对数函数及其性质课件ppt
合集下载
4.4 对数函数及其性质 课件【共13张PPT】
x
a)
是奇函数,
求f(x)<0的解集.
{x | 1 x 0}
巩固练习
5.已知 loga(3a-1)恒为正,求 a 的取值范围.
解:由题意知 loga(3a-1)>0=loga1. 当 a>1 时,y=logax 是增函数, ∴33aa--11>>10,, 解得 a>23,∴a>1; 当 0<a<1 时,y=logax 是减函数, ∴33aa--11<>10,, 解得13<a<23.∴13<a<23. 综上所述,a 的取值范围是13,32∪(1,+∞).
(2)若函数 f(x)的最小值为-4,求 a 的值.
解:(1)要使函数有意义,则有1x-+x3>>00,, 解得-3<x<1,所以函数的定义域为(-3,1).
(2)函数可化为:f(x)=loga(1-x)(x+3)=loga(-x2-2x+3) =loga[-(x+1)2+4],
因为-3<x<1,所以 0<-(x+1)2+4≤4.
[解] (1)由 loga12>1 得 loga12>logaa. ①当 a>1 时,有 a<21,此时无解; ②当 0<a<1 时,有12<a,从而12<a<1.∴a 的取值范围是12,1.
(2)∵函数 y=log0.7x 在(0,+∞)上为减函数,
2x>0, ∴由 log0.7(2x)<log0.7(x-1),得x-1>0,
则x1+ -1x> >00, , 即-1<x<1,所以 F(x)的定义域为{x|-1<x<1}. (2)F(x)=f(x)-g(x),其定义域为(-1,1),且 F(-x)=f(-x)-g(-x) =loga(-x+1)-loga(1+x)=-[loga(1+x)-loga(1-x)]=-F(x),所 以 F(x)是奇函数.
《对数函数及其性质》课件
THANK YOU
对数函数的定义域和值域
理解对数函数的定义域和值域,并能够判断特定函数的定义域和值 域。
对数函数的单调性
理解对数函数的单调性,并能够判断特定函数的单调性。
进阶题目
01
02
03
复合对数函数
理解复合对数函数,并能 够求解复合对数函数的值 。
对数函数的图像
理解对数函数的图像,并 能够根据图像判断函数的 性质。
分析对数函数的值域和定义域。对于自然对数函数y=log(x) ,其值域为R;对于以a为底的对数函数y=log(x),其定义域 为(0, +∞)。对于复合对数函数y=log(u),其值域和定义域取 决于u的取值范围。
03
对数函数的应用
实际应用场景
金融计算
在复利、折旧等计算中 ,对数函数有广泛应用
。
《对数函数及其性质》ppt课件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他知识点的联系 • 习题与练习
01
对数函数的定义与性质
定义与表示
总结词
对数函数是一种特殊的函数,其 定义域为正实数集,值域为全体 实数集。常用对数函数以10为底 ,自然对数函数以e为底。
么以a为底N的对数等于b。
对数函数和指数函数在解决实际 问题中经常一起出现,例如在计 算复利、解决声学和光学问题时
。
对数函数与三角函数的联系
对数函数和三角函数在形式上有些相似,特别是在自然对数函数和正弦函数中。
在复数域中,对数函数和三角函数有更密切的联系,它们都可以用来表示复数的幂 。
在解决一些物理问题时,例如波动和振动问题,可能需要同时使用对数函数和三角 函数。
对数函数及其性质课件ppt
统计学
决策理论
在决策理论中,对数函数用于构建效 用函数,以评估不同选项的风险和收 益。
在统计学中,对数函数用于描述概率 分布,如泊松分布和二项分布。
05 练习与思考
基础练习题
01
02
03
04
基础练习题1
请计算以2为底9的对数。
基础练习题2
请计算以3为底8的对数。
基础练习题3
请计算以10为底7的对数奇函数也不是偶 函数。
周期性
• 无周期性:对数函数没有周期性,因为其图像不会重复出 现。
03 对数函数的运算性质
换底公式
总结词
换底公式是用来转换对数的底数的公 式,它对于解决对数问题非常有用。
