常用面积、体积计算公式
小学所有的面积公式体积公式单位之间的换算关系运算定律
![小学所有的面积公式体积公式单位之间的换算关系运算定律](https://img.taocdn.com/s3/m/d75d0117cd7931b765ce0508763231126edb777b.png)
小学全部的面积公式体积公式单位之间的换算关系运算定律长方形周长: C=(a+ b) ×2面积: S=a×b正方形周长: C=4a面积: S=a×a三角形面积: S=ab÷2平行四边形面积: S=a×h梯形面积: S=(a+b) ×h÷2圆周长: C= 2πr = πd圆面积: s=π r^ 2圆柱体积: V=sh圆柱表面积: S(表) =侧面积 +底面积(侧面积=底面周长×高)长方体表面积: S=(ab+bc+ac) ×2长方体体积: V=a×b×c正方体表面积: S=6×a×a正方体体积: V=a×a×a圆锥体积: V=1/3sh加法互换律 a+b=b+a加法联合律 a+(b+c)=(a+b)+c乘法互换律 a×b=b×a乘法联合律 a×( b×c)=(a×b)×c乘法分派律 (a+b) ×c=a×c+b×c相邻的长度单位之间进率是10.相邻的面积单位之间的进率是100.相邻的体积(或容积)单位之间的进率是1000.还有 1 公顷 =10000 平方米1 平方千米 =1000000平方米 =100 公顷小学数学图形计算公式1正方形C 周长S 面积 a 边长周长=边长×4C=4a面积 =边长×边长S=a×a2正方体V:体积 a:棱长表面积 =棱长×棱长×6S 表 =a×a×6体积 =棱长×棱长×棱长V=a×a×a3长方形C 周长S 面积 a 边长周长 =(长+宽 )×2C=2(a+b)面积 =长×宽S=ab4长方体(1)表面积 (长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积 =长×宽×高V=abh5三角形s 面积 a 底 h 高面积 =底×高÷2s=ah ÷2三角形高 = 面积×2÷底三角形底 = 面积×2÷高6平行四边形s 面积 a 底 h 高面积 =底×高s=ah7梯形s 面积 a 上底 b 下底h 高面积 =( 上底 +下底 ) ×高÷2s=(a+b)×h÷28圆形(1)周长 =直径×∏ =2×∏×半径(2)面积 =半径×半径×∏9圆柱体v:体积h:高 s;底面积r: 底面半径c:底面周长(1)侧面积 =底面周长×高(2)表面积 =侧面积 +底面积×2(3)体积 =底面积×高( 4)体积=侧面积÷2×半径10圆锥体v:体积h:高 s;底面积r: 底面半径体积 =底面积×高÷3总数÷总份数=均匀数1每份数×份数=总数总数÷每份数=份数总数÷份数=每份数21 倍数×倍数=几倍数几倍数÷1 倍数=倍数几倍数÷倍数= 1 倍数3速度×时间=行程行程÷速度=时间行程÷时间=速度4单价×数目=总价总价÷单价=数目总价÷数目=单价5工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6加数+加数=和和-一个加数=另一个加数7被减数-减数=差被减数-差=减数差+减数=被减数8因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数和差问题的公式(和+差(和-差) ÷2=大数) ÷2=小数和倍问题和÷(倍数- 1) =小数小数×倍数=大数(或许和-小数=大数)差倍问题差÷(倍数- 1) =小数小数×倍数=大数(或小数+差=大数)植树问题1 非关闭线路上的植树问题主要可分为以下三种情况⑴假如在非关闭线路的两头都要植树,那么 ::株数=段数+1=全长÷株距-1全长=株距×(株数- 1)株距=全长÷(株数- 1)⑵假如在非关闭线路的一端要植树,另一端不要植树,那么 :株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶假如在非关闭线路的两头都不要植树,那么 :株数=段数-1=全长÷株距- 1全长=株距×(株数+ 1)株距=全长÷(株数+ 1)2关闭线路上的植树问题的数目关系以下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏 ) ÷两次分派量之差=参加分派的份数(大盈-小盈 ) ÷两次分派量之差=参加分派的份数(大亏-小亏 ) ÷两次分派量之差=参加分派的份数相遇问题相遇行程=速度和×相遇时间相遇时间=相遇行程÷速度和速度和=相遇行程÷相遇时间追及问题追及距离=速度差×追实时间追实时间=追及距离÷速度差速度差=追及距离÷追实时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度= (顺流速度+逆流速度) ÷2水流速度= (顺流速度-逆流速度) ÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量收益与折扣问题收益=售出价-成本收益率=收益÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实质售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)分数除法部重量 /部重量所占分率=单位 1运算定律共有五个:加法互换律、加法联合律、乘法互换律、乘法联合律、乘法分派律,要求在理解的基础上掌握,并能灵巧运用。
