案

信号与线性系统分析吴大正:第四版习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为(2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

信号与线性系统分析吴大正:第四版习题答案

信号与线性系统分析吴大正:第四版习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为(2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

信与线性系统分析吴大正第四版习题答案

信与线性系统分析吴大正第四版习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))rt f=)(t(sin(7))(t f kε)(k2=(10))(])1kf kε(k)(1[=-+1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号和线性系统分析-(吴大正-第四版)习题答案解析02871

信号和线性系统分析-(吴大正-第四版)习题答案解析02871

1 / 28专业课习题解析课程第1讲第一章 信号与系统〔一 专业课习题解析课程第2讲第一章 信号与系统〔二1-1画出下列各信号的波形[式中)()(t t t r ε=]为斜升函数。

〔2∞<<-∞=-t et f t,)( 〔3)()sin()(t t t f επ=〔4)(sin )(t t f ε= 〔5)(sin )(t r t f =2 / 28〔7)(2)(k t f kε= 〔10)(])1(1[)(k k f kε-+=解:各信号波形为 〔2∞<<-∞=-t et f t,)(〔3)()sin()(t t t f επ= 〔4)(sin )(t t f ε= 〔5)(sin )(t r t f = 〔7)(2)(k t f k ε= 〔10)(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

〔1)2()1(3)1(2)(-+--+=t t t t f εεε 〔2)2()1(2)()(-+--=t r t r t r t f 〔5)2()2()(t t r t f -=ε 〔8)]5()([)(--=k k k k f εε 〔11)]7()()[6sin()(--=k k k k f εεπ〔12)]()3([2)(k k k f k---=εε 解:各信号波形为〔1)2()1(3)1(2)(-+--+=t t t t f εεε3 / 28〔2)2()1(2)()(-+--=t r t r t r t f〔5)2()2()(t t r t f -=ε〔8)]5()([)(--=k k k k f εε〔11)]7()()[6sin()(--=k k k k f εεπ〔12)]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

信与线性系统分析习题答案吴大正第四版高等教育出版社

信与线性系统分析习题答案吴大正第四版高等教育出版社

第一章信号与系统(二)1-1画出下列各信号的波形【式中r(t)t(t)】为斜升函数。

(2)f(t) et t(3)f(t)sin( t) (t)(4)f (t) (sint)(5)f(t)r(sin t)(7)f(t) 2k (k)(10f(k) [1 ( 1)k] (k))解:各信号波形为(2)f(t) e N, t(3)f(t)sin( t)(t)(4)f(t)(s int)(5)f(t)r(si n t)(7)f(t)2k (k)(10)f(k)[1 (1)k] (k)1-2画出下列各信号的波形[式中r(t) t (t)为斜升函数]。

(1)f(t) 2 (t 1) 3 (t 1) (t 2) (2)f (t) r(t) 2r(t 1) r(t 2)(5)f (t) r(2t) (2 t) (8)f(k) k[ (k) (k 5)](11) f(k) ksin( )[ (k) (k 7)]6(12)f(k) 2k[ (3 k) ( k)]解:: 各信号波「形为(1) f(t) 2 (t 1) 3 (t 1) (t 2)(2) f(t) r(t) 2r(t 1) r(t2)(5) f(t)r(2t) (2 t)(8)f(k)k[ (k) (k 5)](11)f(k)ksin( § )[ (k) (k7)](12) f(k) 2k [ (3 k) ( k)]1-3写出图1-3所示各波形的表达式。

1-4写出图1-4所示各序列的闭合形式表达式。

1-5判别下列各序列是否为周期性的。

如果是,确定其周期。

Q■(2) f 2(k) cos(- k ) cos(—k )(5) f 5(t)3cost 2sin( t)4 4 3 6解:1-6已知信号f(t)的波形如图1-5所示,画出下列各函数的波形。

(6)f(0.5t 2)(1) f(t 1) (t) (2) f(t 1) (t 1) (5) f (1 2t)df (t) t(7) K ( 8) f(X)dx解:各信号波形为(1)f(t 1) (t)(2)f(t 1) (t 1)(5)f(1 2t)(6) f (0.5t 2)df(t)(7)dtt(8) f (x)dx1-7已知序列f(k)的图形如图1-7所示,画出下列各序列的图形。