详细描述
换底公式是log_b(a) = log_c(a) / log_c(b),其中a、b、c是正实数,且b 和c都不等于1。通过换底公式,我们可 以将对数函数转换为任意底数的对数函 数,从而简化计算过程。
图像绘制
对数函数的图像通常在直角坐标系 中绘制,随着底数$a$的取值不同, 图像的形状和位置也会有所变化。
单调性
单调递增
当底数$a > 1$时,对数函数是单调递增的,即随着$x$的增 大,$y$的值也增大。
单调递减
当$0 < a < 1$时,对数函数是单调递减的,即随着$x$的增 大,$y$的值减小。
对数函数的乘法性质
总结词
对数函数的乘法性质是指当两个对数 函数相乘时,其结果的对数等于两个 对数函数分别取对数后的积。
详细描述
对数函数的乘法性质公式为log_b(m) * log_b(n) = log_b(m * n),其中m 和n是正实数。这个性质在对数运算 中也非常有用,因为它可以简化对数 的计算过程。
对数函数及性质说课课件完美版PPT
设计意图:通过问题的解决,可以及时检验与稳固学生对定义的理解 以及对数函数性质的简单应用情况,学生的认知也得以升华。
归纳总结
〔1〕归纳总结 ①对数函数及简单复合函数的图象:根本变换;
②探究性质应用:定义域、值域、单调性;
③重视函数定义域,对数函数真数大于零;
④数形结合、分类讨论、化归数学思想。
设计意图:让学生自主归纳,将本节课的知识有机的串联起来,以便有一个 系统全面的认识.培养了学生概括能力,语言表达能力,还能让学生对本节 课的知识做以简单回忆,方法以总结。
能力目标
1.通过对底数a的讨 论,使学生对分类讨 论的思想有进一步的 认识;体会数形结合 的数学思想; 2.通过例题.习题的 解决,使学生领会化 归思想在解决问题中 的作用.
情感目标
学生在参与中感受 数学,探索数学, 提高学习数学的兴 趣,增强学好数学 的自信心.
三.课堂结构设计
1、以学生活动为主体; 2、以培养学生能力为中心; 3、以提高课堂教学质量为目标.
(1).ylog2 x2 (2)ylog1(4x)
(1)log0.31.8和 log32.7
(2)loga3.4和 loga8.5
2
例3 已知函数 f(x)=loga(2-ax),函数 f(x)在[0,1]上是关于 x
的减函数,求 a 的取值范围_____.
例4.函数 y lo g 2(x 2 2 x 5 )的 值 域 。
稳固提高
lg 6
题组练习1:求以下函数的定义域:
1、 ylo5(g 1x)
2、y 1 log2 x
3、y
1
log7(13x)
题组练习2: 求函数单调区间:
1 .函 数 y lo g 1 (2 x 2 3 x 1 ) 的 递 减 区 间 为 ( )
对数函数PPT课件
04 对数函数与其他函数的比 较
与指数函数的比较
指数函数和对数函数是互为反函数, 它们的图像关于直线y=x对称。
当a>1时,指数函数和对数函数都是 增函数,但它们的增长速度不同,对 数函数的增长速度更慢。
指数函数y=a^x(a>0且a≠1)的图 像总是经过点(0,1),而对数函数 y=log_a x(a>0且a≠1)的图像则 总是经过点(1,0)。
对数函数和三角函数的应用领域也不同。对数函数主要用于解决与对数运算相关的问题,如 对数的换底公式、对数的运算性质等;而三角函数则主要用于解决与三角形的边角关系、周 期性等问题相关的问题。
05 对数函数的学习方法与技 巧
学习方法
1 2 3
理解对数函数的定义
首先需要理解对数函数的基本定义,包括对数函 数的定义域、值域以及其变化规律。
对数函数ppt课件
目录
• 对数函数的定义与性质 • 对数函数的运算性质 • 对数函数的应用 • 对数函数与其他函数的比较 • 对数函数的学习方法与技巧
01 对数函数的定义与性质
定义
自然对数
以e为底的对数,记作lnx,其中e是自然对数的底数,约等于 2.71828。
常用对数
以10为底的对数,记作lgx。
当0<a<1时,指数函数和对数函数都 是减函数,但它们的下降速度也不同, 对数函数的下降速度更快。
与幂函数的比较