表面积体积的计算公式
![表面积体积的计算公式](https://img.taocdn.com/s3/m/b1ee9b5ddf80d4d8d15abe23482fb4daa48d1d4c.png)
表面积体积的计算公式一、正方体。
1. 表面积公式。
- 设正方体的棱长为a,正方体的表面积S = 6a^2。
因为正方体有6个面,且每个面的面积都是a^2。
2. 体积公式。
- 正方体的体积V=a^3。
二、长方体。
1. 表面积公式。
- 设长方体的长、宽、高分别为a、b、c,则表面积S = 2(ab+bc + ac)。
长方体有6个面,相对的面面积相等,其中前面和后面的面积为ac,左面和右面的面积为bc,上面和下面的面积为ab。
2. 体积公式。
- 长方体的体积V=abc。
三、圆柱体。
1. 表面积公式(含两个底面)- 设圆柱体底面半径为r,高为h。
圆柱体的表面积S = 2π r^2+2π rh。
其中2π r^2是两个底面圆的面积,2π rh是侧面展开矩形的面积(矩形的长为底面圆的周长2π r,宽为圆柱的高h)。
2. 体积公式。
- 圆柱体的体积V=π r^2h。
四、圆锥体。
1. 表面积公式(含底面)- 设圆锥底面半径为r,母线长为l。
圆锥的表面积S=π r^2+π rl。
其中π r^2是底面圆的面积,π rl是侧面展开扇形的面积(扇形的弧长为底面圆的周长2π r,半径为母线l)。
2. 体积公式。
- 圆锥体的体积V=(1)/(3)π r^2h(这里h是圆锥的高,根据勾股定理l^2=h^2+r^2,如果已知r和l也可求出h再求体积)。
五、球体。
1. 表面积公式。
- 设球的半径为r,球的表面积S = 4π r^2。
2. 体积公式。
- 球的体积V=(4)/(3)π r^3。
常用面积体积公式
![常用面积体积公式](https://img.taocdn.com/s3/m/bd46e16e4a73f242336c1eb91a37f111f1850dd3.png)
常用面积体积公式在几何学中,面积和体积是两个十分重要的概念。
面积是用来衡量平面上的二维形状所占据的空间大小,而体积则是用来衡量三维形状所占据的空间大小。
在计算面积和体积时,我们可以利用一些常用的公式来简化计算过程。
下面是一些常用的面积和体积公式:1.矩形的面积公式:矩形的面积可以通过其宽度w和长度l相乘得到。
公式为:面积=长度×宽度,即A=l×w。
2.正方形的面积公式:正方形的面积可以通过其边长s的平方得到。
公式为:面积=边长×边长,即A=s^23.三角形的面积公式:三角形的面积可以通过其底边长b和高h的乘积再除以2得到。
公式为:面积=(底边长×高)/2,即A=(b×h)/24.平行四边形的面积公式:平行四边形的面积可以通过其底边长b和高h的乘积得到。
公式为:面积=底边长×高,即A=b×h。
5.梯形的面积公式:梯形的面积可以通过其上底a、下底b和高h的乘积再除以2得到。
公式为:面积=(上底+下底)×高/2,即A=(a+b)×h/26.圆的面积公式:圆的面积可以通过其半径r的平方乘以圆周率π得到。
公式为:面积=半径^2×π,即A=r^2×π。
7.球体的表面积和体积公式:球体的表面积可以通过其半径r的平方乘以4再乘以圆周率π得到。
公式为:表面积=4×半径^2×π,即A=4×r^2×π。
球体的体积可以通过其半径r的立方乘以4再除以3再乘以圆周率π得到。
公式为:体积=4/3×半径^3×π,即V=4/3×r^3×π。
8.立方体的体积公式:立方体的体积可以通过其边长s的立方得到。
公式为:体积=边长^3,即V=s^39.长方体的体积公式:长方体的体积可以通过其长l、宽w和高h的乘积得到。
公式为:体积=长×宽×高,即V=l×w×h。
常用体积及表面积计算公式
![常用体积及表面积计算公式](https://img.taocdn.com/s3/m/0a5f8eef168884868762d6d8.png)