(完整版)信号与线性系统分析_(吴大正_第四版)习题答案

(完整版)信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t (7))t(k=f kε)(2(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与线性系统分析_(吴大正_第四版)习题答案第六章

信号与线性系统分析_(吴大正_第四版)习题答案第六章

. 学习参考. 第六章6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。

(1)1)(=z F ,全z 平面(2)∞<=z z z F ,)(3(3)0,)(1>=-z z z F(4)∞<<-+=-z z z z F 0,12)(2(5)a z az z F >-=-,11)(1(6)a z az z F <-=-,11)(1. 学习参考.6.5 已知1)(↔k δ,az z k a k -↔)(ε,2)1()(-↔z z k k ε,试利用z 变换的性质求下列序列的z 变换并注明收敛域。

. 学习参考 .(1))(])1(1[21k k ε-+ (3))()1(k k k ε-(5))1()1(--k k k ε (7))]4()([--k k k εε(9))()2cos()21(k k k επ. 学习参考.6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞→。

(1))31)(21(1)(2+-+=z z z z F (3))2)(1()(2--=z z z z F. 学习参考.6.10 求下列象函数的双边逆z 变换。

(1)31,)31)(21(1)(2<--+=z z z z z F (2)21,)31)(21()(2>--=z z z z z F (3)21,)1()21()(23<--=z z z z z F. 学习参考 .(4)2131,)1()21()(23<<--=z z z z z F. 学习参考.. 学习参考.. 学习参考.. 学习参考.6.11 求下列象函数的逆z 变换。

(1)1,11)(2>+=z z z F (2)1,)1)(1()(22>+--+=z z z z z z z F (5)1,)1)(1()(2>--=z z z z z F (6)a z a z az z z F >-+=,)()(32. 学习参考.. 学习参考.. 学习参考.6.13 如因果序列)()(z F k f ,试求下列序列的z 变换。

实用文档之信号与线性系统分析_(吴大正_第四版)习题答案

实用文档之信号与线性系统分析_(吴大正_第四版)习题答案

实用文档之"1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

" (2)∞<<-∞=-t e t f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))=tfε)(sin(t(5))rf=t(t)(sin(7))f kεt=2()(k(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与线性系统分析-(吴大正-第四版)习题答案

信号与线性系统分析-(吴大正-第四版)习题答案

信号与系统习题解析C1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t(5))trf=(sin)(t(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

线性系统分析_(吴大正_第四版)习题答案

线性系统分析_(吴大正_第四版)习题答案

专业课习题解析课程/西安电子科技大学844信号与系统?专业课习题解析课程第1讲:第一章信号与系统(一)专业课习题解析课程{第2讲第一章信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t,)( (3))()sin()(t t t f επ=、(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))fε=t)(sin(t(5))tf=r(t)(sin}(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε ;解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ《(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

(完整版)信号与线性系统分析_(吴大正_第四版)习题答案

(完整版)信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t (7))t(k=f kε)(2(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与线性系统分析_(吴大正_第四版)第一章习题答案

信号与线性系统分析_(吴大正_第四版)第一章习题答案

专业课习题解析课程第1讲第一章信号与系统(一)专业课习题解析课程第2讲第一章信号与系统(二)1-1画出下列各信号的波形【式中r(t) = t; (t)】为斜升函数。