幂函数y=x^n(n为实数)的图像在 第一象限和第三象限都存在,而对数 函数y=log_a x(a>0且a≠1)的图像 只存在于第一象限。
幂函数的增长速度与指数和对数函数 不同,当n>0时,幂函数的增长速度 比对数函数更快;当n<0时,幂函数 的增长速度比对数函数更慢。
《对数函数及其性质》课件
三、指数函数与对数函数的关系
1
指数函数与对数函数的反函数关系
阐述指数函数和对数函数之间的反函数关系及其重要性。
2
指数函数与对数函数的图像及性质
比较指数函数和对数函数的图像特征和性质。
四、对数方程与指数方程
对数方程及其求解方法
介绍对数方程的形式、求解方法和实际应用。
指数方程及其求解方法
解释指数方程的基本概念、求解技巧和实例演练。
对数方程与指数方程的联系
探究对数方程和指数方程之间的关系及其应用。
五、对数函数的应用
1
对数函数在生活和科学中的应用
展示对数函数在生活和科学领域中的实际应用案例。
2
对数函数在各行各业的应用案例
介绍对数函数在不同行业中的具体应用案例。
六、小结与思考
1 对数函数的基本概念和性质的总结
归纳总结对数函数的基本概念和性质,加深理解。
列举和解释对数函数的常见 记法和符号。
对数函数的图像
展示并分析对数函数的图像及其特性。
对数函数的性质
探讨对数函数的一些基本性质和规
讲解对数函数加法公式的推导 和应用。
对数函数的减法公式
说明对数函数减法公式的用法 和示例。
对数函数的乘法公式
详细介绍对数函数乘法公式的 原理和应用。
2 对数函数和指数函数的联系和应用的思考
思考对数函数和指数函数之间的联系以及更广泛的应用领域。
3 对数函数的拓展知识和深入研究方法的思路
提供对数函数拓展知识和深入研究的思路和方向。
《对数函数及其性质》 PPT课件
本PPT课件将介绍对数函数的定义、基本特点、运算法则,以及与指数函数的 关系,对数方程与指数方程,对数函数的应用等内容。
对数函数及其性质 -课件ppt
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
返回
再来一遍
湖南省长沙市一中卫星远程学校
问题:你能类比前面讨论指数函数性质的 思路,提出研究对数函数性质的内容和方 法吗?
研究内容:定义域、值域、特殊点、单调 性、最大(小)值、奇偶性.
类比指数函数图象和性质的研究,研究对 数函数的性质并填写如下表格:
x
1 3
,
2 3
.
(2).y 2 log (x2 2x 3) 4
x R.
x 1 (3).y log
3 3x 1
x
x
x
1或x
13.
(1).y log (3x 1) 0.5
解:3loxg0.15 (3
0 x
1)
0
log 0.5
1
3x 3x
1 1
0 1
1 x 2 x {x | 1 x 2}
x 这两个函数
连
-1
线
-2
y=log1/2x
的图象有什 么关系呢?
关于x轴对称
2.思考:对数函数:y = loga x (a>0,且a≠ 1) 图象随着a 的取值变化图象如何变化?有规律吗?
: 对数函数 y log 3 x和y log 1 x 的图象。
3
底y
大2 y=1 1
图
11 42
0 1 23 4
注:例2是利用对数函数的增减性比较两个对数 的大小的,对底数与1的大小关系未明确指出时,要分 情况对底数进行讨论来比较两个对数的大小.
例3 比较下列各组中两个值的大小: ⑴.log 67 , log 7 6 ; ⑵.log 3π , log 2 0.8 .
人教版数学必修一.2对数函数图像及其性质PPT课件
人教版数学必修一.2对数函数图像及 其性质P PT课件
2.(71页)探究:
画出对数函数 y log 3 x和y log 1 x的图象。
y
1.函数图象分布在哪些 象限? 一、四
2
2.函数图象有哪些
1 11
特殊点? (1,0)
42
0 1 23 4
3
y log 2 x y log 3 x
x
3.函数图象的单调性 -1 与底数a的关系? -2
注:例2是利用对数函数的增减性比较两个对数 的大小的,对底数与1的大小关系未明确指出时,要分 情况对底数进行讨论来比较两个对数的大小.
