关于实数完备性的基本定理
数学分析讲义 - CH07(实数的完备性)
第七章 实数的完备性§1关于实数集完备性的基本定理前面我们学习了:戴德金切割原理、确界原理、单调有界定理、致密性定理、柯西收敛准则,这些命题都是从不同方式反映实数集的一种特性,通常称为实数的完备性或实数的连续性公理。
本节再学习见个实数的完备性公理,即区间套定理、聚点定理、有限覆盖定理。
最后我们要证明这些命题都是等价的。
一、区间套定理]}定义1 设闭区间列具有如下性质: [{n n b a ,(i) []n n b a ,[]11,++⊃n n b a , ,2,1=n ; (ii) 0)(lim =-∞→n n n a b ,则称为闭区间套,或简称区间套。
[{n n b a ,]} 这里性质(¡)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:.1221b b b a a a n n ≤≤≤≤≤≤≤≤ (1) 左端点{}n a 是单调递增的点列,右端点{}n b 是单调递减的点列。
定理1 (区间套定理) 若是一个区间套,则在实数系中存在唯一的一点[{n n b a ,]}ξ,使得ξ∈[]n n b a ,,,即,2,1=n ξ≤n a n b ≤, .,2,1 =n (2) 证 (由柯西收敛准则证明)设是一区间套.下面证明[{n n b a ,]}{}n a 是基本点列。
设,由区间套的条件(i)得m n >()()()()m n m n m m n n m m a a b a b a b a b a -=---≤---再由区间套的条件(ii ),易知{}n a 是基本点列。
按Cauchy 收敛准则,{}n a 有极限,记为ξ。
于是()lim lim ()lim n n n n n n n n b b a a a ξ→∞→∞→∞=-+==由{}n a 单调递增,{}n b 单调递减,易知ξ≤n a n b ≤,.,2,1 =n下面再证明满足(2)的ξ是唯一的。
《数学分析》实数完备性七大定理证明与七大定理相互证明
《数学分析》实数完备性七大定理证明与七大定理相互证明在数学分析中,实数完备性是一个非常重要的概念。
实数完备性是指实数轴上不存在任何空缺的性质,即任何实数序列都有收敛的子序列。
实数完备性可由七大定理进行证明,并且这七个定理之间也可以相互证明。
下面将对这七大定理进行证明,并且展示它们之间的相互证明。
第一个定理是确界定理(或称上确界定理)。
它的表述是:有上界的非空实数集必有上确界。
证明如下:先证明存在性,假设S是有上界的非空实数集,令M为S的一个上界,那么对于S中的任意元素x,都有x≤M。
接下来我们来证明M是S的上确界。
首先,我们要证明M是S的一个上界,即对于任意x∈S,x≤M。
其次,我们要证明对于任意ε>0,存在一个元素s∈S,使得M-ε<s≤M。
这两点都可以使用导致上确界的性质来证明。
因此,我们证明了确界定理。
第二个定理是区间套定理。
它的表述是:若{[an,bn]}是一个递减的闭区间序列,并且满足an≤bn,则存在一个唯一的实数x同时含于所有闭区间[an,bn]中。
证明如下:首先,我们证明了区间套的任意两个闭区间之间的交集不为空。
其次,我们证明了{an}是一个递增有上界的实数序列,{bn}是一个递减有下界的实数序列。
因此,根据实数完备性的定义,存在唯一的实数x满足an≤x≤bn,即x属于所有闭区间的交集。
第三个定理是柯西收敛准则。
它的表述是:一个实数序列是收敛的充分必要条件是它满足柯西收敛准则,即对于任意ε>0,存在自然数N,使得当m,n≥N时,有,am-an,<ε。
证明如下:首先,我们证明了柯西收敛准则蕴含了实数序列的有界性。
其次,我们证明了柯西收敛准则蕴含了实数序列的单调性。
因此,根据实数完备性的定义,实数序列的柯西收敛准则是实数序列收敛的充分必要条件。
第四个定理是实数域的离散性。
它的表述是:任意两个实数之间必存在有理数和无理数。
证明如下:假设a和b是两个实数,并且a<b。
第七章 实数完备性
第七章实数的完备性§1 关于实数完备性的基本定理一、问题提出定理1.1(确界原理)非空有上(下)界的数集必有上(下)确界.确界存在定理(定理 1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类二、回顾确界原理的证明我们曾引入有界数集的确界概念,今证明它的存在性(记号a 、b 、c 表示实数) Dedekind 定理设A/B 是R 的一个切割,则比存在实数R ε∈使得(,]A ε=-∞,(,)B ε=+∞或(,)A ε=-∞,[,)B ε=+∞无其它可能.1 非空有上界的数集E 必存在上确界.证明 设}{x E =非空,有上界b : E x ∈∀,b x ≤. (1) 若E 中有最大数0x ,则0x 即为上确界;(2) 若E 中无最大数,用下述方法产生实数的一个分划;取E 的一切上界归入上类B ,其余的实数归入下类A ,则)|(B A 是实数的一个分划.ο1 A 、B 不空.首先B b ∈.其次E x ∈∀,由于x 不是E 的最大数,所以它不是E 的上界,即A x ∈.这说明E 中任一元素都属于下类A ;ο2 A 、B 不漏性由A 、B 定义即可看出;ο3 A 、B 不乱.设A a ∈,B b ∈.因a 不是E 的上界,E x ∈∃,使得x a <,而E 内每一元素属于A ,所以b x a <<.ο4 由ο3的证明可见A 无最大数.所以)|(B A 是实数的一个分划.由戴德金定理,知上类B 必有最小数,记作c .E x ∈∀,由ο1知A x ∈,即得c x <.这表明c 是E 的一个上界.若b 是E 的一个上界,则B b ∈,由此得b c ≤,所以c 是上界中最小的,由上确界定义,c 为集合E 的上确界,记作 E c sup =.推论 非空的有下界的集合必有下确界.事实上,设集合}{x E =有下界b ,则非空集合}|{'E x x E ∈-=有上界b -,利用集合'E 上确界的存在性,即可得出集合E 的下确界存在.定理1解决了非空有上界集合的上确界存在性问题,我们可以利用上确界的存在性,得出我们所研究的某一类量(如弧长)的存在性.若全序集中任一非空有上界的集合必有上确界,我们称该全序集是完备的.定理1刻划了实数集是完备的.例1 证明实数空间满足阿基米德原理.证明 0>>∀a b ,要证存在自然数n 使b na >.假设结论不成立,即b na ≤, ),,Λ21(=n ,则数集}{na E =有上界b ,因此有上确界c ,使c na ≤),,Λ21(=n ,也就有c a n ≤+)1(),,Λ21(=n ,或 a c na -≤ ),,Λ21(=n .这表明a c -是集合E 的上界,与c 是上确界矛盾.所以总存在自然数n ,使b na >. 三、等价命题证明下面来完成(1)~(7)的证明. (一) 用确界定理证明单调有界定理设}{n x 单调上升,即ΛΛ≤≤≤≤≤n x x x x 321,有上界,即M ∃,使得M x n ≤.考虑集合}|{N n x E n ∈=,它非空,有界,定理2推出它有上确界,记为nN n x a ∈=sup .我们验证 nn x a ∞→=lim .0>∀ε,由上确界的性质,N ∃,使得N x a <-ε,当N n >时,由序列单调上升得n N x x a ≤<-ε,再由上确界定义,ε+<≤a a x n ,有 εε+<<-a x a n ,即ε<-a x n ,也就是说 nN n n n x a x ∈∞→==sup lim . 同理可证若}{n x 单调下降,有下界,也存在极限,且nN n n n x x ∈∞→=inf lim .若集合E 无上界,记作+∞=E sup ;若集合E 无下界,记作+∞=E inf ,这样一来,定理2证明了的单调上升(下降)有上界(下界)的序列}{n x ,必有极限)inf (sup n N x n N x x x ∈∈的定理现在有了严格的理论基础了.且对单调上升(下降)序列}{n x ,总有)inf (sup lim n Nx n Nx n n x x x ∈∈+∞→=.(二) 用单调有界定理证明区间套定理由假设(1)知,序列}{n a 单调上升,有上界1b ;序列}{n b 单调下降,有下界1a .因而有1lim c a n n =+∞→,2lim c b n n =+∞→. n n b c c a ≤≤≤21.再由假设(2)知0)(lim 12=-=-+∞→c c a b n n n ,记c c c ==21. 从而有nn n n b c a +∞→+∞→==lim lim .若还有*c 满足n n b c a ≤≤*,令+∞→n ,得c c =*.故c 是一切],[n n b a 的唯一公共点.证毕.这个定理称为区间套定理.关于定理的条件我们作两点说明:(1) 要求],[n n b a 是有界闭区间的这个条件是重要的.若区间是开的,则定理不一定成立.如)1,0(),(n b a n n =.显然有 )1,0()11,0(n n ⊂+, 但 φ=+∞=)1,0(1n n I .如果开区间套是严格包含: n n n n b b a a <<<++11,这时定理的结论还是成立的.(2)若],[],[11n n n n b a b a ⊂++),,Λ21(=n ,但0)(lim ≠-+∞→n n n a b ,此时仍有1lim c a n n =+∞→,2lim c b n n =+∞→,但21c c <,于是对任意的c ,21c c c ≤≤,都有],[1n n n b a c +∞=∈I . 全序集中任一区间长趋于零的区间套有非空交集,则称该全序集是完备的,定理3刻划实数集是完备的(这里完备定义与上段完备定义是等价的).定理3也给出通过逐步缩小搜索范围,找出所求点的一种方法.推论 设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.例2 序列}{n x 由下列各式a x =1,b x =2,221--+=n n n x x x ),,Λ43(=n所确定(见下图).证明极限n n x+∞→lim 存在,并求此极限.1x 3x 5x 4x 2x x证明 当b a =时,a x n =,故ax n n =+∞→lim .当b a ≠时,若取),min(1n n n x x a +=,),m ax (1n n n x x b +=,),,Λ21(=n .则由条件,显然可得一串区间套:],[],[11n n n n b a b a ⊂++ ),,Λ21(=n .由已知条件)(212111--+--=-+=-n n n n n n n x x x x x x x ,于是,)(0||21||21||21||21||112121211+∞→→-=-==-=-=-=------+n a b x x x x x x x x a b n n n n n n n n n n Λ由区间套定理,存在c 满足: n n n n b c a +∞→+∞→==lim lim .