r长方形的周长=(长宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积= (长×宽长×高+宽×高)×2 长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4a S=a2长方形a和b-边长C=2(a b) S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a b c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα 平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2) =π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V 正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab ac bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1 S2 (S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1 S2 4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch 2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3 球r-半径d-直径V=4/3πr3=πd2/6 球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2 h2)/6 =πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22) h2]/6 圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。
常用求面积体积公式
![常用求面积体积公式](https://img.taocdn.com/s3/m/10eb34c382d049649b6648d7c1c708a1294a0a10.png)
常用求面积体积公式在数学中,面积和体积是两个基本概念,常用于描述平面图形或立体图形的大小。
面积是二维图形所占据的空间大小,而体积是三维图形所占据的空间大小。
下面是一些常用的求面积和体积的公式:1.平面图形的面积公式:-矩形的面积公式:面积=长×宽-正方形的面积公式:面积=边长×边长-三角形的面积公式:面积=底边长×高/2-圆的面积公式:面积=π×半径×半径2.立体图形的体积公式:-长方体的体积公式:体积=长×宽×高-正方体的体积公式:体积=边长×边长×边长-圆柱体的体积公式:体积=π×半径×半径×高-圆锥体的体积公式:体积=π×半径×半径×高/3-球体的体积公式:体积=4/3×π×半径×半径×半径除了以上常见的公式,还有一些特殊的图形和立体的面积和体积公式,如:3.特殊平面图形的面积公式:-梯形的面积公式:面积=(上底+下底)×高/2-平行四边形的面积公式:面积=底边长×高度-扇形的面积公式:面积=π×半径×半径×弧度/360-椭圆面积的公式:面积=π×长轴长度×短轴长度4.特殊立体图形的体积公式:-平行四边形柱的体积公式:体积=底面积×高-直角三角锥的体积公式:体积=底面积×高/3- 正多面体的体积公式:体积 = (边长^ 2 × 边数) / (4 ×tan(π / 边数))这些公式是数学中常用的求面积和体积的公式,可以帮助我们准确计算出图形的大小和立体的容积。
在实际应用中,我们可以根据具体的情况选择合适的公式进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知直径D,求V、A。
已知球半径 r与冠高h,求V、A。
已知球半径 r与冠半弦a,求V、A。
长边 a∥c,高度为 h。
Am为棱柱体中截面,但Am≠ (A1+A2)/2。
Am为棱柱体中截面,但Am≠ (A1+A2)/2。
坡道长度为 l,宽度为 a,纵坡为 i, 边坡坡比均为 1:n。
628.319 904.779 452.389 12.000 904.779 452.389 904.779 376.991 1256.637 628.319
r
6
表面积(A) 直径(D) 体积(V)
r
11 球
D
D
12 表面积(A)
r 球 冠 r
c a h
10 6
体积(V) 侧面积(As) 体积(V)
常用几何图形参数计算表
序号 图形名称 图
B
任 意 三 角 形
式
参数 代号
a b
参数值
4
名
称
A=b*h/2
计算公式
计算值
17.500 9.798 34.048° 44.415° 101.537° 60.000° 120.000° 0.176 0.260 0.225 0.000 0.000