人教版数学必修一.2对数函数图像及 其性质P PT课件
例3 比较下列各组中两个值的大小:
⑴.log 67 , log 7 6 ; ⑵.log 32 , log 2 0.8 .
x
定义域
奇偶性 值域
定点
单调性 函数值 符号
(0,+∞)
非奇非偶函数
非奇非偶函数
R ( 1 , 0 ) 即 x = 1 时,y = 0 在 ( 0 , + ∞ ) 上是增函数 在 ( 0 , + ∞ ) 上是减函数
当 x>1 时,y>0
当 x>1 时,y<0
当 0<x <1 时, y<0 当 0<x<1 时,y>0
x…
列 表
y log 2
y log 1
x
x
… …
2
y
描
2
点
1 11
42
0 12
连
-1
线
-2
1/4 1/2 1
-2 -1 0 2 10
y=log2x
34
高一对数函数及其性质(优质课)课件
指数函数和对数函数的性质互补 ,即当一个函数的某个性质成立 时,另一个函数的相应性质必然
不成立。
02
对数函数的图像与性质
对数函数的图像
总结词
对数函数的图像是学习对数函数的基础,通过图像可以直观地理解对数函数的 性质和特点。
详细描述
对数函数的图像通常在平面直角坐标系中绘制,以实数轴为底边,以真数为横 坐标,以对数为纵坐标。常见的对数函数包括自然对数函数和以10为底的对数 函数等。
高一对数函数及其性质(优质课)课 件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他函数的关系 • 习题与解析
01
对数函数的定义与性质
对数函数的定义
常用对数
以10为底的对数, 记作lgx。
对数定义域
真数必须大于0,即 x>0。
自然对数
以e为底的对数,记 作lnx。
知的。
地震的里氏震级
地震的震级也是使用对数函数来测 量的,因为地震的能量是以指数方 式增长的。
测量声谱和色谱
在声音和颜色的分析中,对数函数 被用来测量频谱和色谱,以帮助我 们更好地理解和分析声音和颜色的 组成。
对数在科学计算中的应用
放射性衰变
放射性衰变是一个指数过程,而对数 函数在处理指数函数时非常有用,因 此它在计算放射性衰变时被广泛应用 。
对数函数的单调性
总结词
对数函数的单调性是指函数值随自变量变化的趋势,通过研究单调性可以更好地 理解对数函数的性质。
详细描述
对数函数在其定义域内通常是单调的,即随着自变量的增加,函数值也相应增加 。对于以10为底的对数函数,当底数大于1时,函数是增函数;当底数小于1时, 函数是减函数。
4.4.2 对数函数的图象和性质(第一课时) 课件(共17张PPT)
0
⑵考察对数函数 y = log 0.3 x,因为它
y
的底数为0.3,即0<0.3<1,所以它
在(0,+∞)上是减函数,于是
0
log 0.31.8>log 0.32.7
log0.31.8 log0.32.7
y=log2x
3.4 8.5 x
1.8 2.7 x
y=log0.3x
当底数相同时,利用对数函数的单调性比较大小
loga5.1 0
y=logax (a>1) 5.1 5.9 x
当0<a<1时,函数y=log ax在 (0,+∞)上是减函数,于是
log a5.1>log a5.9
y
0 loga5.1 loga5.9
5.1 5.9 x
y=logax (0<a<1)
当底数a不确定时, 要对a与1的大小进行分类讨论.
(1)log2 3.4, log2 8.5 (2)log0.3 1.8, log0.3 2.7 (3)loga 5.1, loga 5.9(a 0且a 1)
解:⑴考察对数函数 y = log 2x,因为 它的底数2>1,所以它在(0,+∞) 上 是增函数,于是log 23.4<log 28.5
y log28.5 log23.4
y log 1 x
2
画一画:在同一坐标系中画出y log2 x和y log1 x的图象
2
x
1
…
4
1 2
1 24
…
y log2 x … -2
-1
0 12…
y log 1 x … 2
2
y
1
0 -1
-2 …
描 点
2
⑵考察对数函数 y = log 0.3 x,因为它
y
的底数为0.3,即0<0.3<1,所以它
在(0,+∞)上是减函数,于是
0
log 0.31.8>log 0.32.7
log0.31.8 log0.32.7
y=log2x
3.4 8.5 x
1.8 2.7 x
y=log0.3x
当底数相同时,利用对数函数的单调性比较大小
loga5.1 0
y=logax (a>1) 5.1 5.9 x
当0<a<1时,函数y=log ax在 (0,+∞)上是减函数,于是
log a5.1>log a5.9
y
0 loga5.1 loga5.9
5.1 5.9 x
y=logax (0<a<1)
当底数a不确定时, 要对a与1的大小进行分类讨论.
