《函数》基础测试

合集下载

中职数学基础模块上册第三四章《函数、指数函数与对数函数》测试题及参考答案

中职数学基础模块上册第三四章《函数、指数函数与对数函数》测试题及参考答案

中职数学基础模块测试题《函数、指数函数、对数函数》(满分100分,时间:90分钟)一、选择题(本大题共10小题,每小题4分,共40分)题号12345678910答案1.下列各组函数中,表示同一函数的是()x2A.y=与y=xB.y=x与y=x2x C.y=x与y=log2x D.y=x0与y=1 22.下列函数,在其定义域内,既是奇函数又是增函数的是()1A.y=x23.若a>b,则有()B.y=2x C.y=x3 D.y=log x2A.a2>b2B.lg a>lg bC.2a>2bD.a>b4.log81=()A、2B、4C、-2D、-435.计算log1.25+log0.2=()A.-2 B.-1 C.2 D.1226.y=x-a与y=log x在同一坐标系下的图象可能是()ay y y y1O1x1O1x1O1x1O1x-1 A -1B-1C-1D7.设函数f(x)=log x(a>0且a≠1),f(4)=2,则f(8)=()aA.2B.12 C.3 D.13158.2⋅38⋅464=()A、4B、287C、22D、89.下列函数在区间(0,+∞)上是减函数的是()A、y=x12B、y=x13C、y=x-2D、y=x2(1) 64 3 + ( 2 + 3)0 = __________;(2)化简: (lg 2 - 1) 2 =__________(5)方程 3 x 2-8 = ( ) -2 x 的解集为________________3 - x- (- ) -2+ 810.75 + (1 - 5) 010.若函数 y = log (ax 2 + 3x + a ) 的定义域为 R ,则 a 的取值范围是()21 3 13A. (-∞, - )B. ( , +∞)C. (- , +∞)D. (-∞, )2 2 22二、填空题(共 5 小题,每题 4 分,共 20 分)2 (- )(3)如果 log x < log ( x - 1) ,那么 a 的取值范围是__________aa(4)用不等号连接: log 5log 0.20.26 ; 若 3m > 3n ,则 m n13三、解答题(本大题共 6 小题,共计 40 分)11.(6 分)求函数 y = log (2 x - 1) + 的定义域。

人教A版第三章函数的应用基础测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)

人教A版第三章函数的应用基础测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)

专题5:人教A 版第三章函数的应用基础测试题(解析版)一、单选题1.已知函数()2f x ax bx c =++满足()20f <且()30f >,则()f x 在()2,3上的零点( ). A .至多有一个 B .有1个或2个 C .有且仅有一个 D .一个也没有1.C 【分析】由零点存在定理可判定出结果. 【详解】由题意知:()f x 在R 上至多有两个零点.由零点存在定理知:若()()230f f ⋅<,则()f x 在()2,3上有且仅有一个零点. 故选:C .2.函数()ln 4f x x x =+-的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,52.B 【分析】计算区间端点处的函数值,根据零点存在定理判断. 【详解】(1)30f =-<,(2)ln 220f =-<,(3)ln 310f =->,∴零点在区间(2,3)上. 故选:B .3.函数()6ln f x x x =-+的零点所在区间应是( ) A .()2,3 B .()3,4C .()4,5D .()5,63.C 【分析】分别计算()2f ,()3f ,()4f ,()5f ,()6f ,根据零点存在性定理,即可得出结果. 【详解】因为()6ln f x x x =-+,所以()226ln 24ln 20f =-+=-+<,()336ln33ln30f =-+=-+<,()446ln 422ln 20f =-+=-+<, ()556ln51ln50f =-+=-+>,()666ln6ln60f =-+=>,由零点存在性定理,可得函数()6ln f x x x =-+的零点所在区间应是()4,5, 即C 正确,ABD 错误. 故选:C.4.下列函数中,没有零点的是( )A .2()log 7f x x =-B .()1f xC .()1f x x= D .()2f x x x =+4.C 【分析】分别解函数对应的方程,逐项判断,即可得出结果. 【详解】A 选项,由2()log 70f x x =-=可得72x =,即函数2()log 7f x x =-有零点;B 选项,由()10f x =得1x =,即函数()1f x 有零点;C 选项,由()10f x x ==解得,x 不存在,即函数()1f x x=没有零点; D 选项,由()20f x x x =+=解得1x =-或0,即函数()2f x x x =+有零点. 故选:C.5.函数()228f x x x =--零点是( )A .2和4-B .2-和4C .()2,0和()4,0-D .()2,0-和()4,05.B 【分析】解方程()0f x =,即可得出函数()f x 的零点. 【详解】解方程()0f x =,即2280x x --=,解得2x =-或4x =.因此,函数()228f x x x =--的零点是2-和4.故选:B.6.为了求函数()237x f x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如表所示:x1.25 1.3125 1.375 1.4375 1.5 1.5625 ()f x-0.8716-0.5788-0.28130.21010.328430.64115则方程237x x +=的近似解(精确到0.1)可取为( ) A .1.2 B .1.3C .1.4D .1.56.C 【分析】根据二分法结合零点存在定理求解. 【详解】因为(1.375)0,(1.4375)0f f <>, 所以方程的解在区间()1.375,1.4375内, 又精确到0.1, 所以可取1.4 故选:C7.把函数2()log f x x =的图像向左平移1个单位,再向下平移2个单位后得到函数()g x 的图像,则函数()g x 的零点是( )A .3B .5C .34-D .547.A 【分析】根据平移变换得到()g x ,令()g x 0=,解方程可得结果. 【详解】依题意得2()log (1)2g x x =+-,由()0g x =得2log (1)2x +=,得14x +=,得3x =. 故选:A【点睛】关键点点睛:掌握函数零点的概念是本题解题关键.8.“道高一尺,魔高一丈”出于《西游记》第五十回“道高一尺魔高丈,性乱情昏错认家,可恨法身无坐位,当时行动念头差,”用来比喻取得一定成就后遇到的障碍会更大或正义终将战胜邪恶,若用下列函数中的一个来表示这句话的含义,则最合适的是( )A .10y x =,0x >B .110y x =,0x > C .10y x =+,0x > D .=9y x +,0x >8.A 【分析】根据一丈等于十尺,即可得出结果. 【详解】因为一丈等于十尺,所以“道高一尺魔高一丈”更适合用10y x =,0x >来表示; 故选:A.9.若32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,数据如下表:那么方程32220x x x +--=的一个近似根(精确到0.1)为( ) A .1.2 B .1.3C .1.41D .1.59.C 【分析】利用零点存在性定理,判断根的较小区间,即可求得近似解. 【详解】因为(1.438)0.1650f =>,(1.4065)0.0520f =-<,(1.438)(1.4065)0f f ⨯<,所以方程的近似根在()1.4065,1.438,则近似根为1.41 故选:C10.已知函数()351f x x x =-+,则下列区间中一定包含()f x 零点的区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,210.C 【分析】计算出各端点的函数值,利用零点存在性定理即可判断. 【详解】()351f x x x =-+,()32252130f ∴-=-+⨯+=>,()31151150f -=-+⨯+=>,()010f => ()31151130f =-⨯+=-<,()32252110f =-⨯+=-<,根据零点存在性定理可得一定包含()f x 零点的区间是()0,1. 故选:C.11.已知函数()25xf x ex --=-的零点位于区间(),1m m +,m ∈Z 上,则42log m m +=( )A .14-B .14C .12D .3411.D 【分析】利用零点存在定理求得整数m 的值,进而可求得42log mm +的值. 【详解】易知函数()f x 单调递减,又因为()2210f e -=->,()130f e -=-<,由零点存在定理可知,函数()f x 的零点在区间()2,1--内,则2m =-. 所以2441132log 2log 2424mm -+=+=+=. 故选:D. 【点睛】本题考查利用零点存在定理求参数值,同时也考查指数式与对数式的计算,考查计算能力,属于基础题.12.我们知道,人们对声音有不同的感觉,这与声音的强度有关系.声音的强度常用I (单位:瓦/米2,即2/m W )表示,但在实际测量时,声音的强度水平常用L (单位:分贝)表示,它们满足换算公式:010lgI L I =(0L ≥,其中1220110/m I W -=⨯是人们平均能听到的声音的最小强度).若使某小区内公共场所声音的强度水平降低10分贝,则声音的强度应变为原来的( ) A .15B .1100C .110D .12012.C 【分析】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I ,代入可得选项. 【详解】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I , 由题意,得1210L L -=,即120010lg 10lg 10I II I -=, 解得21110I I =. 故选:C. 【点睛】本题考查函数模型的应用,关键在于理解生活中的数据在数学应用中的表达,属于基础题.二、填空题13.函数()22f x x x =+-的零点为______________.13.2-和1 【分析】解方程220x x +-=,即可得出函数()y f x =的零点. 【详解】令()0f x =,得220x x +-=,解得1x =或2x =-. 因此,函数()22f x x x =+-的零点为2-和1.故答案为:2-和1.【点睛】本题考查函数零点的求解,熟悉函数零点的定义是解题的关键,考查运算求解能力,属于基础题.14.若二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则实数k =_____________. 14.4 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入9y kx =-中,求得k 的值. 【详解】解37231x y x y -=⎧⎨+=⎩得21x y =⎧⎨=-⎩,代入9y kx =-得129k -=-, 解得4k =. 故答案为:4 【点睛】本题主要考查解二元一次方程组,意在考查学生对该知识的理解掌握水平. 15.燕子每年秋天都要从北方飞向南方过冬,专家发现,两岁燕子的飞行速度可以表示为函数25log 10Ov =,单位是m/s ,其中O 表示燕子的耗氧量.则当燕子静止时的耗氧量是______个单位. 15.10 【分析】当燕子静止时,速度为0,由此列方程,解方程求得O 的值. 【详解】若燕子静止,则0v =,即25log 0,11010O O==,所以10O =. 故填:10. 【点睛】本小题主要考查阅读理解能力,考查已知函数值以及函数解析式求自变量的值,属于基础题.16.已知函数3,0()1,0x x x f x x a x x ⎧+≤⎪=⎨-->⎪⎩有4个不同的零点,则实数a 的取值范围为_______. 16.()2,+∞ 【分析】当0x ≤时,即()f x 恒有1个零点;当0x >时,得到相切时a 的值,即可求解。