(2)f(t) t ::二(3)f(t)=sin「t);(t)(5) f(t)=r(s int) (10) f (k )=[1 (T )k ]"k)(4)f(t) = ;(Si nt) (7) f(t) =2k ;(k)解:各信号波形为(2) f (t) = e刊,—:: ::t ::::(3)f(t) =si n(p;(t)∕ω(4)f(t) _ ;(Sint)(5) f(t)=r(sint)/(/)—4 兀—3 Tt 一2κ —n O K 2κ 3 Ji t<e)(7) f(t) =2k;(k)(10) f(k)=[1 (_1)k];(k)/(»2・k彳__________ A i_____________I Λ-■0t 2 3 4 5(iCJ)1—2画出下列各信号的波形[式中r(t) = L(t)为斜升函数].(1) f(t) = 2 (t 1) - 3 (t T) (t — 2)(2) f (tp r(t) - 2r(t - 1) r(t -2)解:各信号波形为(1)f(t )= 2(t 1)— 3 (t - 1) (t — 2)(a ) (2) f (tp r (t ) 2r (t1) r (t 2)(5) f(t)τ(2t) (2-t) k 兀 (11) f(k) =sin( )[ (k)- ;(k-7)] 6 (8) f(k)= k[ (k)- (k-5)] (12) f (k 「2k [ (3- k)- (k)](8)f (k ). k[ (k ) -(k (5) f (t)= r (2t) (2 — t) (e )— 5)]I ∖fg1丁 ■ ~ι丨FrIΛI ∖。

d1 2 1L 5 S ⅛(k )(11)f(k)5(K2W7)]k(12)f(k)= 2k[ (3 - k)- (k)]Ifa)4∙J. A.,. JO∣ 1 2(I)1-3写出图1-3所示各波形的表达式(a) ∕(∕) = 2ε(Z + 1) —ε(∕ — 1)—ε(f— 2)(b) ∕(r)= (f÷l)ε(f÷l) - 2(z - l)ε(f — 1) + (f — 3)ε(z—3)(C)fit) = IoSin(T:/)_E(Z)-E(Z - 1)](d)∕(r) = 1 十2(r + 2)_E(I + 2) — E(r + 1)_ +(1 — l),(r +1) - E(T— 1)_1-4写出图仁4所示各序列的闭合形式表达式解图示各序列的闭合形式表示式分别为;(a)∕(⅛) = ε(⅛ + 2) (b)∕(⅛)= ε(⅛— 3) -ξ(k— 7)(c)∕(⅛) = e(-⅛ + 2) (d)∕(⅛) = (― l)*e(⅛)1—5判别下列各序列是否为周期性的.如果是,确定其周期解:⑵该序列的周期应为込(響 +于)和Cw(即+寺)的最小公倍数8 CoS⑸该序列不是周期的JX前的周期为2π,sin(πf)的周期为2,若序列周期为「则丁是2的整数倍厂也是%的整数彳氛这不成立…:不是周期的勺(2)3兀f2(k) = cos(-4πJEjlk ? C o S g k 6 (5) f5(tp 3cost 2si n( t)A该序列的周期为24.1—6已知信号f (t)的波形如图1-5所示,画出下列各函数的波形解:各信号波形为(1) f(t —1) (t )(1) f (t —1) (t )df(t )⑺—dT(2)⑹ f (0∙5t 2)t (8) 「f (χ)dx(2) f(t - 1) (t - 1)(5)f(12t)4■ /2IIO 1 3〈a)Cb)(6)f(0∙5t-2)df(t)⑺ dtI Iy(I- 2⅛)_ I _____ —11 3 ⅛2 2 2(E)t⑻“ f(x)dxJ 一 F/(Λ-2)KΛ)(Co—乂 二 二(9)(2 =);) (2-工r (逢(L2r (2 +>l ’4 (9)H寸 —〉1):0)I E4〉] 3∣2r1 2 3 4 5 6〈O/(Λ-2)KΛ) /(-⅛÷2⅛(—Λ÷J)/(Λ-2)KΛ)1—9已知信号的波形如图的波形解:由图1—11知,f(3-t)的波形如图1-12(a)所示(f(3-t)波形是由对f(3- 2t)的波形展宽为原来的两倍而得)。

(完整版)信号与线性系统分析_(吴大正_第四版)第一章习题答案

(完整版)信号与线性系统分析_(吴大正_第四版)第一章习题答案

专业课习题解析课程第1讲第一章信号与系统(一)专业课习题解析课程第2讲第一章 信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))tf=r)(sin(t(7))f kε=t)(2(k(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