注意到],[n n n b a x ∈,所以 c x n n =+∞→lim . 下面来求c .由)(2111-+--=-n n n n x x x x ,令132-=k n ,,,Λ得一串等式: )(211223x x x x --=-; )(212334x x x x --=-;ΛΛΛΛΛΛ)(21211-----=-k k k k x x x x .将它们相加,得 )(21112x x x x k k --=--,令+∞→k ,得)(2112x c x c --=-所以)2(31323121b a x x c +=+=.(三) 用区间套定理证明确界原理证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕]*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.* (五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕]推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点注数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.证}{n a 有界,则存在数11,y x 使得11y a x n ≤≤对n ∀成立.将],[11y x 二等分为]2,[111y x x +、],2[111y y x +,则其中必有一个含有数列}{n a 的无穷多项,记为],[22y x ;再将],[22y x 二等分为]2,[222y x x +、],2[222y y x +,同样其中至少有一个含有数列}{n a 的无穷多项,把它记为],[33y x ,……一直进行这样的步骤,得到一闭区间套]},{[n n y x ,其中每一个],[n n y x 中都含有数列}{n a 的无穷多项,且满足:⑴ ],[11y x ⊃],[22y x ⊃⊃Λ],[n n y x ⊃…⑵111lim()lim02n n n n n y x y x -→∞→∞--==则由闭区间套定理,ξ∃使得 =∞→n n a lim =∞→n n b lim ξ 下证}{n a 中必有一子列收敛于实数ξ先在],[11y x 中选取}{n a 的某一项,记为1n a ,因],[22y x 中含有}{n a 中的无穷多项,可选取位于1n a 后的某一项,记为2n a ,12n n >.继续上述步骤,选取k n a ],[k k y x ∈后,因为],[11++k k y x 中含有无穷多项,可选取位于kn a 后的某一项,记为1k n a +且kk n n >+1,这样我们就得到}{n a 的一个子列}{k n a 满足k n k y a x k ≤≤,Λ,2,1=k由两边夹定理即得 =∞→k n n a lim ξ.证明 设b x a n ≤≤,用中点21ba c +=将[]b a ,一分为二,则两个子区间[]1,c a 和[]b c ,1中至少有一个含有}{n x 中无穷多项,选出来记为[]11,b a ,在其中选一项1n x .用中点2112b a c +=将[]11,b a 一分为二,则两个子区间[]21,c a 和[]12,b c 中至少有一个含有}{n x 中无穷多项,选出来记为[]22,b a ,在其中选一项2n x ,使得Λ,12n n >.最后得一区间套[]k k b a ,,满足[][]k k k k b a b a ,,11⊂++,k k k a b a b 2-=-,[]kk k k n n n b a x k >∈+1,,.由区间套定理,c b a k k k k ==∞→∞→lim lim ,又由于kn k b x a k ≤≤,有c x k n k =∞→lim .*(六) 用聚点定理证明柯西准则必要性: 已知收敛,设.由定义,,当时,有.从而有.充分性: 已知条件: 当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.证 “⇒” }{n a 收敛,则存在极限,设a a n n =∞→lim ,则0>∀ε,N ∃,当N n >时有2/||ε<-a a n ⇒当N m n >,时有ε<-+-≤-||||||a a a a a a n m m n“⇐”先证有界性,取1=ε,则N ∃,N m n >,⇒1||<-m n a a特别地,N n >时 1||1<-+N n a a ⇒1||||1+<+N n a a设}1|||,|,|,||,m ax {|121+=+N N a a a a M Λ,则n ∀,Ma n ≤||再由致密性定理知,}{n a 有收敛子列}{k n a ,设aa k n k =∞→lim0>∀ε,1N ∃,1,N m n >⇒||/2n m a a ε-<K ∃,K k >⇒2/||ε<-a a k n取),m ax (1N K N =,当N n >时有11N n N N +≥+>⇒ εεε=+<-+-≤-++2/2/||||||11a a a a a a N N n n n n故aa n k =∞→lim .Cauchy 列、基本列(满足Cauchy 收敛准则的数列)*(七) 用柯西准则证明单调有界原理 设为一递增且有上界M 的数列.用反证法( 借助柯西准则 )可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“ 当 时,满足”.这是因为它同时保证了对一切,恒有 .倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 例1 用单调有界定理证明区间套定理.即已知:1 )单调有界定理成立;2 )设[]{}nnba,为一区间套.欲证:[],,2,1,,Λ=∈ξ∃nbann且惟一.证证明思想:构造一个单调有界数列,使其极限即为所求的ξ.为此,可就近取数列{}na(或{}n b).由于,1221bbbaaann≤≤≤≤≤≤≤≤ΛΛΛ因此{}na为递增数列,且有上界(例如1b).由单调有界定理,存在ξ=∞→nnalim,且Λ,2,1,=ξ≤nan.又因nnnnaabb+-=)(,而0)(lim=-∞→nnnab,故ξ=ξ+=+-=∞→∞→∞→lim)(limlimnnnnnnnaabb;且因{}nb递减,必使ξ≥nb.这就证得[]Λ,2,1,,=∈ξnbann.最后,用反证法证明如此的ξ惟一.事实上,倘若另有一个[]Λ,2,1,,=∈ξ'nbann,则由)()(∞→→-≤ξ'-ξnabnn,导致与>ξ'-ξ相矛盾.例 2 (10)用区间套定理证明单调有界定理.即已知:1 )区间套定理成立.2 )设{}n x为一递增且有上界M的数列.欲证:{}n x存在极限nnx∞→=ξlim.证证明思想:设法构造一个区间套[]{}nnba,,使其公共点ξ即为{}n x的极限.为此令[][]Mxba,,111=.记2111bac+=,并取[][]{}[]{}⎩⎨⎧=.,,;,,,11111122的上界为不若的上界为若nnxcbcxccaba再记222 2ba c +=, 同理取[][]{}[]{}⎩⎨⎧=.,,;,,,22222233的上界不为若的上界为若n n x c b c x c c a b a如此无限进行下去,得一区间套[]{}n n b a ,.根据区间套定理,[]∞→∞→=ξ==∈ξ∃n n n n n n b a n b a )lim lim (,2,1,,Λ.下面用数列极限定义证明ξ=∞→n n x lim :0>ε∀,一方面,由于)(N ∈k b k 恒为{}n x 的上界,因此ε+ξ<ξ=≤⇒≤∈∀∞→k k n k n b x b x ,k n lim ,N ;另一方面,由ε-ξ>⇒ε<-ξ=ξ-≥∈∃⇔ξ=∞→K k k k k a a a K k ,K a ,lim 时当N ;而由区间套的构造,任何k a 不是{}n x 的上界,故ε-ξ>>∃K N a x ;再由{}n x 为递增数列,当N n >时,必有ε-ξ>≥N n x x .这样,当 N n > 时,就有ε+ξ<<ε-ξn x , 即 ξ=∞→n n x lim .例 3 (9) 用确界定理证明区间套定理.即已知: 1 ) 确界定理成立(非空有上界的数集必有上确界);2 ) 设{}],[n n b a 为一区间套.欲证:存在惟一的点[]Λ,2,1,,=∈ξn b a n n .证 证明思想:给出某一数集S ,有上界,使得S 的上确界即为所求的ξ. 为此,取{}n a S =,其上界存在(例如 1b ).由确界定理,存在 {}n a sup =ξ.首先,由ξ为{}n a 的一个上界,故Λ,2,1,=ξ≤n a n .再由ξ是{}n a 的最小上界,倘有某个ξ<m b ,则m b 不会是{}n a 的上界,即m k b a >∃,这与[]{}nn b a ,为区间套相矛盾(ji b a <).所以任何ξ≥n b .这就证得Λ,2,1,=≤ξ≤n b a n n .关于ξ的惟一性,与例1中的证明相同.注 本例在这里所作的证明比习题解答中的证明更加清楚.在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]四、实数系的完备性实数所组成的基本数列{}nx比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)nn⎧⎫+⎨⎬⎩⎭:1lim(1)nnen→∞+=(无理数).五、压缩映射原理(不动点原理)1、函数f(x)的不动点指什么?设y=f(x)是定义在[a,b]上的一个函数,方程x=f(x)的解称为f(x)的不动点.2、在什么样的条件下不动点一定存在呢?存在时唯一吗?如何求出不动点?压缩映射:如果存在常数k,满足0≤k<1,使得对一切,[,]x y a b∈成立不等式()()||f x f y k x y -≤-,则称f 是[a,b]上的一个压缩映射. 压缩映射必连续.压缩映射原理(不动点原理) 设()x ϕ是[a,b]上压缩映射,且([,])[,]a b a b ϕ⊂,则()x ϕ在[a,b]上存在唯一的不动点.例3 证明Kapler 方程sin x x b ε=+在||1ε<时,存在唯一实数.§7.2 闭区间上连续函数性质的证明教学目标:证明闭区间上的连续函数性质.教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性. 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题. 