函数基础知识经典测试题附解析

函数基础知识经典测试题附解析

函数基础知识经典测试题附解析一、选择题1.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.2.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.3.下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.4.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【详解】解:由题意得,12×2πR×l=8π,则R=8lπ,故选A.【点睛】本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.5.下列说法:①函数y=x的取值范围是6x>;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算2|-的结果为7:⑥相等的圆心角所对的弧相等;理数.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数y=x的取值范围是6x≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;==是无理数;故正确.故选:B.【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.7.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B3C.3D.3【答案】C【解析】【分析】将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF3;直线l向右平移直到点F过点B时,y3;当直线l过点C时,x=a+2,y=0∴菱形的边长为a+2﹣a=2∴当点E 与点D 重合时,由勾股定理得a 2+2(3)=4∴a =1 ∴菱形的高为3∴菱形的面积为23.故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,8.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意分三种情况讨论△APQ 面积的变化,进而得出△APQ 的面积y (cm 2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP =x ,Q 点运动路程为2x ,①当点Q 在AD 上运动时,y =12AP•AQ =12x•2x =x 2,图象为开口向上的二次函数; ②当点Q 在DC 上运动时, y =12AP•DA =12x×3=32x ,是一次函数; ③当点Q 在BC 上运动时, y =12AP•BQ =12x•(12−2x )=−x 2+6x ,为开口向下的二次函数, 结合图象可知A 选项函数关系图正确,故选:A .【点睛】 本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ 的面积变化.10.在函数3y x =-中,自变量x 的取值范围是( ) A .3x <B .3x >C .3x ≥D .8,5OA OB ==u u u v u u u v【答案】C【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得x≥3.故选C .【点睛】本题考查了二次根式的性质:二次根式的被开方数是非负数.11.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠,解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.如图,正方形ABCD 的边长为2,动点P 从点D 出发,沿折线D →C →B 作匀速运动,则△APD 的面积S 与点P 运动的路程x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】【分析】分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD=x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.【详解】解:当点D在DC上运动时,DP=x,所以S△APD=12AD•DP=12•2•x=x(0<x≤2);当点P在CB上运动时,如图,PC=x﹣4,所以S△APD=12AD•DC=12•2•2=2(2<x≤4).故选:D.【点睛】此题考查动点问题的函数图象,解题关键在于掌握分类讨论的思想、函数的知识、正方形的性质和三角形的面积公式.注意自变量的取值范围.13.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.2B.3C.5D.6【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDSV=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCSV=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴2242+5故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.14.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S (cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.15.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.34B3C.2 D3【答案】A 【解析】【分析】本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.【详解】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2,∴等边三角形ABC的高为3,∴等边三角形ABC的面积为3,由图2可知,x=1时△EFG的面积y最小,此时AE=AG=CG=CF=BG=BE,显然△EGF是等边三角形且边长为1,所以△EGF的面积为3,故选A.【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.17.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

上海罗店中学必修一第二单元《函数》测试(含答案解析)

上海罗店中学必修一第二单元《函数》测试(含答案解析)