信号与线性系统分析习题答案吴大正第四版高等教育出版社

信号与线性系统分析习题答案吴大正第四版高等教育出版社

41 / 255
42 / 255
2-8 如图 2-4 所示的电路,若以 i S(t ) 为输入, uR (t ) 为输出,试列出其微分方程,并求出冲激响应和阶跃响
应。
43 / 255
44 / 255
2-12 如图 2-6 所示的电路,以电容电压 uC (t ) 为响应,试求其冲激响应和阶跃响应。
70 / 255
71 / 255
3.13、求题 3.9 图所示各系统的阶跃响应。
72 / 255
73 / 255
74 / 255
75 / 255
3.14、求图所示系统的单位序列响应和阶跃响应。
76 / 255
3.15、若 LTI 离散系统的阶跃响应 g( k)
k
0.5
k ,求其单位序列响应。
第一章 信号与系统(二)
1-1 画出下列各信号的波形【式中 r (t ) t (t) 】为斜升函数。
( 2) f (t ) e t ,
t
(3) f (t ) sin( t) (t )
( 4) f (t ) (sin t )
( 5) f (t) r (sin t)
( 7) f (t ) 2k ( k)
析各系统是否是线性的。
(1) y(t) e t x(0)
t
sin xf ( x)dx
0
t
(2) y(t)
f (t ) x(0)
f (x) dx
0
t
(3) y(t ) sin[ x(0)t]
f (x)dx
0
(4) y(k ) (0.5)k x(0) f (k) f (k 2)
k
(5) y(k) kx(0)
的两倍而得)。将 f (3 t ) 的波形反转而得到 f (t 3) 的波形,如图 1-12(b) 所示。再将 f (t 移 3 个单位,就得到了 f (t ) ,如图 1-12(c) 所示。 df (t) 的波形如图 1-12(d) 所示。

信号与线性系统分析_(吴大正_第四版)第一章习题答案

信号与线性系统分析_(吴大正_第四版)第一章习题答案

专业课习题解析课程第1讲第一章信号与系统(一). 学习参考.专业课习题解析课程第2讲. 学习参考.. 学习参考 .第一章 信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)(. 学习参考.(3))()sin()(t t t f επ=(4))(sin )(t t f ε=. 学习参考.(5))(sin )(t r t f =(7))(2)(k t f k ε=. 学习参考.(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f. 学习参考 .(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f. 学习参考.(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε. 学习参考.(11))]7()()[6sin()(--=k k k k f εεπ. 学习参考 .(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

信号与线性系统分析-(吴大正-第四版)习题答案第二章

信号与线性系统分析-(吴大正-第四版)习题答案第二章

第二章2-1已知描述系统的微分方程和初始状态如下,试求其零输入响应。

(1)y''(t) 5y'(t) 6y(t) f (t), y(0) 1, y'(0 ) 1(4)y''(t) y(t) f(t), y(0) 2, y'(0 ) 0解(l)已知方程的特征方程为A2+ 5A + 6 = 0 其特征根为初=-2"? =-36澈分方程的齐次解为央⑴=CL十C代7 由于y(0_) = Kj/70_) =- 1,且激励为零•故有比(0 十〉=y^(0-) = y(O-)= 1 必(0+)=y x(o_)= y(o_)=—i 即并d= G十G = 1 y\(O~) ——2Ci —3G =—1 由上式解得C\ =2,C =-l则系统的零输入响应为y z(n= 2厂孫—色一常d $ 0(4)已知方程的特征方程为A2 -H 1 = 0 其特征根为和=人兀=—人微分方程的齐次解为片(D = Cicos/ + Cg sin/ 由于激励为零,故有>7 (0-r )=力(。