教学过程:在本节中,将利用关于实数完备性的基本定理来证明第四章2中给出的闭区间上连续函数的基本性质.一、有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界证法 一 ( 用区间套定理 ). 反证法. 参阅[3]P106—107.证法 二 ( 用致密性定理). 反证法.证明 如若不然,)(x f 在],[b a 上无界,∈∀n N ,],[b a x n ∈∃,使得n x f n >|)(|,对于序列}{n x ,它有上下界b x a n ≤≤,致密性定理告诉我们k n x∃使得],[0b a x x k n ∈→,由)(x f 在0x 连续,及kn n x f k >|)(|有+∞==∞→|)(|lim |)(|0k n k x f x f ,矛盾.证法 三 ( 用有限复盖定理 ). 参阅[1]P168—169证明 (应用有限覆盖定理) 由连续函数的局部有界性(th4.2)对每一点[]b a x ,'∈都存在邻域()x x '',δο⋃及正数'x M使()()[]b a x x M x f x x ,,'''⋂⋃∈≤δ 考虑开区间集()(){}b a x x H x ,,'''∈⋃=δ虽然H 是[]b a ,的一个无限开覆盖,由有限开覆盖定理,存在H 的一个有限点集()[]{}k i b a x x H i i i ,,2,1,,Λ=∈⋃=*δ覆盖了[]b a ,,且存在正整数,,,21k M M M Λ使对一切()[]b a x x i i ,,⋂⋃∈δ有()k i M x f i ,,2,1,Λ=≤,令ki iM M ≤≤=1m ax则对[]b a x ,∈∀,x 必属于某()()M M x f x i i i ≤≤⇒δ,Y ,即证f 在[]b a ,上有上界. 二、最值性:命题2 ] , [)(b a C x f ∈, ⇒ )(x f 在] , [b a 上取得最大值和最小值. ( 只证取得最大值 )证 ( 用确界原理 ) 令)}({sup x f M bx a ≤≤=,+∞<M , 如果)(x f 达不到M ,则恒有M x f <)(.考虑函数)(1)(x f M x -=ϕ,则],[)(b a C x ∈ϕ,因而有界,即)0()(>≤μμϕx , 从而MM x f <-≤μ1)(,这与M 是上确界矛盾,因此],[b a x ∈∃,使得M x f =)(.类似地可以证明达到下确界.三、介值性: 证明与其等价的“零点定理 ”.命题3 (零点存在定理或根的存在性定理)设函数)(x f 在闭区间],[b a 上连续即]),([)(b a C x f ∈且)(a f 与)(b f 异号()(a f 0)(<b f ),则在),(b a 内存在一点0x 使得 0)(0=x f .即方程0)(=x f 在),(b a 内至少存在一个实根.证法 一 ( 用区间套定理 ) .设0)(<a f ,0)(>b f .将],[b a 二等分为],[c a 、],[b c ,若0)(=c f 则c x =0即为所求;若0)(≠c f ,当0)(>c f 时取],[c a 否则取],[b c 为],[11b a ,有0)(1<a f ,0)(1>b f .如此继续,如某一次中点i c 有0)(=i c f 终止(i c 即为所求);否则得]},{[n n b a 满足:⑴ΛΛ⊃⊃⊃⊃],[],[],[11n n b a b a b a ;⑵ 02lim)(lim =-=-∞→∞→nn n n n ab a b ;⑶)(,0)(><n n b f a f由闭区间套定理知,∃唯一的],[10n n n b a x ∞=∈I ,且=∞→n n a lim 0lim x b n n =∞→由)(x f 在0x处的连续性及极限的保号性得)()(lim 0≤=∞→x f a f n n 、0lim ()()0n n f b f x →∞=≥0)(0=⇒x f #证二( 用确界原理 ) 不妨假设0)(<a f (从图1看,0x是使得0)(>x f 的x 的下确界),令]},[,0)(|{b a x x f x E ∈>=,要证E x inf 0=(E inf 存在否?).因为Φ≠⇒∈E E b ,],[b a E ⊂E ⇒有界,故E inf 存在.令 Ex inf 0=,下面证0)(0=x f如若不然,)(0≠x f 则)(0>x f (或)(0<x f )(从图形上可清楚看出,此时必存在1x x <使0)(1>x f ).首先ax ≠0,即],(0b a x ∈;f 在0x连续,由连续函数的局部保号性],[),(0b a x U ⊂∃⇒δ使得),(0δx U x ∈∀有0)(>x f ,特别应有0)2(0>-δx f 即 E x ∈-20δ,这与E x inf 0=矛盾,故必有0)(0=x f .证法 二 ( 用确界原理 ) 不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ, 有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ). 取n x >ξ 且n x ) ( ,∞→→n ξ. 由)(x f 在点ξ连续和0)(≤n x f , ⇒ 0)(lim )(≤=∞→n n x f f ξ,⇒ ξE ∉. 于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒ 0)(lim )(≥=∞→n n t f f ξ. 因此只能有0)(=ξf .证法 三 ( 用有限复盖定理 ).介值性定理 设f 在闭区间[]b a ,上连续,且()()()()b f a f b f a f 与为介于若μ≠之间的任何实数()()b f a f <<μ或()()b f a f >>μ,则存在()b a x ,∈ο使()μ=οx f .证明 (应用确界定理) 不妨设()()()()μμ-=<<x f x g b f a f 令 则g 也是[]b a ,上连续函数,()()0,0>>b g a g ,于是定理的结论转为:()()0,,=∈∃οοx g b a x 使这个简化的情形称为根的存在性定理(th4.7的推论)记()[]{}b a x x g x E ,,0∈>=显然E 为非空有界数集[]()E b b a E ∈⊂且,故有确界定理, E 有下确界,记()()0,0inf ><=b g a g E x 因ο有连续函数的局部保号性, 0>∃δ,使在),[δ+a a 内0)(<x g ,在),(δ-b b 内0)(>x g .由此易见a x ≠ο,b x ≠ο,即()b a x ,∈ο.下证()0=οx g .倘若()0≠οx g ,不妨设()0>οx g ,则又由局部保号性,存在()()()b a x ,,⊂ηοY 使在其内)0(>x g ,特别有Ex x g ∈-⇒>⎪⎭⎫ ⎝⎛-202ηηοο=0,但此与E x inf =ο矛盾,则必有0)(0=x g .几何解释 直线c y =与曲线)(x f y =相交.把x 轴平移到c y =,则问题成为零点存在问题.这启发我们想办法作一个辅助函数,把待证问题转化为零点存在问题.辅助函数如何作?① 从几何上,c y y x x -='=',启示我们作c x f x F -=)()(; ② 从结果cx f =)(0着手.利用零点定理证:令c x f x F -=)()(,则]),([)(b a C x F ∈,往下即转化为零点存在问题. # 这种先证特殊、再作辅助函数化一般为特殊,最后证明一般的方法是处理数学问题的常用方法,以后会经常用到.推论 如f 为区间I 上的连续函数,则值域)(I f J =也是一个区间(可以退化为一点). 证 f 为常量函数,则)(I f J =退化为一点.f 非常量函数,则J 当然不是单点集.在J 中任取两点21y y <(只要证J y y ⊂],[21),则在I 中必有两点1x ,2x 使得11)(y x f =,22)(y x f =.于是对21y y y <<∀,必存在x ,x 介于1x 与2x 之间,使y x f =)(,即J y ∈因而J y y ⊂],[21⇒J 是一个区间.二、一致连续性:命题4 ( Cantor 定理 ) ],[)(b a C x f ∈, 则)(x f 在],[b a 上一致连续.证法 一 ( 用有限复盖定理 ) 参阅[1]P171[ 证法一 ]证明 (用有限覆盖定理) 由f 在闭区间[]b a ,上连续性,0>∀ε,对每一点[]b a x ,∈,都存在0>x δ,使当()x x x δ,'Y ∈时,有()()2'ε<-x f x f考虑开区间集合[]⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=b a x x H x ,2,δY 显然H 是[]b a ,的一个开覆盖,由有限覆盖定理H ∃的一个有限子集[]02min ,,,2,12,>⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛=*i i i b a k i x H δδδ记覆盖了ΛY对[]δ<-∈∀"'"',,x x b a x x ,x '必属于*H 中某开区间,设⎪⎭⎫ ⎝⎛∈2,'i i x x δY ,即2'ii x x δ<-,此时有iiiii i x x x x x x δδδδδ=+≤+<-+-≤-222''""故有(2)式同时有 ()()()()22"'εε<-<-i i x f x f x f x f 和由此得()()[]上一致连续在b a f x f x f i ,'∴<-ε.证法 二 ( 用致密性定理). 参阅[1]P171—172 [ 证法二 ]证明 如果不然,)(x f 在],[b a 上不一致连续,00>∃ε,0>∀δ,],[,b a x x ∈'''∃,δ<''-'||x x ,而0|)()(|ε≥''-'x f x f .取n 1=δ,],[,b a x x n n∈'''∃,n x x n n 1||<''-',而0|)()(|ε≥''-'n n x f x f ,由致密性定理,存在子序列],[0b a x x k n∈→',而由k n nn x x k k 1||<''-',也有0x x k n→''. 再由)(x f 在0x 连续,在0|)()(|ε≥''-'k k n n x f x f 中令∞→k ,得000|)()(|lim |)()(|0ε≥''-'=-=∞→k k n nk x f x f x f x f ,矛盾.所以)(x f 在],[b a 上一致连续.推广 ),()(b a C x f ∈,()f a +,()f b -∃⇒)(x f 在),(b a 上一致连续. 