一、选择题1.我们把定义域为[)0,+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:①对任意的[)0,x ∈+∞,总有()0f x ≥;②若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,给出下列四个结论:(1)若()f x 为“Ω函数”,则()00f =;(2)若()f x 为“Ω函数”,则()f x 在[)0,+∞上为增函数;(3)函数()0,1,x Q g x x Q ∈⎧=⎨∉⎩在[)0,+∞上是“Ω函数”(Q 为有理数集);(4)函数()2g x x x =+在[)0,+∞上是“Ω函数”;其中正确结论的个数是( )A .1B .2C .3D .4 2.若关于x 的不等式342x x a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( ) A .(-∞,1]2- B .(0,1] C .1[2-,1] D .[1,)+∞3.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a --≤≤C .2a ≤-D .0a < 4.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( )A .()1,3B .()(),31,-∞-⋃+∞C .()1,1-D .()(),13,-∞+∞5.已知2()25x f x +=-,()()20g x ax a =+>,若对任意的[]11,2x ∈-,存在[]00,1x ∈,使()()10g x f x =,则a 的取值范围是( )A .1(0,]2 B .1[,3]2C .[)3,+∞D .(]0,3 6.对二次函数()2f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ).A .1-是()0f x =的一个解B .直线1x =是()f x 的对称轴C .3是()f x 的最大值或最小值D .点()2,8在()f x 的图象上7.已知函数f (x )的定义域为R ,满足f (x )=2f (x +2),且当x ∈[2-,0) 时,19()4f x x x =++,若对任意的m ∈[m ,+∞),都有1()3f x ≤,则m 的取值范围为( )A .11,5⎡⎫-+∞⎪⎢⎣⎭B .10,3⎡⎫-+∞⎪⎢⎣⎭C .)5,2⎡-+∞⎢⎣D .11,4⎡⎫-+∞⎪⎢⎣⎭ 8.若函数2()2(2)1f x mx m x =+-+的值域为0,,则实数m 的取值范围是( )A .()1,4B .()(),14,-∞⋃+∞C .(][)0,14,+∞D .[][)0,14,+∞9.已知函数()f x 的定义域为R ,(1)f x -是奇函数,(1)f x +为偶函数,当11x -≤≤时,()13131x x f x +-=+,则以下各项中最小的是( ) A .()2018f B .()2019f C .()2020f D .()2021f 10.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数,下列判断正确的是( )A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确 11.已知函数()f x 的定义域为R ,对任意的 12,x x <都有1212()(),f x f x x x -<-且(3)4,f =则(21)2f x x ->的解集为( )A .(2,)+∞B .(1,)+∞C .(0,)+∞D .(1,)-+∞ 12.函数2log x y x x=的大致图象是( ) A . B . C . D .二、填空题13.已知函数(3)5,1()2,1a x x f x a x x--≤⎧⎪=⎨->⎪⎩是R 上的增函数,则a 的取值范围是________. 14.已知定义在 +R 上的函数 ()f x 同时满足下列三个条件:① ()31f =-;②对任意 x y +∈R , 都有 ()()()f xy f x f y =+;③ 1x > 时 ()0f x <,则不等式()()612f x f x <-- 的解集为___________.15.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.16.若对任意x ,y R ∈都有()()()f x y f x f y +=⋅,且()12f =,则()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值是______. 17.已知函数()1f x x x =+,()12x g x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.18.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.19.函数()f x =的单调递增区间为__________.20.若函数234y x x =--的定义域为[0,]m ,值域为25[,4]4--,则m 的取值范围______. 三、解答题21.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”. (1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围; (3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.22.已知函数()2m f x x x=++(m 为实常数). (1)当4m =时,试判断函数在[)2,+∞上的单调性,并用定义证明; (2)设0m <,若不等式()f x kx ≤在1[,1]2x ∈有解,求实数k 的取值范围.23.已知函数()2342()log log 16a f x x x =⋅⋅.(1)若1a =,求方程()1f x =-的解集;(2)当[]2,4x ∈时,求函数()f x 的最小值.24.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”. (1)请直接写出函数()3f x x =的所有的“和谐区间”; (2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值; (3)求函数()22f x x x =-的所有的“和谐区间”.25.已知定义在()0,∞+上的函数()f x 满足:①对任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+;②当且仅当1x >时,()0f x <成立.(1)求()1f ;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较1x ,2x 的大小关系,并说明理由; (3)若对任意的[]1,1x ∈-,不等式()()22333310x x x x f f m --⎡⎤+≤+-⎣⎦恒成立,求实数m 的取值范围.26.已知定义在R 上的函数()f x 对任意,x y R ∈都有等式()()()1f x y f x f y +=+-成立,且当0x >时,有()1f x >.(1)求证:函数()f x 在R 上单调递增;(2)若()34f =,关于x 不等式)3f t f +>有解,求t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用“Ω函数”的定义依次判断即可,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.【详解】解:对(1),由①得()00f ≥,在②中令0x y ==,即()()020f f =,解得:()00f ≤,()00f ∴=,故(1)正确;对(2),当()0f x =时,满足①②,但在[)0,+∞不是增函数,故(2)错误; 对(3),当x ,y 都为正无理数时,不满足②,故(3)错误;对(4),()2g x x x =+,当[)0,x ∈+∞时,min ()(0)00g x g ==≥,即满足条件①,222()()()()20g x y g x g y x y x y x x y y xy +--=+++----=≥,即满足条件②,∴函数2()g x x x =+在[0,)+∞上是“Ω函数”,故(4)正确.故选:B.【点睛】关键点点睛:本题解题的关键是理解“Ω函数”的定义,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.2.D解析:D【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论.【详解】 解:由题意知,342x x a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-, 则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a ,故选:D .【点睛】关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.3.B解析:B【分析】由题得函数在定义域上单增,列出不等式组得解.【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.4.D解析:D【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围【详解】解:由题意得(0)2,(2)2f f ==-,因为函数()y f x =是定义在R 上的单调函数,所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-,所以(1)(0)f x f ->或(1)(2)f x f -<,所以10x -<或12x ->,解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞, 故选:D【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题5.A解析:A【分析】根据指数函数的性质求出()f x 在[0,1]上的值域A ,利用一次函数的单调性求出()g x 在[1,2]-上的值域B ,由题得B A ⊆,再根据集合的包含关系即可求解.【详解】2()25x f x +=-,[]00,1x ∈,()()min 01f x f ∴==-,()()max 13f x f ==,∴()f x 在[0,1]上的值域为[]1,3A =-,又()2(0)g x ax a =+>在[1,2]-上单调递增,∴()g x 在[1,2]-上的值域为[]2,22B a a =-++,由题意可得B A ⊆,021223a a a >⎧⎪∴-+≥-⎨⎪+≤⎩,解得102a <≤. 故选:A【点睛】本题考查函数的单调性求值域、集合的包含关系求参数的取值范围.探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围6.A解析:A【分析】可采取排除法,分别考虑A 、B 、C 、D 中有一个错误,通过解方程求得a ,判断a 是否为非零整数,即可得出结论.【详解】①若A 错,则B 、C 、D 正确,直线1x =是()f x 的对称轴,则12b a-=, 3是()f x 的最大值或最小值,则2434ac b a-=, 点()2,8在()f x 的图象上,则()2428f a b c =++=, 可得212434428b a ac b a a b c ⎧-=⎪⎪-⎪=⎨⎪++=⎪⎪⎩,解得5108a b c =⎧⎪=-⎨⎪=⎩,合乎题意; ②若B 错,则A 、C 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=,3是()f x 的最大值或最小值,则2434ac b a-=, 点()2,8在()f x 的图象上,则()2428f a b c =++=, 可得20434428a b c ac b aa b c -+=⎧⎪-⎪=⎨⎪++=⎪⎩,该方程组无解,不合乎题意; ③若C 错误,则A 、B 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12b a-=, 点()2,8在()f x 的图象上,则()2428f a b c =++=, 可得012428a b c b a a b c -+=⎧⎪⎪-=⎨⎪++=⎪⎩,解得831638a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,不合乎题意;④若D 错误,则A 、B 、C 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12b a-=, 3是()f x 的最大值或最小值,则2434ac b a-=, 可得2012434a b c b a ac b a⎧⎪-+=⎪⎪-=⎨⎪⎪-=⎪⎩,解得343294a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,不合乎题意. 故选:A.【点睛】关键点点睛:本题考查利用二次函数的基本性质求解参数,解本题的关键就是根据已知信息列出关于a 、b 、c 的方程组,解出参数的值,再逐一判断.7.D解析:D【分析】求出[2,0)x ∈-时,()f x 的值域,满足1()3f x ≤,根据函数的定义,[0,2)x ∈时,满足1()3f x ≤,同时可得0x ≥时均满足1()3f x ≤,然后求得[4,2)x ∈--时的解析式,解不等式1()3f x ≤得解集,分析后可得m 的范围. 【详解】 [2,0)x ∈-时,19()4f x x x =++在[]2,1--上递增,在[1,)-+∞上递减,1(),4f x ⎛⎤∈-∞ ⎥⎝⎦,满足1()3f x ≤, 当[0,2)x ∈时,2[2,0)x -∈-,11()(2)[,)28f x f x =-∈-∞,满足满足1()3f x ≤, 按此规律,2x ≥时,()f x 均满足1()3f x ≤, 当[4,2)x ∈--时,29()2(2)2(2)22f x f x x x =+=++++,由2912(2)223x x +++≤+, 解得1043x -≤≤-或1124x -≤<-,当101134x -<<-时,1()3f x >.因此当114x ≥-时,都有1()3f x ≤, 所以114m ≥-. 故选:D .【点睛】 关键点点睛:本题考查函数不等式恒成立问题,解题关键是依照周期函数的性质,根据函数的定义求出()f x 在[2,22)k k +(k ∈N )满足1()3f x ≤,在[2,0)-上直接判断,求出[4,2)--上的解析式,确定1()3f x ≤的范围,此时有不满足1()3f x ≤的x 出现,于是可得结论m 的范围. 8.D解析:D【分析】令t =()0,t ∈+∞()0,+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围.【详解】令t =1y t =的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞()0,+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆, 若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()204240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D. 9.D解析:D【分析】利用已知条件可知(2)()0f x f x --+=、(2)()f x f x -=,进而得到(8)()f x f x +=,即周期为8,应用周期性结合已知区间解析式,即可知()2018f 、()2019f 、()2020f 、()2021f 中最小值.【详解】(1)f x -是奇函数,即(1)f x -关于(0,0)对称,()f x ∴的图象关于点(1,0)-对称,即(2)()0f x f x --+=.又)1(f x +为偶函数,即(1)f x +关于0x =对称,()f x ∴的图象关于直线1x =对称,即(2)()f x f x -=.(2)(2)0f x f x --+-=,(2)(2)0f x f x ∴-++=,即(8)()f x f x +=,函数()y f x =的周期为8, (2018)(2)(0)1f f f ∴===,(2019)(3)(1)0f f f ==-=,(2020)(4)(2)(0)1f f f f ==-=-=-,(2021)(5)(3)(1)2f f f f ==-=-=-,故(2021)f 最小.故选:D【点睛】本题考查了函数的性质,根据已知奇偶性推导函数的周期,应用函数周期求函数值,进而比较大小,属于基础题.10.D解析:D【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案.【详解】①错误,可举反例:21()31x x f x x x ⎧=⎨-+>⎩, 230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数; 但()()f x g x +、()()f x h x +、()()g x h x +均为增函数;故①错误;②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数;故②正确.故选:D .