一)=y(0-)= 2 心(0 十)== y(O-)= 0 即划(0_)= Ci = 23/上(0一)= C?2 = 0则系统的零输人响应为几(f)= 2cosz^ 02-2已知描述系统的微分方程和初始状态如下,试求其0值y(0 )和y'(0 )(2)y''(t) 6y'(t) 8y(t) f''(t),y(0 ) 1, y'(0 ) 1, f(t) (t)(4)y''(t) 4y'(t) 5y(t) f'(t),y(0 ) 1,y'(0 ) 2, f (t) e2t (t)解:⑵ y (7)+ 6『⑺一 8了⑺=©"(/) 设/(/> =力一处‘仃)+必(“ +儿(门 则有 丿⑺=必‘(r 〉+处(了)一兀(r )•f/! (r ) = a : (r ) + /0(r )d^同理 y(/) = u (5(z)—人(r) y 2 (r) = /as(r) + 兀(r)dz■ —X 整理得 力"(C + (6u + 6)y (r) + (8a + 6〃 + Cd(r) +L8/2(r)+671(r) + 70(r)]=『⑴<a = 1 = 1・ J 6a 十 Z> = 0=> J )=— 6 丨 8Q + 6〃 + c = 0c = 28r o ・••有 J(O-) - J(O-)= 飞'(r)dr — 6 - Jo. J 0_ =—6 ・:y(0-) = y(0_) — 6 =— 5 (J(r)dr + /i (r)dr J O- ro y Z (0+ ) — y(0_ ) = 8 ( t)dt — 6 8 (/) dz + o_ 0. =28 ■・・y'(0J = 295(/)d/ + Jo. YQ (t)dt(4) /(/) +□></) =-2c_?£(f) + 肮。

信号与线性系统分析_(吴大正_第四版)习题答案第六章

信号与线性系统分析_(吴大正_第四版)习题答案第六章

第六章6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。

(1)1)(=z F ,全z 平面(2)∞<=z z z F ,)(3(3)0,)(1>=-z z z F(4)∞<<-+=-z z z z F 0,12)(2(5)a z azz F >-=-,11)(1 (6)a z az z F <-=-,11)(16.5 已知1)(↔k δ,a z z k a k -↔)(ε,2)1()(-↔z z k k ε,试利用z 变换的性质求下列序列的z 变换并注明收敛域。

(1))(])1(1[21k k ε-+ (3))()1(k k k ε-(5))1()1(--k k k ε (7))]4()([--k k k εε(9))()2cos()21(k k k επ6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞→。

(1))31)(21(1)(2+-+=z z z z F (3))2)(1()(2--=z z z z F6.10 求下列象函数的双边逆z 变换。

(1)31,)31)(21(1)(2<--+=z z z z z F (2)21,)31)(21()(2>--=z z z z z F (3)21,)1()21()(23<--=z z z z z F(4)2131,)1()21()(23<<--=z z z z z F6.11 求下列象函数的逆z 变换。

(1)1,11)(2>+=z z z F (2)1,)1)(1()(22>+--+=z z z z z z z F (5)1,)1)(1()(2>--=z z z z z F (6)a z a z az z z F >-+=,)()(326.13 如因果序列)(f ,试求下列序列的z变换。

k)(zF(1))(0i f a ki i ∑= (2)∑=ki ki f a)(6.15 用z变换法解下列齐次差分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t(7))t=(kf kε(2)(10))f kεk=(k+-((])1)1[1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f的波形如图1-5所示,画出下列各函数的波形。

(1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f- (6))25.0(-t f(7)dtt df )( (8)dx x f t ⎰∞-)(解:各信号波形为(1))()1(t t f ε-(2))1()1(--t t f ε(5))21(t f -(6))25.0(-t f(7)dttdf)((8)dxxft⎰∞-)(1-7 已知序列)(kf的图形如图1-7所示,画出下列各序列的图形。

(1))()2(k k f ε- (2))2()2(--k k f ε(3))]4()()[2(---k k k f εε (4))2(--k f (5))1()2(+-+-k k f ε (6))3()(--k f k f解:1-9 已知信号的波形如图1-11所示,分别画出)(tf和dttdf)(的波形。

解:由图1-11知,)3(tf-的波形如图1-12(a)所示()3(tf-波形是由对)23(tf-的波形展宽为原来的两倍而得)。

将)3(tf-的波形反转而得到)3(+tf的波形,如图1-12(b)所示。

再将)3(+tf的波形右移3个单位,就得到了)(tf,如图1-12(c)所示。

dttdf)(的波形如图1-12(d)所示。

1-10 计算下列各题。

(1)[]{})()2sin(cos22tttdtdε+(2))]([)1(tedtdt tδ--(5)dtttt)2()]4sin([2++⎰∞∞-δπ(8)dxxxt)(')1(δ⎰∞--1-12 如图1-13所示的电路,写出(1)以)(t u C 为响应的微分方程。