作业 [1]P172 1,2 3,4, 5*;P176 1,2,4.§7.3 上极限和下极限一、上(下)极限的定义对于数列,我们最关心的是其收敛性;如果不收敛,我们希望它有收敛的子列,这个愿望往往可以实现.例如:{}(1)n -.一般地,数列{}n x ,若{}k n x :k n x a →(k →∞),则称a 是数列{}n x 的一个极限点.如点例{}(1)n -有2个极限点.数列{}n x 的最大(最小)极限点如果存在,则称为该数列的上(下)极限,并记为lim n n x →∞(lim n n x →∞).如lim(1)1n n →∞-=,lim(1)1n n →∞-=-.例1 求数列sin 3n π⎧⎫⎨⎬⎩⎭的上、下极限.例2 [1(1)]n n x n =+-,求上、下极限. 二、上(下)极限的存在性下面定理指出,对任何数列{}n x ,它的上(下)极限必定存在. 定理1 每个数列{}n x 的上极限和下极限必定唯一,且lim n n x →∞=1sup{,,}limsup n n k n k nx x x +→∞≥=L ,lim n n x →∞=1inf{,,}liminf n n k n k nx x x +→∞≥=L .三、上下极限和极限的关系lim n n x →∞≥lim n n x →∞.定理2 {}n x 存在极限则{}n x 的上极限和下极限相等,即lim n n x →∞=lim n n x →∞=lim n n x →∞.四、上(下)极限的运算普通的极限运算公式对上(下)极限不再成立.例如:11lim[(1)(1)]0lim(1)lim(1)2n n n n n n n ++→∞→∞→∞-+-=<-+-=u u u r . 一般地有:lim()lim lim n n n n n n n x y x y →∞→∞→∞+≤+,当{}n x 收敛时,等号成立.实数完备性的等价命题一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2(单调有界定理)任何单调有界数列必定收敛.定理1.3(区间套定理)设为一区间套:.则存在唯一一点定理1.4(有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(一) 用确界定理证明单调有界定理.(二) 用单调有界定理证明区间套定理设区间套.若另有使,则因.推论设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(三) 用区间套定理证明确界原理证明思想构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使.记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.*(五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.*(六) 用聚点定理证明柯西准则柯西准则的必要性容易由数列收敛的定义直接证得.(已知收敛,设.由定义,,当时,有.从而有.)这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.*(七) 用柯西准则证明单调有界原理设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;。
实数的完备性
第七章 实数的完备性§1 实数完备性的基本定理1. 验证 数集},2,11)1{(L =+−n n n有且只有两个聚点11−=ξ和12=ξ 解 因{1+}21n 是{(-1)n+n 1}的所有偶数项组成的子列,且,1)211(lim =+∞→nn 故12=ξ是数集},2,11)1{(L =+−n n n的一个聚点.由于}1211{−+−n 是原数集的所有奇数项组成的子列,且,1)1211(lim −=−+−∞→n n 因而11−=ξ也是原数集的聚点.下证该数集再无其它聚点. 时,有则当取001}21,21min{,1εϕϕεϕ>−+=±≠∀n⎪⎪⎩⎪⎪⎨⎧−+−−≥⎪⎪⎩⎪⎪⎨⎧−+−−=−−−为奇数为偶数为奇数,为偶数)(n n n n n n n n n n ,11.1111,1111ϕϕϕϕϕ.1200εε>−≥n故ϕ不是该数集的聚点.这就证明原数集只有两个聚点,即1+与1−. 2.证明:任何有限数集都没有聚点.证 设S 是有限数集,则对任一S R a 因,1,0=∃∈ε是有限数集,故领域),(0εa U 内至多 有S 中的有限个点,故a 不是S 的聚点,由a 的任意性知,S 无聚点.3.设)},{(n n b a 是一严格开区间套,即1221b b b a a a n n <<<<<<<<L L L , 且.0)(lim =−∞→n n n a b 证明存在唯一一点ξ,有L ,2,1,=<<n b a n n ξ证 作闭区间列]},{[n n y x , 其中L ,2,1,2,211=+=+=++n b b y a a x n n n n n n ,由于),(,11N n b y b a x a n n n n n n ∈∀<<<<++ 故有(1) ))(,(],[),(11N n b a y x b a n n n n n n ∈∀⊂⊂++,从而L ,2,1],,[],[11=⊂++n y x y x n n n n(2) )(0N n a b x y n n n n ∈∀−<−<从而由]},{[.0)(lim ,0)(lim n n n n n n n n y x x y a b 所以得=−=−∞→∞→为闭区间套.由区间套定理知,存在一点).,2,1()1().,2,1](,[L L =<<=∈n b a n y x n n n n ξξ有由满足条件),2,1(L =<<n b a n n ξ的点ξ的唯一性的证明与区间套定理的证明相同.4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立。
实数完备性的六大基本定理的相互证明
1 确界原理非空有上(下)界数集,必有上(下)确界。
2 单调有界原理 任何单调有界数列必有极限。
3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。
4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。
5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
) 直线上的有解无限点集至少有一个聚点。
6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。
一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。
关于实数完备性的基本定理
目 录摘要:本文主要讨论了关于实数完备性的基本定理,包括确界定理、单调有界定理、区间套定理、有限覆盖定理、聚点定理和致密性定理、柯西收敛准则,并举出相关实例以说明. 3关键词:实数;完备性 3Abstract: This paper mainly discusses the basic theorems on completeness of real,including theorem of supremum, monotone bounded theorem, theorem of nested interval, finite covering theorem, theorem of accumulation point and compact theorem, Cauthyconvergence criterion, and some related examples to illustrate. 3Key Words: Real number; Completeness 3前言 31 预备知识 3关于确界的定义 3极限的定义 4区间套的定义 4聚点的定义 5有限覆盖的定义 52 关于实数完备性的基本定理 5确界定理 5单调有界定理 6区间套定理 6聚点定理和致密性定理 7有限覆盖定理 7设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b . 7 柯西收敛准则 7结语: 8关于实数完备性的六大基本定理是彼此等价的,因此对同一个有关问题都有效. 但是又由于各个基本定理的内容和角度都不一样,因此所作出的证明可以很不相同. 即使同一个基本定理,也可能有不同的方法,即使方法相同还可以有不同的细节. 我们认为,其中的新发现是无穷尽的,发现的精彩是无穷尽的. “数学的理论是美妙的,引人入胜;数学的方法是精巧的,丰富多彩!”让我们悉心于数学研究,尽情的享受数学之美吧! 8参考文献: 8摘要:本文主要讨论了关于实数完备性的基本定理,包括确界定理、单调有界定理、区间套定理、有限覆盖定理、聚点定理和致密性定理、柯西收敛准则,并举出相关实例以说明. (3)关键词:实数;完备性 (3)Abstract: This paper mainly discusses the basic theorems on completeness of real,including theorem of supremum, monotone bounded theorem, theorem of nested interval, finite covering theorem, theorem of accumulation point and compact theorem, Cauthyconvergence criterion, and some related examples to illustrate. (3)Key Words: Real number; Completeness (3)前言 (3)1 预备知识 (3)关于确界的定义 (3)极限的定义 (4)区间套的定义 (4)聚点的定义 (5)有限覆盖的定义 (5)2 关于实数完备性的基本定理 (5)确界定理 (5)单调有界定理 (6)区间套定理 (6)聚点定理和致密性定理 (7)有限覆盖定理 (7)设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b . (7)柯西收敛准则 (7)结语: ......................................................................................................................................... 8 关于实数完备性的六大基本定理是彼此等价的,因此对同一个有关问题都有效. 