【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数. 11.A解析:A【分析】由题可得[][]1122()()0f x x f x x ---<,可构造函数()()F x f x x =-是R 上的增函数,原不等式可转化为()()213F x F ->,再结合增函数的性质可求出答案. 【详解】 由题意,[][]121211221122()()()()()()0f x f x x x f x x f x x f x x f x x -<-⇔-<-⇔---<, 因为12,R x x ∈且12,x x <所以函数()()F x f x x =-是R 上的增函数.()3(3)31F f =-=,因为(21)2(21)(21)1f x x f x x ->⇔--->,所以()()213F x F ->, 则213x ->,解得2x >. 故选:A. 【点睛】本题考查了函数的单调性的应用,构造函数()()F x f x x =-是解决本题的关键,属于中档题.12.D解析:D 【解析】()222log ,0log log ,0x x x y x x x x >⎧==⎨--<⎩,所以当0x >时,函数22log log x y x x x ==为增函数,当0x <时,函数()22log log xy x x x==--也为增函数,故选D. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.二、填空题13.【分析】函数是增函数可得且即可求解【详解】因为函数为上的增函数所以当时递增即当时递增即且解得∴综上可知实数的取值范围是故答案为:【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围需满足分段函数 解析:(]0,2【分析】函数是增函数可得30a ->,0a >且2(3)151aa -⨯-≤-,即可求解. 【详解】因为函数()f x 为R 上的增函数,所以当1x ≤时,()f x 递增,即30a ->,当1x >时,()f x 递增,即0a >, 且2(3)151aa -⨯-≤-,解得2a ≤,∴02a <≤, 综上可知实数a 的取值范围是(]0,2. 故答案为:(]0,2. 【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围,需满足分段函数每部分分别单调,还应注意在分段处的函数值大小问题,这是容易漏掉的地方.14.【分析】用赋值法由已知得到把转化为即再用定义法证明在上为减函数利用单调性可得答案【详解】因为对任意有令得所以令则所以可等价转化为即设当时则所以所以在上为减函数故由得得又所以原不等式的解集为故答案为:解析:()13, 【分析】用赋值法由已知得到()()()9332f f f =+=-,把()()612f x f x <--转化为()()61(9)f x f x f <-+,即()()699f x f x <-,再用定义法证明()f x 在(0,)+∞上为减函数,利用单调性可得答案. 【详解】因为对任意12,(0,)x x ∈+∞,有()()()f xy f x f y =+,令x y ==fff =+,得()231f f ==-,所以12f =-, 令3x y ==,则()()()9332f f f =+=-,所以()()612f x f x <--可等价转化为()()61(9)f x f x f <-+, 即()()699f x f x <-,设120x x <<,12,(0,)x x ∈+∞,当1x > 时 ()0f x <,则()()()22211111·x x f x f x f f x f x x x ⎛⎫⎛⎫==+< ⎪ ⎪⎝⎭⎝⎭,所以()12()f x f x >,所以()f x 在(0,)+∞上为减函数,故由()()699f x f x <-, 得699x x >-,得3x <,又1x >,所以原不等式的解集为(1,3). 故答案为:(1,3) 【点睛】 思路点睛:确定抽象函数单调性解函数不等式的基本思路: 第一步(定性)确定函数在给定区间上的单调性和奇偶性;第二步(转化)将函数不等式转化为不等式类似()()f M f N <等形式;第三步(去)运用函数的单调性“去掉”函数的抽象符号f “”,转化成一般的不等式或不等式组;第四步(求解)解不等式或不等式组确定解集.15.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)【解析】由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .16.2014【分析】令得利用赋值法进行求解利用即可的值【详解】对任意的都有且令则故答案为:2014【点睛】本题主要考查函数值的计算利用赋值法是解决抽象函数的常用方法解析:2014 【分析】 令1y =,得(1)2()f x f x +=,利用赋值法进行求解.利用(1)2()f x f x +=,即可()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值. 【详解】对任意的x ,y R ∈都有()()()f x y f x f y +=,且(1)2f =,∴令1y =,则(1)()(1)2()f x f x f f x +==,∴(1)2()f x f x +=, ∴(2)(4)(6)(2012)(2014)222210072014(1)(3)(5)(2011)(2013)f f f f f f f f f f +++⋯++=++⋯+=⨯=. 故答案为:2014. 【点睛】本题主要考查函数值的计算,利用赋值法是解决抽象函数的常用方法.17.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增,所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .18.【分析】分析的奇偶性根据的结果求解出的值【详解】令因为为上的奇函数且也为上的奇函数所以为上的奇函数所以所以且所以故答案为:【点睛】结论点睛:已知(1)当为奇数时且此时为奇函数;(2)当为偶数时为偶函数 解析:12-【分析】分析()()2h x g x =-的奇偶性,根据()()22h h +-的结果求解出()2g -的值. 【详解】令()()()2h x g x af x bx =-=+,因为()f x 为R 上的奇函数,且y bx =也为R 上的奇函数,所以()()2h x g x =-为R 上的奇函数,所以()()220h h +-=, 所以()()22220g g -+--=,且()216g =,所以()212g -=-, 故答案为:12-.结论点睛:已知()(),0nf x x a n Z n =+∈≠,(1)当n 为奇数时,且0a =,此时()f x 为奇函数; (2)当n 为偶数时,()f x 为偶函数.19.【分析】先求出函数的定义域在利用复合函数单调性得解【详解】因为或所以函数的定义域为由在上单减在单增由复合函数单调性质得函数在单增故答案为:【点睛】复合函数单调性同增异减注意定义域属于基础题 解析:(,1)-∞-【分析】先求出函数的定义域,在利用复合函数单调性得解. 【详解】因为22303x x x -->⇒>或1x <- 所以函数的定义域为(,1)(3,)-∞-+∞由223t x x =--在(,1)-∞-上单减,在(3,)+∞单增 由复合函数单调性质得函数()f x =在(,1)-∞-单增故答案为:(,1)-∞- 【点睛】复合函数单调性“同增异减”,注意定义域.属于基础题20.;【分析】根据函数的函数值结合函数的图象即可求解【详解】又故由二次函数图象可知:要使函数的定义域为值域为的值最小为;最大为3的取值范围是:故【点睛】本题考查了二次函数的定义域值域特别是利用抛物线的对解析:332m ≤≤; 【分析】根据函数的函数值325()24f =-,()(0)34f f ==-,结合函数的图象即可求解.【详解】22325()34()24f x x x x =--=--,325()24f ∴=-,又()(0)34f f ==-,故由二次函数图象可知:要使函数234y x x =--的定义域为[0,]m ,值域为25[,4]4-- m 的值最小为32;m 的取值范围是:332m . 故332m【点睛】本题考查了二次函数的定义域、值域,特别是利用抛物线的对称特点进行解题,考查了数形结合思想,属于基础题.三、解答题21.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k=-与区间()0,4端点的大小关系得出实数k 的取值范围; (3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n=⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值. 【详解】 (1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a bb a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+(2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k=- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k<-恒成立 综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭(3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =-4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围. 22.(1)增函数;证明见解析;(2)当23m ≤-时,[)45,k m ∈++∞;当203-<<m 时, [)3,k m ∈++∞ 【分析】(1)用函数单调性的定义进行证明得解; (2)参变分离得到221m k x x++≤,再换元转化为二次函数求最值得解. 【详解】(1)()f x 为[)2,+∞上的增函数 证明如下:任取[)12,2,x x ∈+∞,且12x x < 则()121212121212444()()x x f x f x x x x x x x x x --=-+-=- 21120,4x x x x ->>所以12()()f x f x <;所以()f x 为[)2,+∞上的增函数 (2)由()f x kx ≤,得2mx kx x++≤ 212[,1],12m x k x x∈∴++≤令1t x =,[]2211()21()1,(1,2)g t mt t m t t m m =++=++-∈ 则1[,1]2x ∈有解,当且仅当[]min ()(1,2)k g t t ≥∈0m <当132m ->即203-<<m 时,min ()(1)3g t g m ==+ 当1302m <-≤即23m ≤-时,min ()(2)45g t g m ==+ 综上, 当23m ≤-时,[)45,k m ∈++∞. 当203-<<m 时, [)3,k m ∈++∞ 【点睛】函数不等式恒成立问题通常转化为函数最值问题,注意对参数进行讨论.23.(1)122⎫⎪⎨⎬⎪⎪⎩⎭;(2)2343,243,332812,3a a a a a a ⎧+≥-⎪⎪⎪--<<-⎨⎪+≤-⎪⎪⎩.【分析】(1)根据对数的运算化简方程即可得出解集;(2)根据二次函数的对称轴,分类讨论,即可求出函数的最小值. 【详解】()()234342222()log log 16log log 2log a a f x x x x x =⋅⋅=⋅+()22log 43log (0)x a x x =+>(1)若1a =,则()22()log 43log 1f x x x =+=-, 令2log t x =,则方程为(43)1t t +=-, 解得:13t =-或1t =-, 则21log 3x =-或2log 1x =-,∴132x -==或12x =,∴方程的解集为122⎫⎪⎨⎬⎪⎪⎩⎭. (2)∵[2,4]x ∈, ∴2log [1,2]x ∈, 令2log [1,2]t x =∈,则[]()(34),1,2f t t t a t =+∈,对称轴为23t a =-. ①当213a -≤,即32a ≥-时,min ()(1)43f t f a ==+; ②当2123a <-<,即332a -<<-时,2min 24()33f t f a a ⎛⎫=-=- ⎪⎝⎭; ③当223a -≥,即3a ≤-时,min ()(2)812f t f a ==+. 综上,2min 343,243(),332812,3a a f x a a a a ⎧+≥-⎪⎪⎪=--<<-⎨⎪+≤-⎪⎪⎩.【点睛】关键点点睛:二次函数求最值问题,需要根据开口方向及对称轴研究函数的最值,对称轴与定义域[1,2]的关系,分3种情况讨论即可,属于中档题.24.(1)[]1,0-、[]0,1、[]1,1-;(2)2;(2)[]1,0-和[]1,3-. 【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令312x x -=,解得25x =或2,最后绘出函数图像,结合函数图像即可得出结果; (3)本题可令22x x x -=,解得0x =或3,然后结合函数图像即可得出结果. 【详解】(1)函数()3f x x =是增函数,定义域为R ,令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、[]0,1、[]1,1-.(2)因为()312f x x =-,所以()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,因为[]()0,0m m >为函数()312f x x =-的一个“和谐区间”, 所以可令312x x -=,解得25x =或2,如图所示,绘出函数图像:结合“和谐区间”的定义易知,当2x =时满足题意, 故m 的值为2.(3)函数()22f x x x =-,定义域为R ,令22x x x -=,解得0x =或3, 如图所示,绘出函数图像:结合图像易知,函数()f x 的所有“和谐区间”为[]1,0-和[]1,3-.【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.25.(1)()10f =;(2)12x x >,理由见解析;(3)542m <≤【分析】(1)令1x y ==,代入可得(1)f ;(2)记12x kx =,代入已知等式,由12()()f x f x <可得()0f k <,从而有1k >,得结论12x x >;(3)根据函数的性质,不等式变形为()223333100x x x x m --+≥+->恒成立,然后设33x x t -=+后转化为一元二次不等式和一元不次不等式恒成立,再转化为求函数的最值,可求得参数范围.【详解】(1)令1x y ==,则(1)(1)(1)f f f =+,所以()10f =.(2)12x x >,理由如下:记12x kx =,则()()()122()f x f kx f k f x ==+, 由()()12f x f x <可得:()0f k <,则1k >,故12x x >.(3)由(2)得()223333100x x x x m --+≥+->恒成立, 令10332,3x x t -⎡⎤=+∈⎢⎥⎣⎦,则222332x x t -+=-, 原不等式可化为:22100t mt -≥->,由2210t mt -≥-恒成立可得:min 8m t t ⎛⎫≤+ ⎪⎝⎭,8842t t t t+≥⨯=8t t=,即22t =时等号成立,所以42m ≤. 由100mt ->恒成立可得:max 10m t ⎛⎫>⎪⎝⎭,102,3t ⎡⎤∈⎢⎥⎣⎦,则2t =时,max 105t ⎛⎫= ⎪⎝⎭,于是5m >.综上:实数m 的取值范围是5m <≤.【点睛】方法点睛:本题考查抽象函数的单调性,考查不等式恒成立问题,在解决不等式恒成立时,利用已求得的结论(函数的单调性),把问题进行转化,再用换元法转化为一元二次不等式和一元一次不等式恒成立,然后又由分离参数法转化为求函数的最值.26.(1)证明见解析;(2)()1-+∞.【分析】(1)任取12,x x R ∈,且12x x <,先得到()211f x x ->,再作差得到()()21f x f x -,判断其正负,根据单调性的定义,即可求出结果;(2)先由()34f =,根据题中条件,得到()12f =,将原不等式化为)(1)f t f >,根据(11t >,令[])2,2y x =∈-,求出其最大值,即可得出结果.【详解】(1)任取12,x x R ∈,且12x x <,则210x x ->,所以()211f x x ->,又()()()21211f x f x f x x =+--,所以()()()212110f x f x f x x -=-->,即()()21f x f x >.故函数()f x 在R 上单调递增.(2)因为(3)(1)(2)1(1)1(1)(1)13(1)24f f f f f f f =+-=-++-=-=, 所以()12f =,原不等式等价于))12(1)f t f f t f +-=>=,1t >1t >-有解,因此只需max 1t >-,令[])2,2y x =∈-,则24y =+()2,0-上单调递增,在()0,2上单调递减,所以()2max 48y =+=,所以max y =因此1t -<1t >-,故t 的取值范围为()1-+∞.【点睛】关键点点睛:求解本题第二问的关键在于根据(1)中判断的函数单调性,将问题转为不等式t>能成立的问题,利用分离参数的方法,分离出参数,再构造函数,1通过求函数最值,即可求解.。