(1)log2 3.4, log2 8.5 (2)log0.3 1.8, log0.3 2.7 (3)loga 5.1, loga 5.9(a 0且a 1)
解:⑴考察对数函数 y = log 2x,因为 它的底数2>1,所以它在(0,+∞) 上 是增函数,于是log 23.4<log 28.5
y log28.5 log23.4
y log 1 x
2
画一画:在同一坐标系中画出y log2 x和y log1 x的图象
2
x
1
…
4
1 2
1 24
…
y log2 x … -2
-1
0 12…
y log 1 x … 2
2
y
1
0 -1
-2 …
描 点
2
对数函数及性质课件
对数函数在测量和描述生命 现象方面有广泛的应用。例 如在描述剂量响应曲线时。
对数函数被应用于广泛的领 域,如在测量和控制光线、 声音和电信号方面。
结论
重要性
对数函数是现代数学和科学中不可或缺的基础,为 各行各业中的问题提供解决方案。
应用前景
随着科学和技术的不断进步,对数函数在未来会有 更广泛和更深入的应用。
对数函数的性质
变换规律
对数函数的图像可以被平移、伸缩 和反转。
导数
对数函数的导数公式为 (ln a)/x,导 函数的图像为一条正比于 y/x 的直 线。
级数展开
对数函数可以用麦克劳林级数和泰 勒级数进行展开。
应用实例
1 数学、物理和统计
2 生命科学
3 工程
对数函数被运用于求解方程、 计算统计数据以及研究复杂 物理现象。
参考资料
教材或论文
高等数学、微积分学等相关的 教材或论文。
研究报告或实验数据
对数函数在具体领域中的研究 报告或实验数据。
网站或应用程序
在线的对数函数计算工具、应 用程序或网站。
对数函数及性质Leabharlann pt课件欢迎来到对数函数及性质的ppt课件!这个课程将会介绍对数函数的相关性质, 并探索对数函数在不同领域中的应用。
概述
定义
对数函数是用对数运算表示的函数。
表述
对数函数的表示公式为 y = loga(x),其中 x、y 是变数,a 是底数。
常用与自然对数函数
对数函数按底数可以分为常用对数函数和自然对数函数两种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o1
y=logcx, y=logdx,的
图像,试问a,b ,c,
d的大小关系如何?
c1 c2 x
c3 c4
解:⑴考察对数函数 y = log 2x, 因为它的底数2>1,所以它在 (0,+∞) 上是增函数,所以 log 23.4<log 28.5
练习: 根据下列各式,确定a的取值范围: ⑴ loga0.8 >loga1.2 ⑵ log2a>0
课下讨论
y
1.如图 :曲线C1 , C2 ,
C3 , C4 分别为函数 y=logax, y=logbx,
对数函数及其性质
复习: 一般地,函数 y = ax ( a > 0, 且 a ≠ 1 ) 叫做指数函
数,其中x是自变量.
a>1
y y=ax
图
0<a<1
y=ax
y
y=1
y=1
(0,1)
(0,1)
象
0
x
0
x
性
定义域: R 值 域 : (0 , +∞)
质 过 点 ( 0 , 1 ) ,即 x = 0 时, y = 1 .
动一动脑筋吧!
求下列函数的定义域:
① y=loga(4-x)
② y=loga(9-x2)
பைடு நூலகம்考
函数y loga x与函数y ax (a 0,a 1)的定义域和值域之间有 什么关系?
练一练吧,你能行!
比较下列各组数中两个值的大小: ⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 )
在 R 上是增函数 在 R 上是减函数
及时巩固
判断下列函数是否为对数函数:
(1)y=2-x (2)y=log-2x
(3)y=log2x (4)y=log1x
y=logax(a>1)和y=logax(0<a<1)的图象
y = logax (0<a<1)
当a>1时函数图像 当0<a<1时函数的图像