但是又由于各个基本定理的内容和角度都不一样,因此所作出的证明可以很不相同. 即使同一个基本定理,也可能有不同的方法,即使方法相同还可以有不同的细节. 我们认为,其中的新发现是无穷尽的,发现的精彩是无穷尽的. “数学的理论是美妙的,引人入胜;数学的方法是精巧的,丰富多彩!”让我们悉心于数学研究,尽情的享受数学之美吧! (8)参考文献: (8)关于实数完备性的基本定理摘要:本文主要讨论了关于实数完备性的基本定理,包括确界定理、单调有界定理、区间套定理、有限覆盖定理、聚点定理和致密性定理、柯西收敛准则,并举出相关实例以说明.关键词:实数;完备性Basic Theorems of Real Number Completeness Abstract: This paper mainly discusses the basic theorems on completeness of real, including theorem of supremum, monotone bounded theorem, theorem of nested interval, finite covering theorem, theorem of accumulation point and compact theorem, Cauthy convergence criterion, and some related examples to illustrate.Key Words: Real number; Completeness前言数学分析的基础是实数理论.实数系最重要的特征是完备性和连续性,有了实数的完备性和连续性,才能讨论极限,连续,微分和积分.正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系.数学分析初于对实数完备性在理论体系上的严格化和精确化,从而确立了在整个自然科学中的基础地位,并运用于自然科学的各个领域.实数系的完备性是实数的一个重要特征,与之相关的六个基本定理是批次等价的,并且是论证其他一些重要定理(如一致连续性定理等)的依据,他们从不同的角度刻画了实数系的完备性,在理论上具有重要价值.1 预备知识关于确界的定义∈都有设S为R中的一个数集.若存在数M(L),使得对一切x S ≤≥,则称S为有上界(下界)的数集,数M(L)称为S的一个上界()x M x L(下界).若数集S 既有上界又有下界,则称S 为有界集.若S 不是有界集,则称S为无界集.设S 是R 中的一个数集.若数η满足:(i) 对一切x S ∈,有x η≤,即η是S 的上界;(ii) 对任何αη≤,存在0x S ∈,使得0x α>,即η又是S 的最小上界,则称数η为数集S 的上确界,记作sup S η=设S 是R 中的一个数集.若数ξ满足:(i) 对一切x S ∈,有x ξ≥,即ξ是S 的下界;(ii) 对任何βξ>,存在0x S ∈,使得0x β<,即ξ又是S 的最大下界,则称数ξ为数集S 的下确界,记作inf S ξ=上确界与下确界统称为确界.极限的定义设{}n a 为数列, a 为定数.若对任给的正数ε,总存在正整数N ,使得当n N >时有||n a a ε-<则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作lim n n a a →∞=,或()n a a n →→∞, 读作“当n 趋于无穷大时,{}n a 的极限等于a 或n a 趋于a ”.区间套的定义设闭区间列{[,]}n n a b 具有如下性质:(i) 11[,][,]n n n n a b a b ++⊃,n=1,2,…;(ii) lim()0n n n b a →∞-=, 则称{[,]}n n a b 为闭区间套,或简称区间套.聚点的定义设S 为数轴上的点集,ξ为定点(它可以属于S ,也可以不属于S ).若ξ的任何邻域上都含有S 中无穷多个点,则称ξ为点集S 的一个聚点.对于点集S ,若点ξ的任何ε邻域上都含有S 中异于ξ的点,即(;)o U S ξε⋂≠∅,则称ξ为S 的一个聚点.若存在各项互异的收敛数列{}n x S ⊂,则其极限lim n n x ξ→∞=称为S 的一个聚点.有限覆盖的定义设S 为数轴上的点集,H 为开区间的集合(即H 的每一个元素都是形如(,)αβ的开区间).若S 中任何一点都含在H 中至少一个开区间内,则称H 为S 的一个开覆盖,或称H 覆盖S .若H 中开区间的个数是无限(有限)的,则称H 为S 的一个无限开覆盖(有限开覆盖).2 关于实数完备性的基本定理确界定理设S 为非空数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.推广的确界原理:任一非空数集必有上、下确界(正常的或非正常的). 例1 设A ,B 为非空数集,满足:对一切x A ∈和y B ∈有x y ≤.证明:数集A有上确界,数集B 有下确界,且sup inf A B ≤证 由假设,数集B 中任一数y 都是数集A 的上界,A 中任一数x 都是B的下界,故由确界原理推知数集A 有上确界,数集B 有下确界.对任何y B ∈,y 是数集A 的一个上界,而由上确界的定义知,sup A 是数集A 的最小上界,故有sup A y ≤.而此式又表明数sup A 是数集B 的一个下界,故由下确界定义证得sup inf A B ≤.单调有界定理在实数系中,有界的单调数列必有极限.例2 设111...,12n a nααα=+++>.证明:{}n a 收敛. 证 显然{}n a 是递增数列.因为当2n ≥时,2n a =112α++…1(2)n α+=11(1...)3(21)n αα+++-+11(...)2(2)n αα++ <11(1...)3(21)n αα+++++11(...)2(2)n αα++ <122n a α+=112n a α-+, 以及2n n a a <,所以11112n a α-<-故{}n a 是有界的.根据单调有界定理可知数列{}n a 是收敛的.区间套定理若{[,]}n n a b 是一个区间套,则在实数系中存在唯一的一点ξ,使得[,]n n a b ξ∈,n=1,2,…,即n n a b ξ≤≤,n =1,2,…推论:若[,]n n a b ξ∈( n=1,2,…)是区间套{[,]}n n a b 所确定的点,则对任给的0ε>,存在N >0,使得当n>N 时有[,](;)n n a b U ξε⊂注:区间套定理中要求各个区间都是闭区间,才能保证定理的结论成立.例3 证明:若()f x 在[,]a b 上连续,则()f x 在[,]a b 上有界.证 假设()f x 在[,]a b 上无界,利用二分法总可找到一个闭区间无界得{[,]}n n a b 且满足:(1) 11[,][,]n n n n a b a b ++⊂;(2) 0()2n n n b a b a n --=→→∞; (3) ()f x 在[,]a b 上无界,由区间套定理有[,]a b ξ∃∈且lim lim n n n n a b ξ→∞→∞==.因为[,][,]n n a b a b ξ∈⊂,所以()f x 在ξ处连续.于是,一方面由连续函数的局部有限性定理得()U ξ∃使()f x 在()U ξ上有界;另一方面由推论得0,,[,]()n n N n N a b U ξ∃>∀>⊂,因此()f x 在[,]n n a b 上有界,则与条件(3)矛盾,故得证.聚点定理和致密性定理聚点定理:实轴上的任一有界无限点集S 至少有一个聚点.致密性定理:任何有界数列必定有收敛的子列.有限覆盖定理设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b .注:(1)该结论只对闭区间[,]a b 成立,而对开区间则不一定成立.(2)若将订立中的H 改为其他类型的区间集,则结论不一定成立.(3) H →开区间集,S →闭区间,该结论才能成立.例4 S=[0,1],11{(,)|}1H n N n n=∈+,H 是否覆盖S ? 解1 n N ∀∈,当1n >时,尽管()10,1n ∈,但1n 不属于H 的任何开区间,因此H 不覆盖S .解2 012x S ∃=∈1,2H ∀∆∈∉∆⇒H 不覆盖S . 柯西收敛准则数列{}n a 收敛的充要条件是:对任给的0ε>,存在正整数N ,使得当n,m>N 时有||n m a a ε-<.这个定理从根本上完全解决了数列极限的存在性问题.柯西收敛准则的条件称为柯西条件,它表明:收敛数列各项的值愈到后面,彼此愈是接近,以至充分后面的任何两项之差的绝对值可小于预先给定的任意小正数. 结语:关于实数完备性的六大基本定理是彼此等价的,因此对同一个有关问题都有效. 但是又由于各个基本定理的内容和角度都不一样,因此所作出的证明可以很不相同. 即使同一个基本定理,也可能有不同的方法,即使方法相同还可以有不同的细节. 我们认为,其中的新发现是无穷尽的,发现的精彩是无穷尽的. “数学的理论是美妙的,引人入胜;数学的方法是精巧的,丰富多彩!”让我们悉心于数学研究,尽情的享受数学之美吧!参考文献:[1] 华东师范大学数学系.数学分析(第四版)[M].北京:高等教育出版社,2010.[2] 华东师范大学数学系.数学分析(第三版)[M].北京:高等教育出版社,2001.[3] 沐定夷.数学分析(第一版)[M].上海:上海交通大学出版社,1993.[4] 周性伟,刘立民.数学分析(第一版)[M].天津:南开大学出版社,1986.[5] 何琛,史济怀,徐森林.数学分析(第一版)[M].北京:高等教育出版社,1983.。
关于实数完备性的6个基本定理
1. 确界原理; 2. 单调有界定理; 3. 区间套定理; 4. 有限覆盖定理; 5. 聚点定理; 6. 柯西收敛准则; 在实数系中这六个命题是相互等价的 。
在有理数系中这六个命题不成立 。
1. 确界原理 在实数系中,任意非空有上(下)界的数集
必有上(下)确界。
反例:S {x | x2 2, x Q},sup S 2, inf S 2, 即S在有理数集没有确界。确界原理在有理数域不成立。
5. 聚点定理 实数系中的任意有界无限点集至少有一个聚点。
反例: S {(1 1 )n | n Z }, n
S是有界的无限有理点集,在实数域内的聚点为e,
因而在必含有收敛子列。
反例:
{
xn
}
{(1
1 )n n
}是有理数系中的有界无穷数列,
实数完备性基本定理的等价性
实数基本定理等价性的路线 : 证明按以 下三条路线进行:
Ⅰ: 确界原理 单调有界原理 区间套 定理 Cauchy 收敛准则 确界原理 ; Ⅱ: 区间套定理 致密性定理 Cauchy 收敛准则 ; Ⅲ: 区间套定理 Heine–Borel 有限 复盖定理 区间套定理 .