新初中数学函数基础知识基础测试题附答案解析

新初中数学函数基础知识基础测试题附答案解析
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
③由横纵坐标看出,乙比甲先到达终点,故③错误;
④由纵坐标看出,甲乙二人都跑了20千米,故④正确;
故选C.
13.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()
新初中数学函数基础知识基础测试题附答案解析
一、选择题
1.下列图形中的曲线不表示y是x的函数的是()
A. B. C. D.
【答案】C
【解析】
【分析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.
【详解】
根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.
故选C
【详解】
甲在乙前面50m处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A、B错误;
相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D错误;
相遇以后两人之间的最大距离是:2×(100−25)=150米.
故选C.
【点睛】
本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.
12.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
【答案】A
【解析】

中职数学《函数》单元测试题

中职数学《函数》单元测试题

中职数学《函数》单元测试题1.函数y=1/(2x-3)的定义域为(-∞。

3/2)∪(3/2.+∞)。

2.函数f(x)=x+3/x在x=0处无定义,不是奇函数也不是偶函数。

3.函数f(x)在(-∞。

+∞)上是奇函数,且f(-1)=2,则f(1)=-2.4.二次函数f(x)=-x^2+2x-8的最大值是6.5.在区间(-1,1)上单调递减的函数是y=logx。

6.函数y=3x-1的图像上的点是(0.-1)。

7.函数y=-cos2x/(x^2+1)+2是非奇非偶函数。

8.已知定义域为R的偶函数f(x)在区间[0.+∞)上为增函数,则f(-4)<f(-3)<f(2)。

9.函数f(x)=ax+2x^2的定义域上是偶函数,则a=0.10.函数f(x)=x^2+bx+c的图像经过点(1.4),对称轴为x=2,则b=4,c=3.11.函数y=-x^2-2x+1的图像是开口向下,顶点为(-1.2)的抛物线。

12.函数f(x)=ax^2+bx+c满足a,b,c和Δ=b^2-4ac均为正数,则f(x)的图像不通过第三象限。

1.函数y=1/(2x-3)的定义域为(-∞。

3/2)∪(3/2.+∞)。

2.函数f(x)=x+3/x在x=0处无定义,不属于奇偶函数。

3.函数f(x)在(-∞。

+∞)上为奇函数,且f(-1)=2,则f(1)=-2.4.二次函数f(x)=-x^2+2x-8的最大值为6.5.在区间(-1,1)上单调递减的函数是y=logx。

6.函数y=3x-1的图像上的点为(0.-1)。

7.函数y=-cos2x/(x^2+1)+2为非奇非偶函数。

8.已知定义域为R的偶函数f(x)在区间[0.+∞)上为增函数,则f(-4)<f(-3)<f(2)。

9.函数f(x)=ax+2x^2的定义域上为偶函数,则a=0.10.函数f(x)=x^2+bx+c的图像经过点(1.4),对称轴为x=2,则b=4,c=3.11.函数y=-x^2-2x+1的图像是开口向下,顶点为(-1.2)的抛物线。

第三章 函数的概念与性质同步单元必刷卷(基础卷)(考试版)

第三章 函数的概念与性质同步单元必刷卷(基础卷)(考试版)

第三章 函数的概念与性质同步单元必刷卷(基础卷)一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.1.(2019·南通市海门实验学校高一月考)下列每组函数是同一函数的是( ) A .0()1,()f x g x x ==B .24(),()22x f x g x x x -==+-C .2()|3|,()(3)f x x g x x =-=-D .()(1)(3),()13f x x x g x x x =--=--2.(2019·长沙市南雅中学高一月考)函数()224f x x x =--+的值域是( )A .[]22-,B .[]1,2C .[]0,2D .2,2⎡⎤-⎣⎦3.(2021·蚌埠田家炳中学高二月考(文))如果函数2()(1)3f x x a x =+-+在区间[]1,4上是单调函数,那么实数a 的取值范围是( ) A .9a ≥或3a ≤ B .7a ≥或3a ≤ C .9a >或3a <D .39a ≤≤4.(2021·河南高三开学考试(文))已知()21f x ax bx =++是定义在[]1,2a a -上的偶函数,那么()y f x =的最大值是( ) A .1B .13C .43D .31275.(2021·湖北高三开学考试)已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()()22101x x f x g x a a a a -+=-+>≠,,则()1f =( )A .1-B .0C .1D .26.(2021·乾安县第七中学高二月考(文))已知二次函数()f x 满足()212f x x x +=-+,若()3f x x m >+在区间[]1,3-上恒成立,则实数m 的范围是( ) A .m <-5 B .m >-5C .m <11D .m >117.(2021·贵州贵阳·高三开学考试(文))已知函数()f x 在(),-∞+∞上单调递减,且为奇函数,若12f ,则满足()222f x -≤-≤的x 的取值范围是( )A .[]22-,B .[]1,1-C .[]1,3D .[]0,48.(2021·全国高一课前预习)新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第n 天,每个检测对象从接受检测到检测报告生成平均耗时()t n (单位:小时)大致服从的关系为()000,,t n N n t n t n N N ⎧<⎪⎪=⎨⎪≥⎪⎩(0t 、0N 为常数).已知第16天检测过程平均耗时为16小时,第64天和第67天检测过程平均耗时均为8小时,那么可得到第49天检测过程平均耗时大致为( ) A .16小时 B .11小时 C .9小时 D .8小时二、多项选择题:本题共4小题,每小题满分5分,共20分. 在每小题给出的四个选项中,有多项符合题目要求。

高中数学--《函数概念与基本初等函数》测试题(含答案)

高中数学--《函数概念与基本初等函数》测试题(含答案)

高中数学--《函数概念与基本初等函数》测试题(含答案)1.已知集合A到B的映射,那么集合A中元素2在B中所对应的元素是()A.2 B.5 C.6 D.8【答案解析】B2.函数的定义域是()A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0)【答案解析】C3.设函数是上的减函数,则有()A.B.C.D.【答案解析】D4.下列哪组中的两个函数是同一函数()A. 与B.与C. 与D.与【答案解析】B5.()A. B. C. D.【答案解析】C6.函数y=的定义域是()A.(-∞,2) B.(2,+∞) C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)C7.下列函数中为偶函数的是()A.y=|x+1|B.C.y=+xD. y=+【答案解析】D8.已知f(x)= ,则f[f(―1)]=( )A.0B.1C. πD. π+1【答案解析】C9.下列各组函数中表示同一函数的是()A.f(x)=,g(x)=( )2 B.f(x)= ,g(x)=x+1C.f(x)=|x|,g(x)= D.f(x)=,g(x)= 【答案解析】B10.当时A. B. C. D.【答案解析】C11.函数f(x)=的定义域为()A. B . C. D.【答案解析】D12.已知则=()A. B. C. D.C13.下列各组函数表示同一函数的是()A. B.C. D.【答案解析】C14.设,则()A.1 B. C. D.【答案解析】B15.函数恒过定点()A.B.C.D.【答案解析】B16.函数,则的值是()A、1B、C、2D、【答案解析】A17.下列各组函数是同一函数的是()A.与y=1 B.与C.与 D.与y=x+2 【答案解析】C18.已知函数,则等于A.1 B.-1 C. D.2【答案解析】C19.下列函数中,是奇函数且在区间内单调递减的函数是()A. B. C. D.【答案解析】C不是奇函数。

是奇函数且单调递增。

高中数学--《函数概念与基本初等函数》测试题(含答案)

高中数学--《函数概念与基本初等函数》测试题(含答案)