面积(A) 5 7 7 8 圆心角(α ) β n 6 内角(β ) R s R 0.26 面积(A) 外接圆(R) 内切圆(r) 面积(A) β =180-α =180*(n-2)/n A=n*s*r/2 R=(s/2)/sin(α /2) r=(s/2)/tan(α /2) A=n*R^2*sin(α /2)*cos(α /2) s=2*R*sin(α /2) 角度(°) A=sqrt((s*(s-a)*(s-b)*(s-c)) ∠A=acos((b^2+c^2-a^2)/(2*b*c)) ∠B=acos((a^2+c^2-b^2)/(2*a*c)) ∠C=acos((b^2+a^2-c^2)/(2*a*b)) α =360/n
a a
7 椭 圆 角 缘 a 8 面积(A) b 4 A=a*b*(1-pi()/4) 6.867
b
8
抛 物 线
a1
b
b
a
5 面积(A) A=4/3*a*b 20.000 3 7 5 3 4 100 体积(V) V=h*(A1+A2+sqrt(A1*A2))/6 280.669 125 5 倾角(α ) α =atan((h2-h1)/2/R) 11.310° 上面积(A1) 下面积(A2) 侧面积(As) 体积(V) A1=n*a1^2/tan(pi()/n)/4 A2=n*a2^2/tan(pi()/n)/4 As=n*(a1+a2)*h1/2 V=h*(A1+A2+sqrt(A1*A2))/6 32.705 58.143 125.113 112.046
c
1
h
a
c
A
b
C
h s
2
正 n 边 形
r α
S
l
R
0 边长(s)
r
9 面积(A) A=l*r/2 27.000
3
扇 形
l
6
3
扇 形
l
6 圆心角(α ) 面积(A) α =l/r A=0.008727*α *r^2 l=0.01745*α *r 38.197° 95.426 21.206
r
α
α (°) 135
12.000
l n
3 1 0.05 体积(V) 13 50 V=i^2*l^2*(3*a+2*n*i*l*(1-n*I))*(1/in)/6
h
1:n
i
l
15
路 基 坡 道
i
a
1:n 1:n
i
865.885
a
a l
备
注
a、b、c为三角形的三条边长。
h为b边上的高。 s=(a+b+c)/2
n为正多边形边数
a
a
b n h
A1
9
台 体
A2 a2
h
a1 a2 A1 A2 R
D
10
截 头 圆 柱
α h2 h1
h1
7
斜径(D)
D=sqrt((h2-h1)^2+4*R^2)
10.198
10
截 头 圆 柱
h1 R
h2
9
体积(V) 体积(V)
V=pi()*R^2*(h1+h2)/2 V=4*pi()*r^3/3 A=4*pi()*r^2 D=2*r V=pi()*D^3/6 A=pi()*D^2 V=pi()*h^2*(3*r-h)/3 As=2*pi()*r*h V=pi()*h*(a^2+r^2-r*sqrt(r^2-a^2))/3 As=2*pi()*r*(r-sqrt(r^2-a^2))
弧长(l)
l
r
15 面积(A) A=(l*r-c*(r-h))/2 l=2*r*asin(c/(2*r)) c=2*sqrt(h*(2*r-h)) A=(l*r-c*(r-h))/2 l=2*r*asin(c/(2*r)) h=r-sqrt(r^2-c^2/4) 36.788 19.305 18.000 20.382 15.708 2.010
h
4 弓 形
h
3
弧长(l) 弦长(c)
c α r
c 15
面积(A) 弧长(l) 矢高(h)
R 角 缘 面 积
60
5
α
R
α (°) 50
面积(A)
A=R^2*(tan(α /2)-pi()*α /360)
107.911
b
6 椭 圆
a
6
面积(A)
A=PI()*a*b
75.398
6
椭 圆 b 4 周长(S) S≈pi()*sqrt(2*(a^2+b^2)-(a-b)^2/22) 32.010
长轴 a
短轴 b
长轴 a
短轴 b
b 为抛物线半开口宽。
多边形边数n,台体高度h。
已知上、下边长a1、a2,求As、V。
已知上.下面积A1.A2,求As、V
已知圆柱半径R,截高h1、h2,求截面 α 、D、与体积V。
已知圆柱半径R,截高h1、h2,求截面 α 、D、与体积V。
已知半径 r,求V、A、D。
已知边数n,边长s,求A,R,r
已知边数n,外接圆R,求A,s
r为扇形半径。
已知弧长 l,求面积A与圆心角α
已知弧长 l,求面积A与圆心角α
已知圆心角α ,求面积A与弧长l
r为扇形半径。
已知矢高h,求面积A、弧长l、弦长c。
已知弦长c,求面积A、弧长l、矢高h。
已知半径R,弧心角α ,求角缘面积A。
h
12
a
10 侧面积(As)
a
h
6 5 体积(V) V=(2*a+c)*b*h/6 75.000 6 5 4 4 体积(V) V=l*(A1+4*Am+A2)/6 12.000 4
13
契 形 体
h
b c
b a
l/2 l/2
h A1
A2 Am
14
棱 柱 体
A2 Am
A1
14
棱 柱 体
l
体积(V)ห้องสมุดไป่ตู้
V=l*(A1+4*Am+A2)/6