任取H的有限个元素,构成集合H *,
H * {( x1 r1, x1 r1 ),( x2 r2 , x2 r2 ) ( xn rn , xn rn )}
由于H *中的开区间都不含 2,且2n个端点都是有理数, 设这2n个有理数中与 2最靠近的数为 r, 则在r与 2之间所有有理数都在上述n个区间之外。 即H的任意有限覆盖不能盖住[1,2]Q .
则 有理数域内构成闭区间套 [an,bn ]Q, 其在实数系内唯一的公共点为 2 Q.
关于实数完备性的基本定理
无穷多个点,记其为[a3 , b3 ], 则
[a2 , b2 ] [a3 , b3 ], 且 b3 - a3 = 1 M (b2 - a2 ) = . 2 2
无限进行,则得区间列{[an , bn ]}, 满足
[an , bn ] [an+1, bn+1 ], n = 1, 2,
M b a = , n n 2n -1 0, (n ),
k
下证 lim an = a,
n
0, N1 0,当n,m N1时, 有 an - am
由lim ank = a, 0, N 2 0, 当k N 2时, 有 ank - a
k
0, N = max{N1, N2} 0,当n, k N时,
[an , bn ] [an+1 , bn+1 ], n = 1,2,L, 1 bn - an = n (b - a) 0 (n ). 2 即{[ an , bn ]}是区间套, 且其中每一个闭区间都不能用H中有限个
有限个开区间来覆盖, 由区间套定理
x [an , bn ], n = 1,2,L,由于H是[a, b]的一个开覆盖
•定理的证明:
单调有界定理 区间套定理
n
由区间套定义知a 为递增有界数列,
an 依单调有界定理, 有极限x,且有 a x,n = 1,2, L.
n
b 同理,递减有界数列 也有极限,并按区间套的条件(ii )有
n
lim b = lim a = x , 且 b x,n = 1,2, L. n n
n
xn S
,则其极限
显然 显然 定义2 定义2 定义2 定义2
实数完备性理论
实数完备性理论,理论基础及英应用实数完备性是指六大定理的等价性。
它的六大定理如下:1、确界原理2、单调有界原理3、区间套定理4、有限覆盖定理5、聚点定理(紧性定理)6、Cauchy收敛准则。
其中任何一个命题都可推出其余的五个命题一、认识实数完备性1、确界原理(1)确界原理:设S为非空数集。
若S有上界,则S必有上确界;若S有下界,则S必有下确界。
(2)上确界定义:设S是R中的一个数集,若数η满足(i)对一切x∈S,有η≥x,即η是S的上界;(ii)对任何的a<η,存在x0∈S,使得x0>a,即η是S的最小上界,则称η为数集s的上确界;下确界定义:设S是R的一个数集,若数ξ满足:(i)对一切x∈S,有ξ≤x,即ξ是S的下界;(ii)对任何的β>ξ,存在x0∈S,使得x0<β,即ξ是S的最大下界,则称ξ为数集的S的下确界;2、单调有界原理定理:在实数系中,单调有界数列必有极限3、区间套定理(1)区间套定义:设闭区间列{ [a(n),b(n )]}具有如下性质:(i) [a(n+1),b(n+1)]包含于[a(n),b(n )],n=1,2,3,......;(ii) Lim( a(n)-b(n))=0,则称{[an ,bn ]}为闭区间套,或简称区间套。
(2)区间套定理:如果{[an ,bn]}形成一个闭区间套,则在实数系中存在唯一的实数ξ属于所有的闭区间[an ,bn],n=1,2,3,…;即an≤ξ≤bn , n=1,2,3,…。
且liman=lim bn=ξ。
4、开覆盖(1)开覆盖的定义:设S为数轴上的点集,H为开区间的集合,(即H中每一个元素都是形如(a,b)的开区间).若S中的任何一点都含在至少一个开区间内,则称H为S的一个开覆盖,或简称H覆盖S.(2)有限覆盖定理:设H为闭区间[a,b]的一个(无限)开覆盖,则从H中可选出有限个开区间来覆盖[a,b]5、聚点(1)聚点定义:设S为数轴上的点集,e为定点(它可以属于S,也可以不属于S),若e的任何ε邻域内都含有S中的无穷多个点,则称e为点集S的一个聚点。
实数完备性的证明及其应用
实数完备性的证明及其应用摘要一、实数完备性定理 1、闭区间套定理如果n n a b {[,]}形成一个闭区间套,即满足11n n n n a b a b n N ++⊃∈(i)[,][,],,n n a b →∞n (ii)lim(,)=0,则存在惟一的实数ξ属于所有的闭区间n n [a ,b ],且n n a b ξ→∞→∞=n n =lim lim 。
2、聚点定理(又称维尔斯特拉斯聚点定理) 如果S 为有界无限点集,则S 必有聚点。
3、柯西收敛准则数列{}n x 收敛的充分必要条件是:{}n x 是基本数列,即{}n x 满足:对于任意给定的0ε>,存在正整数N ,使得当,n m N >时成立n m x x ε-<。
4、单调有界定理单调递增(减)有上(下)界数列必有极限。
5、有限覆盖定理闭区间a b [,]的任意开覆盖H 都含有一个有限子覆盖,即H 中可找出有限个开集覆盖a b [,]。
6、确界存在定理非空有上界的数集必有上确界;非空有下届的数集必有下确界。
二、实数完备性基本定理的证明1、由闭区间套定理出发,推其余五个定理 1)闭区间套定理⇒聚点定理证 设数列{}n x 有界,于是存在实数11,a b ,成立11,1,2,3,n a x b n ≤≤= 将闭区间11[,]a b 等分为两个小区间111[,]2a b a +与111[,]2a bb +,则其中至少有一个含有数列{}n x 中的无穷多项,把它记为22[,]a b 。
再将闭区间22[,]a b 等分为两个小区间222[,]2a b a +与222[,]2a bb +,同样其中至少有一个含有数列{}n x 中的无穷多项,把它记为33[,]a b 这样的步骤可以一直做下,于是得到一个闭区间套{[,]}k k a b ,其中每一个区间套[,]k k a b 中都含有数列{}n x 中的无穷多项。
根据区间套定理,存在实数ξ,满足k k k k a b ξ→∞→∞==lim lim 。
实数的完备性
柯西定理(柯西收敛原理) :
数列
收敛当且仅当对任意的正数
n, m N
,
存在自然数 N 使得当
时,
xn xm
极限 lim f ( x) 收敛当且仅当对任意的正数 存在正数 时,
S 的一个聚 含有 S 中异于 的点,则称 为
xn S , 则其极限 lim x n 称为 S 的一个聚
点。
定理(聚点原理)每一个有界无穷点集至少有 一个聚点.
推论( 致密性定理) 任一有界数列必有收敛子 列. 定义 3 设S 为数轴上点集,H 为开区间的集合
( 即 H 的每一个元素都是形如( , ) 的开区 间)。若S 中任何一点都含在 H 中至少一个开 区间内,则称 H 为S 的一个开复盖,或称 H 复 盖 S 。若 H 中开区间个数是有限(无限)的, 则称 H 为S 的有限(无限)开复盖。
[an , bn ] U ( ; )
二、聚点定理与有限覆盖定理
定义 2 设S 是无穷点集. 若在点 (可以 属于 S ,也可以不属于 S )的任何邻域内有
S 的无穷多个点 , 则称点 为 S 的一个聚
点.