高中数学--《函数概念与基本初等函数》测试题(含答案)1.三个数a=0.67,b=70.6,c=log0.76的大小关系为()A.b<c<a B.b<a<c C.c<a<b D.c<b<a【答案解析】C【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<a=0.67<1,b=70.6>1,c=log0.76<0,∴c<a<b,故选:C.2.已知函数的图象与直线y=x恰有三个公共点,则实数m的取值范围是()A.(﹣∞,﹣1] B.[﹣1,2) C.[﹣1,2] D.[2,+∞)【答案解析】B【考点】函数的零点;函数的图象;函数与方程的综合运用.【专题】函数的性质及应用.【分析】由题意可得只要满足直线y=x和射线y=2(x>m)有一个交点,而且直线y=x与函数f(x)=x2+4x+2的两个交点即可,画图便知,直线y=x与函数f(x)=x2+4x+2的图象的两个交点为(﹣2,﹣2)(﹣1,﹣1),由此可得实数m的取值范围.【解答】解:由题意可得射线y=x与函数f(x)=2(x>m)有且只有一个交点.而直线y=x与函数f(x)=x2+4x+2,至多两个交点,题目需要三个交点,则只要满足直线y=x与函数f(x)=x2+4x+2的图象有两个交点即可,画图便知,y=x与函数f(x)=x2+4x+2的图象交点为A(﹣2,﹣2)、B(﹣1,﹣1),故有m≥﹣1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[﹣1,2),故选B.【点评】本题主要考查函数与方程的综合应用,体现了转化、数形结合的数学思想,属于基础题.3.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为()A.2 B.4 C. D.【答案解析】C【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】根据同底的指数函数和对数函数有相同的单调性,建立方程关系即可得到结论.【解答】解:∵函数y=ax与y=loga(x+1)在[0,1]上有相同的单调性,∴函数函数f(x)=ax+loga(x+1)在[0,1]上是单调函数,则最大值与最小值之和为f(0)+f(1)=a,即1+loga1+loga2+a=a,即loga2=﹣1,解得a=,故选:C【点评】本题主要考查函数最值是应用,利用同底的指数函数和对数函数有相同的单调性是解决本题的关键.本题没有对a进行讨论.4.函数f(x)=ln(x-)的图象是()A. B.C. D.【答案解析】B【考点】对数函数图象与性质的综合应用.【专题】计算题;数形结合.【分析】求出函数的定义域,通过函数的定义域,判断函数的单调性,推出选项即可.【解答】解:因为x->0,解得x>1或﹣1<x<0,所以函数f(x)=ln(x-)的定义域为:(﹣1,0)∪(1,+∞).所以选项A、C不正确.当x∈(﹣1,0)时, g(x)=x-是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x-)是增函数.故选B.【点评】本题考查函数的图象的综合应用,对数函数的单调性的应用,考查基本知识的综合应用,考查数形结合,计算能力.判断图象问题,一般借助:函数的定义域、值域、单调性、奇偶性、周期性、以及函数的图象的变化趋势等等.5.函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣2【答案解析】B【考点】函数奇偶性的性质.【分析】把α和﹣α分别代入函数式,可得出答案.【解答】解:∵由f(a)=2∴f(a)=a3+sina+1=2,a3+sina=1,则f(﹣a)=(﹣a)3+sin(﹣a)+1=﹣(a3+sina)+1=﹣1+1=0.故选B【点评】本题主要考查函数奇偶性的运用.属基础题.6.函数f(x)=x3+3x﹣1在以下哪个区间一定有零点()A.(﹣1,0) B.(0,1) C.(1,2) D.(2,3)【答案解析】B【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数零点的判定定理将选项中区间的端点值代入验证即可得到答案.【解答】解:∵f(x)=x3+3x﹣1∴f(﹣1)f(0)=(﹣1﹣3﹣1)(﹣1)>0,排除A.f(1)f(2)=(1+3﹣1)(8+6﹣1)>0,排除C.f(0)f(1)=(﹣1)(1+3﹣1)<0,∴函数f(x)在区间(0,1)一定有零点.故选:B.【点评】本题主要考查函数零点的判定定理.属基础题.7.函数y=ax+1(a>0且a≠1)的图象必经过点()A.(0,1) B.(1,0) C.(2,1) D.(0,2)【答案解析】D【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】已知函数f(x)=ax+1,根据指数函数的性质,求出其过的定点.【解答】解:∵函数f(x)=ax+1,其中a>0,a≠1,令x=0,可得y=1+1=2,点的坐标为(0,2),故选:D【点评】本题主要考查指数函数的性质及其特殊点,是一道基础题.8.已知函数f(x)=,若函数g(x)=f(x)﹣kx有零点,则实数k的取值范围是()A.(﹣∞,+∞) B. [,+∞) C.(﹣∞,] D.(﹣∞,1)【答案解析】考点:函数零点的判定定理.专题:计算题;数形结合;函数的性质及应用.分析:画出f(x)的图象,函数g(x)=f(x)﹣kx有零点,即为y=f(x)的图象和直线y=kx有交点,作出直线y=kx,由图象观察k≤0,直线和曲线有交点,设直线y=kx与曲线y=log2x相切的切点为p(m,n),运用导数,求出切线的斜率,再由图象观察即可得到k的取值范围.解答:解:函数f(x)=,画出f(x)的图象,函数g(x)=f(x)﹣kx有零点,即为y=f(x)的图象和直线y=kx有交点,作出直线y=kx,由图象观察k≤0,直线和曲线有交点,设直线y=kx与曲线y=log2x相切的切点为p(m,n),由于(log2x)′=,即切线的斜率为=k,又n=km,n=log2m,解得m=e,k=,则k>0时,直线与曲线有交点,则0<k,综上,可得实数k的取值范围是:(﹣∞,].故选C.点评:本题考查分段函数及运用,考查分段函数的图象和运用,考查数形结合的思想方法,考查运用导数求切线的斜率,属于中档题.9.函数f(x)=ln(x2+1)的图象大致是()【答案解析】考点:函数的图象.专题:函数的性质及应用.分析:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.解答:解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A点评:对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.10.设函数f(x),g(x)满足下列条件:(1)对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2);(2)f(﹣1)=﹣1,f(0)=0,f(1)=1.下列四个命题:①g(0)=1;②g(2)=1;③f2(x)+g2(x)=1;④当n>2,n∈N*时,[f(x)]n+[g(x)]n的最大值为1.其中所有正确命题的序号是()A.①③ B.②④ C.②③④ D.①③④【答案解析】考点:命题的真假判断与应用.专题:函数的性质及应用.分析:既然对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2),那么分别令x1,x2取1,0,﹣1求出g(0),g(1),g(﹣1),g(2),然后令x1=x2=x可得③,再根据不等式即可得④解答:解;对于①结论是正确的.∵对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2)且f(﹣1)=﹣1,f(0)=0,f(1)=1,令x1=x2=1,得[f(1)]2+[g(1)]2=g(0),∴1+[g(1)]2=g(0),∴g(0)﹣1=[g(1)]2 令x1=1,x2=0,得f(1)f(0)+g(1)g(0)=g(1),∴g(1)g(0)=g(1),g(1)[g(0)﹣1]=0解方程组得对于②结论是不正确的,令x1=0,x2=﹣1,得f(0)f(﹣1)+g(0)g(﹣1)=g(1),∴g(﹣1)=0令x1=1,x2=﹣1,得f(1)f(﹣1)+g(1)g(﹣1)=g(2),∴﹣1=g(2),∴g(2)≠1对于③结论是正确的,令x1=x2=1,得f2(x)+g2(x)=g(0)=1,对于④结论是正确的,由③可知f2(x)≤1,∴﹣1≤f(x)≤1,﹣1≤g(x)≤1∴|fn(x)|≤f2(x),|gn(x)|≤g2(x)对n>2,n∈N*时恒成立,[f(x)]n+[g(x)]n≤f2(x)+g2(x)=1综上,①③④是正确的.故选:D。

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。

函数基础知识经典测试题含答案

函数基础知识经典测试题含答案

函数基础知识经典测试题含答案一、选择题1.如图,AB 为半圆的直径,点P 为AB 上一动点.动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t .分别以AP 与PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】【详解】 解:设P 点运动速度为v (常量),AB=a (常量),则AP=vt ,PB=a-vt ; 则阴影面积22222111S )()()22222244a vt a vt v av t t πππππ-=--=+( 由函数关系式可以看出,D 的函数图象符合题意.故选D .2.如图,在直角三角形ABC ∆中,90B ∠=︒,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ∆去掉BEF ∆后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【答案】B【解析】【分析】根据已知题意写出函数关系,y 为ABC ∆去掉BEF ∆后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段.【详解】 解:14362ABC S ∆=⨯⨯=, 当302x ≤≤时,2122BEF S x x x ∆=⋅⋅=.26ABC BEF y S S x ∆∆=-=-; 当342x <≤时,13322BEF S x x ∆=⋅⋅=,362ABC BEF y S S x ∆∆=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .【点睛】本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L ),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是( )A .以相同速度行驶相同路程,甲车消耗汽油最多B .以10km/h 的速度行驶时,消耗1升汽油,甲车最少行驶5千米C .以低于80km/h 的速度行驶时,行驶相同路程,丙车消耗汽油最少D .以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A 错误. 以10km/h 的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B 错误. 以低于80km/h 的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C 错误. 以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确. 故选D .【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =,依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.5.如图,一只蚂蚁以均匀的速度沿台阶A 1⇒A 2⇒A 3⇒A 4⇒A 5爬行,那么蚂蚁爬行的高度h 随时间t 变化的图象大致是( )A .B .C .D .【答案】B【解析】【分析】从A :到A 2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A 2到A :随着时间的增多,高度将不再变化,由此即可求出答案.【详解】解:因为蚂蚁以均匀的速度沿台阶A 1→A 2→A 3→A 4→A 5爬行,从A 1→A 2的过程中,高度随时间匀速上升,从A 2→A 3的过程,高度不变,从A 3一A 4的过程,高度随时间匀速上升,从A4.→A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.6.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C、D的正误.【详解】解:∵s随t的增大而减小,∴选项A、B错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,∴s随t的增大减小得比开始的快,∴选项C错误;选项D正确;故选:D.【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键7.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O 的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t 之间关系的图象是()A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.8.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上,根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】 本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图中,符合上述情况的是( )A .B .C .D .【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A 、B 、D 的路程始终都在变化,故错误;C 、修车是的路程没变化,故C 正确;故选:C .【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.11.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C .D .【答案】D【解析】试题分析:如图,过点C 作CD ⊥AB 于点D .∵在△ABC 中,AC=BC ,∴AD=BD .①点P 在边AC 上时,s 随t 的增大而减小.故A 、B 错误;②当点P 在边BC 上时,s 随t 的增大而增大;③当点P 在线段BD 上时,s 随t 的增大而减小,点P 与点D 重合时,s 最小,但是不等于零.故C 错误;④当点P 在线段AD 上时,s 随t 的增大而增大.故D 正确.故答案选D .考点:等腰三角形的性质,函数的图象;分段函数.12.在平面直角坐标系xoy 中,四边形0ABC 是矩形,且A ,C 在坐标轴上,满足3OA = ,OC=1.将矩形OABC 绕原点O 以每秒15°的速度逆时针旋转.设运动时间为t 秒()06t ≤≤ ,旋转过程中矩形在第二象限内的面积为S ,表示S 与t 的函数关系的图象大致如右图所示,则矩形OABC 的初始位置是( )A .B .C .D .【答案】D【解析】【分析】【详解】解:根据图形可知当t=0时,s=0,所以矩形OABC的初始位置不可能在第二象限,所以A、C错误;因为1OC=,所以当t=2时,选项B中的矩形在第二象限内的面积为S=13312⨯⨯=,所以B错误,因为3OA=,所以当t=2时,选项D中的矩形在第二象限内的面积为S=131322⨯⨯=,故选D.考点:1.图形旋转的性质;2.直角三角形的性质;3.函数的图象.13.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.14.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.15.甲乙两同学同时从400m环形跑道上的同一点出发,同向而行,甲的速度为6/m s,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x x y x x x x ⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C 选项符合题意.故选:C .【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.16.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y 表示父亲和学子在行进中离家的距离,横t 表示离家的时间,下面与上述诗意大致相吻合的图象是( )A .B .C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.17.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.18.小亮的奶奶出去散步,从家走了20分钟到一个离家900米的报亭,奶奶看了10分钟报纸后,用了15分钟返回家,下面图中的哪一幅能表示奶奶离家的时间与距离之间的关系()A.B.C.D.【答案】D【解析】【分析】根据函数图像的横坐标确定时间,纵坐标确定离家距离,然后进行判断即可解答.【详解】解: 0分钟到报亭离家的距离随时间的增加而增加,看报10分钟,离家的距离不变;15分钟回家离家的距离岁时间的增加而减少,故D符合题意.故答案为D.【点睛】本题考查了函数图像的应用,根据图像确定出时间与离家距离的关系是解答本题的关键.19.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C )与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().A.骆驼在t时刻的体温与0时体温的绝对差(即差的绝对值)B.骆驼从0时到t时刻之间的最高体温与当日最低体温的差C.骆驼在t时刻的体温与当日平均体温的绝对差D.骆驼从0时到t时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y有可能表示的是骆驼从0时到t时刻之间的最高体温与当日最低体温的差.故选:B.【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.D次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车20.如图,2020长),火车在隧道内的长度与火车进入隧道的时间x之间的关系用图象描述大致是()A.B.C.D.【答案】A【解析】【分析】火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化。