(2)以)(t i L 为响应的微分方程。

1-20 写出图1-18各系统的微分或差分方程。

1-23 设系统的初始状态为)0(x ,激励为)(⋅f ,各系统的全响应)(⋅y 与激励和初始状态的关系如下,试分析各系统是否是线性的。

(1)⎰+=-t t dx x xf x e t y 0)(sin )0()( (2)⎰+=tdx x f x t f t y 0)()0()()((3)⎰+=tdx x f t x t y 0)(])0(sin[)((4))2()()0()5.0()(-+=k f k f x k y k(5)∑=+=kj j f kx k y 0)()0()(1-25 设激励为)(⋅f ,下列是各系统的零状态响应)(⋅zs y 。

判断各系统是否是线性的、时不变的、因果的、稳定的? (1)dtt df t y zs )()(= (2))()(t f t y zs = (3))2cos()()(t t f t y zs π=(4))()(t f t y zs -= (5))1()()(-=k f k f k y zs (6))()2()(k f k k y zs -=(7)∑==k j zs j f k y 0)()( (8))1()(k f k y zs -=1-28 某一阶LTI 离散系统,其初始状态为)0(x 。

已知当激励为)()(1k k y ε=时,其全响应为 若初始状态不变,当激励为)(k f -时,其全响应为)(]1)5.0(2[)(2k k y k ε-= 若初始状态为)0(2x ,当激励为)(4k f 时,求其全响应。

第二章2-1 已知描述系统的微分方程和初始状态如下,试求其零输入响应。

(1)1)0(',1)0(),()(6)('5)(''-===++-y y t f t y t y t y(4)0)0(',2)0(),()()(''===+-y y t f t y t y2-2 已知描述系统的微分方程和初始状态如下,试求其+0值)0(+y 和)0('+y 。

(2))()(,1)0(',1)0(),('')(8)('6)(''t t f y y t f t y t y t y δ====++--(4))()(,2)0(',1)0(),(')(5)('4)(''2t e t f y y t f t y t y t y t ε====++--解:2-4 已知描述系统的微分方程和初始状态如下,试求其零输入响应、零状态响应和全响应。

(2))()(,2)0(',1)0(),(3)(')(4)('4)(''t e t f y y t f t f t y t y t y t ε---===+=++ 解:2-8 如图2-4所示的电路,若以)(t i S 为输入,)(t u R 为输出,试列出其微分方程,并求出冲激响应和阶跃响应。

2-12 如图2-6所示的电路,以电容电压)(t u C 为响应,试求其冲激响应和阶跃响应。

2-16 各函数波形如图2-8所示,图2-8(b)、(c)、(d)均为单位冲激函数,试求下列卷积,并画出波形图。

(1))(*)(21t f t f (2))(*)(31t f t f (3))(*)(41t f t f(4))(*)(*)(221t f t f t f (5))3()(2[*)(341--t f t f t f波形图如图2-9(a)所示。

波形图如图2-9(b)所示。

波形图如图2-9(c)所示。

波形图如图2-9(d)所示。

波形图如图2-9(e)所示。

2-20 已知)()(1t t t f ε=,)2()()(2--=t t t f εε,求)2('*)1(*)()(21--=t t f t f t y δ2-22 某LTI 系统,其输入)(t f 与输出)(t y 的关系为dx x f e t y t x t )2()(1)(2-=⎰∞--- 求该系统的冲激响应)(t h 。

2-28 如图2-19所示的系统,试求输入)()(t t f ε=时,系统的零状态响应。

2-29 如图2-20所示的系统,它由几个子系统组合而成,各子系统的冲激响应分别为)1()(-=t t h a δ )3()()(--=t t t h b εε求复合系统的冲激响应。

第三章习题3.1、试求序列的差分、和。

3.6、求下列差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应。

1)3)5)3.8、求下列差分方程所描述的离散系统的单位序列响应。

2)5)3.9、求图所示各系统的单位序列响应。

(a)(c)3.10、求图所示系统的单位序列响应。

3.11、各序列的图形如图所示,求下列卷积和。

(1)(2)(3)(4)。

相关文档
最新文档