聚点等价定义
定义2 点。
定 义 2 若存在各项互异的收敛数列
n
对于点集S , 若点 的任何邻域内都
实数的完备性
关于实数集完备性的基本定 理
一
区间套定理
定义 1 设{[an , bn ]} 是一闭区间序列. 若满足 条件 (ⅰ) [a n , bn ] [a n 1 , bn 1 ], n 1,2, (ⅱ) lim ( bn an ) 0
实数完备性的六大基本定理的相互证明共个
实数完备性的六大基本定理的相互证明共个实数完备性的六大基本定理是实分析中的重要结果,其中包括单调有界原理、上确界原理、下确界原理、戴德金(Dedekind)分割原理、稳定原理和柯西(Cauchy)收敛准则。
这些定理互相独立,但可以相互推导和证明。
下面我将按照给定的字数要求,大致叙述这些定理之间的证明关系。
1.单调有界原理→上确界原理首先我们证明单调有界原理蕴含上确界原理。
假设存在一个非空有上界的实数集合A,我们可以定义一个从A到R (实数集)的单调递增序列。
考虑一个函数f:N→A,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令An={a∈A,a≤f(n)};2.由于A有上界,所以An也有上界;3.根据单调有界原理,An存在上确界。
令f(n)为An的上确界。
现在我们可以看出,这个序列f(n)是一个单调递增的序列,并且对于任意a∈A,存在一个自然数n使得a≤f(n)。
因此f(n)就是A的上确界。
2.上确界原理→下确界原理接下来我们证明上确界原理蕴含下确界原理。
假设存在一个非空有下界的实数集合B,我们可以定义一个从B到R (实数集)的单调递减序列。
考虑一个函数g:N→B,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Bn={b∈B,g(n)≤b};2.由于B有下界,所以Bn也有下界;3.根据上确界原理,Bn存在下确界。
令g(n)为Bn的下确界。
现在我们可以看出,这个序列g(n)是一个单调递减的序列,并且对于任意b∈B,存在一个自然数n使得g(n)≤b。
因此g(n)就是B的下确界。
3.戴德金分割原理→单调有界原理接下来我们证明戴德金分割原理蕴含单调有界原理。
假设存在一个非空无上界的实数集合C,我们可以定义一个从C到R (实数集)的单调递增序列。
考虑一个函数h:N→C,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Cn={c∈C,h(n)≤c};2.C没有上界,因此Cn也没有上界;3.根据戴德金分割原理,Cn的上确界不存在。
第七章 实数的完备性
[ n , n ] U ( ; ). 从而 U ( ; ) 含有 S 的无
限多个点,即 是 S 的一个聚点。
推论 (致密性定理) 有界数列必有收 敛的子列。 证 设{ xn }为有界数列。若{ xn }中有无限
多个相等的项,则由这些项组成的子列是一 个常数列,而常数列总是收敛的。 若数列{ xn }中没有无限多个相等的项, 则{ xn }
则[a1 , b1 ] [a2 , b2 ],且
1 b2 a2 (b1 a1 ) M . 2
再将[a2 , b2 ]等分为两个子区间, 两个子 区间中至少有一个含有 S 的无限多个点, 记此 子区间为[a3 , b3 ],则[a2 , b2 ] [a3 , b3 ],且
1 M b3 a3 (b2 a2 ) . 2 2 将此等分子区间的工作无限地进行下
[an , bn ] U ( ; ).
区间套中要求各个区间都是闭区间, 才能保证定理结论的成立.
例 1 数列{an }收敛的充要条件是:对
0, N 0, n, m N 时有| an am | .
证 (必要性)设 lim an A. 由数列极
n
限的定义,对 0, N 0, n, m N 时有
从而证得必存在属于 H 的有限个开区间 能覆盖[a , b]。
三、实数完备性定理的等价性
实数连续性的六个基本定理: 确界原理(定理1.1) 单调有界定理(定理2.9) 区间套定理(定理7.1) 有限覆盖定理(定理7.3) 聚点定理(定理7.2) 柯西收敛准则(定理2.10)
1 2 3 4 5 6 1.
第七章
实数的完备性
§1
关于实数完备性的基本定理
1关于实数集完备性的基本定理
b3a3 1 2(b2a2)M 2
将此等分子区间的手续无限地进行下去,得到一个区间列
an,bn .
它满足
[an,bn][an1,bn1],n1,2, , 2M
bnan 2n1 0(n),
首页 ×
即 an,bn 是区间套,且其中每一个闭区间都含 S 中无穷
b n a n ,n 1 ,2 , .由区间套的条件(ii)得
故有 .
lim bnan0 , n
注1 区间套定理中要求各个区间都是闭区间,才能保证
定理的结论成立.对于开区间列,有可能不成立,如
0,
1 n
,
虽然其中各个开区间也是前一个包含后一个,且 lim(1 0) 0 ,
则由这些项组成的子列是一个常数列,而常数列总是收 敛的.
首页 ×
若数列 x n 不含有无限多个相等的项,则 x n 在数轴上的 对应的点集必为有界无限点集,故由聚点定理,点集 x n
至少有一个聚点,记为 .于是按定义 2 ,存在 x n 的一个收敛子列(以为其极限). 作为致密性定理的应用,我们用它重证数列的柯西收敛 准则中的充分性 .
数列 a n 收敛的充要条件是:对任给的 0 ,存在 N 0 ,
使得对 m,n N ,
有 am an .
分析 由数列极限定义易证得必要性;要使用区间套定理证明充 分性,关键是如何构造合适的区间套,使其公共点正好是数列
的极限.我们将对柯西列 a n 构造区间套n,n, 使得在每个
多个点.
由区间套定理,存在唯一的一点 an,bn,n1,2, . 于是由定理7.1的推论,对任给的 0 ,存在N 0,
§2 实数完备性的基本定理
§2 实数完备性的基本定理实数基本定理以不同的形式刻划了实数的连续性和完备性。
实数基本定理是建立与发展微积分学的基础。
因此掌握这部分内容是十分必要的,特别是可通过这部分内容的学习与钻研,培养严密的逻辑思维能力。
本节主要介绍7个较直观并且容易理解的基本定理,同时给出它们的等价证明。
我们将在附录中建立严格的实数理论和这些基本定理两两之间的等价性证明。
2.1 实数基本定理的陈述简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列。
区间套还可表达为, 1221b b b a a a n n ≤≤≤≤<≤≤≤≤ΛΛΛΛ,0→-n n a b )(∞→n 。
我们要提请大家注意的是, 这里涉及两个数列} {n a 和 } {n b , 其中} {n a 递增, } {n b 递减。
例2.1 } ] 1 , 1 [ {n n -和} ] 1, 0 [ {n都是区间套. 但} ] 21 , ) 1 (1 [ {n n n +-+、 } ] 1 , 0 ( {和 } ] 11 , 1 [ {+-都不是。
推论 1 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则对0>∀ε,,N ∃ 当N n >时, 总有] , [n n b a ( , ) U x e Ì。
推论2 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则有n a 单增且收敛于ξ,同时n b 单减且收敛于ξ,) (∞→n 。
根据假设,对任给的0ε>,总存在自然数N ,对一切n N ≥,都有n N a a ε-≤,即在区间[],N N a a εε-+内含有{}n a 中除掉有限项外几乎所有的项。
据此,令12ε=,则存在1N ,在区间1211,22N N a a ⎡⎤-+⎢⎥⎣⎦上含有{}n a 中除有限项外的几乎所有的项,并记这个区间为[]11,αβ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 实数的完备性§1 关于实数完备性的基本定理1. 验证数集⎭⎬⎫⎩⎨⎧+-n n1)1(有且只有两个聚点11-=ξ和12=ξ.分析:根据聚点定义2'',分别找各项互异的收敛数列{}n x ,{}n y ⊂⎭⎬⎫⎩⎨⎧+-n n1)1(,使其极限分别为-1和1.再由聚点定义2,用反证法,对1,±≠∈∀a R a ,关键在找存在ε,使U(ε,a )内含有⎭⎬⎫⎩⎨⎧+-n n 1)1(中有限多个点.解:记()()() 2,11211,211122=-=-=+-=-n n y n x n n n n 则 {}n x ,{}n y ⊂⎭⎬⎫⎩⎨⎧+-n n 1)1(,且1lim ,1lim -==∞→∞→n n n n y x .由定义2''知,1,121=-=ξξ为⎭⎬⎫⎩⎨⎧+-n n 1)1(的两个聚点.对1,±≠∈∀a R a ,则取{}1,1min 210+-=a a ε, ⎭⎬⎫⎩⎨⎧+-n n 1)1(落在U(0,εa )内部至多只有有限点, 则α不是其聚点. 2.证明 任何有限数集都没有聚点.分析:由聚点定义2即可证明.证明:由定义2知,聚点的任何邻域内都含有数集的无穷多个点,而对于有限数集,不可能满足此定义,因此,任何有限数集都没有聚点。