高中数学--《函数概念与基本初等函数》测试题(含答案)

高中数学--《函数概念与基本初等函数》测试题(含答案)

高中数学--《函数概念与基本初等函数》测试题(含答案)1.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C.pq D.﹣1【答案解析】D【分析】设该市这两年生产总值的年平均增长率为x,可得(1+p)(1+q)=(1+x)2,解出即可.解:设该市这两年生产总值的年平均增长率为x,则(1+p)(1+q)=(1+x)2,解得x=﹣1,故选:D.2.设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2﹣t)成立,则函数值f(﹣1),f(1),f(2),f(5)中,最小的一个不可能是()A.f(﹣1) B.f(1) C.f(2) D.f(5)【答案解析】B【分析】由题设知,函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2.a>0时,函数值f(﹣1),f(1),f(2),f(5)中,最小的一个是f(2).a<0时,函数值f(﹣1),f(1),f(2),f(5)中,最小的一个是f(﹣1)和f(5).解:∵对任意实数t都有f(2+t)=f(2﹣t)成立,∴函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2,当a>0时,函数值f(﹣1),f(1),f(2),f(5)中,最小的一个是f(2).当a<0时,函数值f(﹣1),f(1),f(2),f(5)中,最小的一个是f(﹣1)和f(5).故选:B.3.函数f(x)=的定义域是()A.{x|x>﹣1} B.{x|x>1} C.{x|x≥﹣1} D.{x|x≥1}【答案解析】B【分析】根据根式函数,分式函数,对数函数的定义域求函数f(x)的定义域即可.解:方法1:要使函数有意义,则有,即,所以x>1.所以函数的定义域为{x|x>1}.方法2:特殊值法当x=0时,无意义,所以排除A,C.当x=1时,,则不能当分母,所以排除D.故选:B.4.已知函数f(x)在定义域(0.+∞)上是单调函数,若对于任意x∈(0,+∞),都有f(f(x)﹣)=2,则f()的值是()A.5 B.6 C.7 D.8【答案解析】B解:∵函数f(x)在定义域(0,+∞)上是单调函数,且f(f(x)﹣)=2,∴f(x)﹣为一个常数,令这个常数为n,则有f(x)﹣=n,①f(n)=2,②由①得 f(x)=n+,③②代入③,得=2,解得n=1,因此f(x)=1+,所以f()=6.故选:B.5.已知函数f(x)=,给出下列三个结论:①当a=﹣2时,函数f(x)的单调递减区间为(﹣∞,1);②若函数f(x)无最小值,则a的取值范围为(0,+∞);③若a<1且a≠0,则∃b∈R,使得函数y=f(x)﹣b恰有3个零点x1,x2,x3,且x1x2x3=﹣1.其中,所有正确结论的个数是()A.0 B.1 C.2 D.3【答案解析】C解:对于①:当a=﹣2时,由0<e﹣2<1,f(0)=1<f(e﹣2)=|lne﹣2|=2,所以函数f(x)在区间(﹣∞,1)上不单调递减,故①错误;对于②:若函数可转换为,画出函数的图象,如图所示:所以函数f(x)无最小值,则a的取值范围为(0,+∞).故②正确.对于③令y=f(x)﹣b=0,结合函数我的图象,不妨设x1<0<x2<1<x3,则ax1+1=﹣lnx2=lnx3=b,所以,,所以,令=﹣1,即b=﹣a+1,当a<0时,b=﹣a+1>1,故y=f(x)﹣b=0有三个零点,且x1•x2•x3=﹣1,符合题意,当0<a<1时,0<b=﹣a+1<1,故y=f(x)﹣b=0有三个零点,且x1•x2•x3=﹣1,符合题意,故③正确.故正确答案为:②③,故选:C.6.“lna>lnb”是“3a>3b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】A解:“3a>3b”⇔“a>b”,“lna>lnb”⇔“a>b>0”,∵“a>b>0”是“a>b”的充分而不必要条件,故“lna>lnb”是“3a>3b”的充分而不必要条件,故选:A.7.已知f(x)是R上的奇函数,当x>0时,f(x)=,则f(x)>0的解集是()A.(﹣1,0) B.(0,1)C.(﹣∞,﹣1)∪(0,1) D.(﹣1,0)∪(0,1)【答案解析】C解:因为f(x)是R上的奇函数,当x>0时,f(x)=log x,当x<0时,﹣x>0,则f(﹣x)=﹣f(x)=log(﹣x),所以f(x)=﹣log(﹣x),又f(0)=0,则由f(x)>0可得,或,解可得0<x<1或x<﹣1.故选:C.8.已知a=3﹣2,b=log0.42,c=log23,则()A.a>b>c B.a>c>b C.b>c>a D.c>a>b【答案解析】D解:0<3﹣2<1,log0.42<log0.41=0,log23>log22=1,∴c>a>b.故选:D.9.(多选题)已知函数f(x)=,则()A.f(x)为奇函数 B.f(x)为减函数C.f(x)有且只有一个零点 D.f(x)的值域为(﹣1,1)【答案解析】ACD解:根据题意,依次分析选项:对于A,f(x)=,其定义域为R,有f(﹣x)==﹣=﹣f(x),f(x)为奇函数,A正确;对于B,f(x)===1﹣,设t=2x+1,有t>0且t=2x+1在R上为增函数,而y=1﹣在(0,+∞)为增函数,故f(x)在R上为增函数,B错误;对于C,由B的结论,f(x)在R上为增函数,且f(0)=0,故f(x)有且只有一个零点,C正确;对于D,y=,变形可得2x=,则有>0,解可得﹣1<y<1,即f(x)的值域为(﹣1,1),D正确;故选:ACD.10.已知函数f(x)=,则不等式f(x+1)<1的解集为()A.(1,7) B.(0,7) C.(1,8) D.(﹣∞,7)【答案解析】B解:①当x+1≤1,即x≤0时,∴e2﹣(x+1)<1,即e1﹣x<1,∴1﹣x<0,∴x>1,又∵x≤0,∴无解.②当x+1>1,即x>0时,∴lg(x+1+2)<1,∴lg(x+3)<1,∴0<x+3<10,∴﹣3<x<7,又∵x>0,∴0<x<7,故选:B.。

必修一第二单元《函数》测试(答案解析)

必修一第二单元《函数》测试(答案解析)