3.设{}),(n n b a 是一个严格开区间套,即满足,1221b b b a a a n n <<<<<<< 且0)(lim =-∞→n n n a b .证明:存在唯一的一点ξ,使),2,1( =<<n b a n n ξ。
分析:构造闭区间套{}],[n n d c ,应用区间套定理得证。
证明:i) 设21++=n n n a a c ,21++=n n n bb d 则[][]11,,++⊃n n n n dcd c ( ,2,1=n )且 0)(lim =-∞→n n n c d .由区间套定理知,存在唯一的ξ,使得() ,2,1=<≤≤<n b d c a n n n n ξ.ii)若同时存在ξξ≠'且n n b a <'<ξ (n=1,2……),则)2,1(00 =-<-'=<n a b n n ξξε,而0)(lim =-∞→n n n a b 0ε<,矛盾。
故必有ξξ='.由i)、ii)结论得证.4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立。
分析:有理数集⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11有上确界e ,而e 是无理数,e 也是其聚点,极限.还可用2的精确到小数点后一位、二位……的不足近似值数列与过剩近似值数列{}n a 与{}n b 来解决.解: 取2的精确到小数点后一位、二位……的不足近似值数列与过剩近似值数列{}n a 与{}n b ,即.,415.1,42.1,5.1;,414.1,41.1,4.1321321 ======b b b a a a则{}{}n n b a ,均为有理数列;而 i)由确界原理知,有界数列必有确界,且在实数范围内,{}{}2inf sup ==n n b a 。
故在有理数范围内{}n a 有上界但无上确界,{}n b 有下界但无下确界。
ii) 由单调有界定理知,{}n a 单调增加有上界,{}n b 单调减少有下界,故n n n n b a ∞→∞→lim ,lim 均存在。
在实数范围内2lim lim ==∞→∞→n n n n b a 。
但由极限的唯一性知,在有理数范围内n n n n b a ∞→∞→lim ,lim 均不存在。
iii) 由聚点定理知,有界无穷数列必有聚点,在实数范围内{}{}n n b a ,均有唯一聚点2。
故在有理数范围内,有界无穷数列{}{}n n b a ,均无聚点。
iv) 由于在实数范围内2lim =∞→n n a ,故对于0,0>∃>∀N ε,当Nm n >≥时,ε<-m n a a ,而在有理数范围内,{}n a 依然满足柯西准则条件,但{}n a 无极限。
5.设⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛+=n n H 1,21 ,2,1=n , 问 (1)H 能否覆盖)1,0(?(2)能否从H 中选出有限个开区间覆盖(i) ⎪⎭⎫ ⎝⎛21,0 (ii) ⎪⎭⎫⎝⎛1,1001? 分析: 根据聚点定义,若能覆盖,则关键在于找出针对每个点相对应的开区间;若不能,则关键在找出点,使得它不含于任何一个给定的开区间.解: (1)对于()1,0∈∀x ,由阿基米德性质知,只须取+∈N n 0,使得2100+<<n x n ,则H n n x ⊂⎪⎪⎭⎫ ⎝⎛+∈001,21,由x 的任意性知,H 能覆盖(0,1).(2) i) 若在H 中存在⎪⎭⎫⎝⎛21,0的一个有限开覆盖H ,则在H 的有限个开区间中可找到最靠近0点的开区间。
记为⎪⎭⎫⎝⎛+N N 1,21,则取⎪⎭⎫⎝⎛∈+=21,0310N x ,由于2131+<+N N ,故这一点0x 不属于H 中任一开区间,与H 为⎪⎭⎫ ⎝⎛21,0的有限开覆盖矛盾。
故不能对⎪⎭⎫ ⎝⎛21,0有限覆盖。
ii) 取⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛+=n n H 1,21(98,,2,1 =n )H ⊂,则H 覆盖了⎪⎭⎫⎝⎛1,1001.故能对⎪⎭⎫⎝⎛1,1001有限覆盖.6.证明:闭区间[]b a ,的全体聚点的集合是[]b a ,本身。
分析:根据聚点定义 2 ,首先对[]b a x ,∈∀,0>∀δ,[]b a ,中有无穷多个点属于),(δx U 。
再对∉∈∀x R x ,[]b a ,,即()a x ,∞-∈或()+∞∈,b x ,关键在找到一个确定的00>δ,使),(0δx U 中不含[]b a ,中无穷多个点。
证明:i) 对于[]b a x ,∈∀,当b a x ,≠时,对于x 的任意邻域()δδ+-x x ,,限制δ:{}x b a x --≤<,m in 0δ,则[]()),(,,δδδx U x x b a =+-⋂中有无穷个点. 当a x =时,对于a 的任意邻域()δδ+-a a ,,限制δ:a b -≤<δ0,则[]()()δδδ+=+-⋂a a a a b a ,,,中有无穷个点. 当b x =时,对于b 的任意邻域()δδ+-b b ,,限制δ: a b -≤<δ0,则[]()()b b b b b a ,,,δδδ-=+-⋂中有无穷个点.ii) 若x 是[]b a ,的聚点,且[]b a x ,∉,当()a x ,∞-∈,令()x a -=210δ,则u ()[]b a x ,;0⋂δ是空集. 当()+∞∈,b x ,令()b x -=210δ,则u ()[]b a x ,;0⋂δ是空集.综合上述两种情形,则结论成立.7.设{}n x 为单调数列.证明:若{}n x 存在聚点,则必是唯一的,且为{}n x 的确界。
分析:不妨设{}n x 为递增数列(递减数列同理可证).设聚点ζ,设a 为任一实数且ζ≠a ,关键在找0ε,使()0,εa U 中最多含有{}n x 的有限多个项。
用确界与数列极限的定义处理.证明: 设递增数列{}n x 的聚点,ζ,设a 为任一实数且ζ≠a ,不妨设()同理可证ζζ><a a ,取020>-=aζε,由聚点定义,()0,εζU 中含有{}n x 的无限多个项,设()εζ,U x N ∈,由{}n x 的递增性,当N n x x N n ≥≥时,,故()0,εa U 中最多含有{}n x 的有限多个项:121,,-N x x x ,所以a 不可能是{}n x 的聚点,由a 的任意性,ζ为{}n x 的唯一聚点。
现在证明:ζ={}n x sup ,事实上,(1) ζ为{}n x 的上界,反之,若存在ζ>N x ,则当n>N 时,有ζ>n x ,取,0>-=ζεN x 则在()εζ,U 内最多含有{}n x 的有限多个项n x ,n=1,2,……N-1,与聚点相矛盾。
(2)因为对正整数ε,()εζ,U x n ∈∃,从而,εζ->n x 结合(1)便知{}n x sup =ζ. 对递减数列类似可证.8.试用有限覆盖定理证明聚点定理。
分析:设E 为有界无穷点集,因此存在0>M ,使得[]M M E ,-⊂。
由上述习题6知,[]M M ,-的聚点均含于[]M M ,-,故E 若有聚点,必含于[]M M ,-。
再利用反证法,对于[]M M x ,-∈∀,必有相应的0>x δ,使得()x x U δ,内至多只有点E x ∈(若E x ∉,则()x x U δ,中不含E 中之点)。
所有这些邻域的全体形成[]M M ,-的一个无限开覆盖,根据有限覆盖定理,当中有有限个邻域覆盖[]M M ,-,也覆盖了E ,由()x x U δ,构造含意知,这有限个邻域中至多有有限个点属于E ,这与E 为无穷点集相矛盾。
因此,在[]M M ,-内一定有E 的聚点.证明: 设E 为有界无穷点集,因此存在0>M ,使得[]M M E ,-⊂。
由上述习题6知,[]M M ,-的聚点均含于[]M M ,-,故E 若有聚点,必含于[]M M ,-。
反证法:若E 无聚点,即[]M M ,-中任何一点都不是E 的聚点,则对于[]M M x ,-∈∀,必有相应的0>x δ,使得()x x U δ,内至多只有点E x ∈(若E x ∉,则()x x U δ,中不含E 中之点)。
所有这些邻域的全体形成[]M M ,-的一个无限开覆盖:()[]{}M M x x x H x x ,,-∈+-=δδ。
由有限覆盖定理知,H 中存在有限个开区间能覆盖[]M M ,-。
记 ()[]{}H n k M M x x x H k x x kk⊂=-∈+-=,,2,1,,, δδ。
为[]M M ,-的一个有限开覆盖,则H 也覆盖E ,由()x x U δ,构造含意知,H 中n 个邻域内至多有有限个点属于E ,这与E 为无穷点集相矛盾。
因此,在[]M M ,-内一定有E 的聚点。
由此聚点定理得证。
9.试用聚点定理证明柯西收敛准则。
分析:必要性可根据极限的定义和不等式的性质证得; 充分性: 设数列{}n a ,先说明若对于,0,0>∃>∀N ε当N n m >,时,有.ε<-m n a a 则此数列为有界数列;再由聚点定理推论知,有界数列必含有收敛子列,故{}n a 必有收敛子列{}kn a 。