一、选择题1.我们把定义域为[)0,+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:①对任意的[)0,x ∈+∞,总有()0f x ≥;②若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,给出下列四个结论:(1)若()f x 为“Ω函数”,则()00f =;(2)若()f x 为“Ω函数”,则()f x 在[)0,+∞上为增函数;(3)函数()0,1,x Qg x x Q∈⎧=⎨∉⎩在[)0,+∞上是“Ω函数”(Q 为有理数集);(4)函数()2g x x x =+在[)0,+∞上是“Ω函数”;其中正确结论的个数是( ) A .1B .2C .3D .42.若关于x 的不等式342xx a +-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞3.函数()(3)()f x x ax b =--为偶函数,且在(0,)+∞上单调递增,则(2)0f x ->的解集为( ) A .{|22}x x -<< B .{|5x x >或1}x <- C .{|04}x x <<D .{|4x x >或0}x <4.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .1y x=B .y =C .2x y =D .||y x x =-5.对二次函数()2f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ). A .1-是()0f x =的一个解 B .直线1x =是()f x 的对称轴 C .3是()f x 的最大值或最小值D .点()2,8在()f x 的图象上6.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >7.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为( ) A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-8.若定义运算,,b a b a b a a b≥⎧*=⎨<⎩,则函数()()()2242g x x x x =--+*-+的值域为( )A .(],4-∞B .(],2-∞C .[)1,+∞D .(),4-∞9.已知函数()y f x =的定义域为[]0,4,则函数0(2)y x =-的定义域是( ) A .[1,5]B .((1,2)(2,5) C .(1,2)(2,3]⋃D .[1,2)(2,3]⋃10.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确11.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.14.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.15.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.16.已知定义在R 上的函数()f x 满足:①(1)0f =;②对任意x ∈R 的都有()()f x f x -=-;③对任意的12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-.记2()3()()1f x f xg x x --=-,则不等式()0g x ≤的解集______.17.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.18.若对任意02x ≤≤,恒有2x ax b c ++≤成立,则当c 取最小值时,函数()24f x x a x b x c =-+-+-的最小值为________.19.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 20.函数()()122x x f x x N +⎡⎤⎡⎤=-∈⎢⎥⎢⎥⎣⎦⎣⎦的值域为_______(其中[]x 表示不大于x 的最大整数)三、解答题21.已知函数()22mf x x x =-. (1)当1m =时,判断()f x 在()0,∞+上的单调性,并用定义法加以证明. (2)已知二次函数()g x 满足()()2446g x g x x =++,()13g =-.若不等式()()g x f x >恒成立,求m 的取值范围.22.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数?(2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.23.已知函数()243f x x x =-+.(1)若函数()f x 在区间[]1,2t t ++上是单调的,求t 的取值范围;(2)在区间[]1,1-上,()y f x =的图象恒在22y x m =+-的图象上方,求实数m 的取值范围.24.定义在[]1,1-上的奇函数()f x ,当10x -≤<时,23()6x x xf x +=. (1)求()f x 在[]1,1-上的解析式;(2)求()f x 的值域;(3)若实数a 满足1()()0a f f a a-+<,求实数a 的取值范围. 25.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式.26.设函数()()2288f x x x ax a R x x=++-+∈. (1)若函数()f x 为偶函数,求实数a 的值; (2)若关于x 的不等式()16f x x ≤-在区间0,上有解,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用“Ω函数”的定义依次判断即可,必须同时满足“Ω函数”的两个条件,才是“Ω函数”. 【详解】解:对(1),由①得()00f ≥, 在②中令0x y ==, 即()()020f f =, 解得:()00f ≤,()00f ∴=,故(1)正确;对(2),当()0f x =时,满足①②,但在[)0,+∞不是增函数,故(2)错误; 对(3),当x ,y 都为正无理数时,不满足②,故(3)错误; 对(4),()2g x x x =+,当[)0,x ∈+∞时,min ()(0)00g x g ==≥,即满足条件①,222()()()()20g x y g x g y x y x y x x y y xy +--=+++----=≥,即满足条件②,∴函数2()g x x x =+在[0,)+∞上是“Ω函数”,故(4)正确.故选:B. 【点睛】关键点点睛:本题解题的关键是理解“Ω函数”的定义,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.2.D解析:D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【详解】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.3.B解析:B 【分析】根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论. 【详解】2()(3)()(3)3f x x ax b ax a b x b =--=-++为偶函数, 所以22()(3)3(3)3f x ax a b x b ax a b x b -=+++-=++ 30a b ∴+=,即3b a =-,则2()(3)(3)(3)(3)9f x x ax a a x x ax a =-+=-+=-, 在(0,)+∞上单调递增,0a ∴>,则由(2)(1)(5)0f x a x x -=--->,得(1)(5)0x x +->, 解得1x <-或5x >,故不等式的解集为{|1x x <-或5}x >. 故选:B【点睛】思路点睛:解答本题只要按部就班化简转化函数为偶函数和单调性即可得解.由函数的奇偶性得到3b a =-,由函数的单调性得到0a >.4.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).5.A解析:A 【分析】可采取排除法,分别考虑A 、B 、C 、D 中有一个错误,通过解方程求得a ,判断a 是否为非零整数,即可得出结论. 【详解】①若A 错,则B 、C 、D 正确,直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得212434428b a ac baa b c ⎧-=⎪⎪-⎪=⎨⎪++=⎪⎪⎩,解得5108a b c =⎧⎪=-⎨⎪=⎩,合乎题意; ②若B 错,则A 、C 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=,3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得20434428a b c ac b a a b c -+=⎧⎪-⎪=⎨⎪++=⎪⎩,该方程组无解,不合乎题意; ③若C 错误,则A 、B 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 点()2,8在()f x 的图象上,则()2428f a b c =++=,可得012428a b c b a a b c -+=⎧⎪⎪-=⎨⎪++=⎪⎩,解得831638a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,不合乎题意;④若D 错误,则A 、B 、C 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,可得2012434a b c b a ac b a⎧⎪-+=⎪⎪-=⎨⎪⎪-=⎪⎩,解得343294a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,不合乎题意. 故选:A.【点睛】关键点点睛:本题考查利用二次函数的基本性质求解参数,解本题的关键就是根据已知信息列出关于a 、b 、c 的方程组,解出参数的值,再逐一判断.6.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.7.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+,()11,012x∴-∈-+, 1111,21222x ⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.8.A解析:A 【分析】 根据,,b a ba b a a b≥⎧*=⎨<⎩可得()g x 的解析式,画出图象可得答案.【详解】由,,b a ba b a a b ≥⎧*=⎨<⎩,得()()()222,[2,1]24224,(1,)(,2)x x g x x x x x x x -+∈-⎧=--+*-+=⎨--+∈+∞⋃-∞-⎩,当[2,1]x ∈-,()2[1,4g x x =-+∈], 当(1,)(,2)x ∈+∞-∞-,()2()154g x x =-++<,可得()4g x ≤- 故选:A. 【点睛】本题的关键点是根据已知定义求出函数解析式,然后画出图象求解.9.C解析:C 【分析】由函数定义域的定义,结合函数0(2)1y x x =--有意义,列出相应的不等式组,即可求解. 【详解】由题意,函数()y f x =的定义域为[]0,4,即[]0,4x ∈,则函数0(2)1y x x =--满足0141020x x x ≤+≤⎧⎪->⎨⎪-≠⎩,解得13x <≤且2x ≠, 所以函数0(2)1y x x =+--的定义域是(1,2)(2,3]⋃. 故选:C. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记函数的定义域的定义,根据题设条件和函数的解析式有意义,列出不等式组是解答的关键,着重考查推理与运算能力.10.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数; 但()()f x g x +、()()f x h x +、()()g x h x +均为增函数;故①错误;②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数;故②正确.故选:D .【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数. 11.B解析:B【分析】由已知得函数f (x )图象关于x=1对称且在(-∞,1]上单调递减,在(1,+∞)上单调递增,从而可判断出大小关系.【详解】解:∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0,∴f (x )在(-∞,1]上单调递减,∵f (x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增,∴f (-1)=f (3)>f (2)>f (1)即f (-1)>f (2)>f (1)故选B .【点睛】本题考查函数的对称性及单调性的应用,解题的关键是函数性质的灵活应用. 12.C解析:C【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值.【详解】分别画出2y x ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫ ⎪⎝⎭A . 所以()h x 的最小值为4811. 故选:C.【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题. 二、填空题13.【分析】根据题意求得ab 的值可得的解析式分别讨论三种情况结合二次函数图像与性质即可求得结果【详解】由题意得:所以所以解得所以为开口向上对称轴为的抛物线当即时在上单调递减所以当即时在上单调递减在上单调解析:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【分析】根据题意,求得a ,b 的值,可得()f x 的解析式,分别讨论3t <-,31t -≤≤-,1t >-三种情况,结合二次函数图像与性质,即可求得结果.【详解】由题意得:22(1)(1)(1)121f x a x b x ax a ax bx b +=++++=+++++,所以()()222111223ax a ax bx b ax bx ax a f b x x x f +++++---=++=-=++, 所以223ax x a b =⎧⎨+=⎩,解得1,2a b ==,所以22()21(1)f x x x x =++=+,为开口向上,对称轴为1x =-的抛物线,当21t +<-,即3t <-时,()f x 在[],2t t +上单调递减,所以2()(2)(3)g t f t t =+=+,当12t t ≤-≤+,即31t -≤≤-时,()f x 在[,1)t -上单调递减,在[1,2]t -+上单调递增,所以()(1)0g t f =-=;当1t >-时,()f x 在[],2t t +上单调递增,所以2()()(1)g t f t t ==+,综上:22(3),3()0,31(1),1t t g t t t t ⎧+<-⎪=-≤≤-⎨⎪+>-⎩故答案为:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【点睛】求二次函数在区间[,]a b 上最值时,一般用分类讨论的方法求解,讨论对称轴位于区间的左右两侧,位于区间内,再根据二次函数图像与性质,求解即可,考查分析求解的能力,属中档题.14.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函 解析:1- 2【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可;(2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可.【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数,只需1b =-.综上,当1a =时,1b =-时,()x xf x e e -=-为增函数.(2)当0ab 时,()f x 为单调函数,此时函数没有最小值,当0a <,0b <,()f x 有最大值,无最小值,所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯,1=,即1ab =, 则22a b ab +=,当1a b ==时等号成立,即+a b 的最小值为2.故答案为:1,1,2-【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).15.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+, 所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-, 又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥, ()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤,又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3.【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.16.【分析】根据题意分析可得函数为奇函数且结合单调性的定义可得在上为增函数结合(1)以及函数奇偶性的性质分析可得与的的取值范围转化为或或可得的取值范围即可得答案【详解】根据题意满足对任意的都有即函数为奇 解析:[]1,0-【分析】根据题意,分析可得函数()f x 为奇函数且(0)0f =,结合单调性的定义可得()f x 在(0,)+∞上为增函数,结合f (1)0=以及函数奇偶性的性质分析可得()0f x >与()0f x <的x 的取值范围,转化为()010f x x <⎧⎨->⎩或()010f x x >⎧⎨-<⎩或()010f x x =⎧⎨-≠⎩,可得x 的取值范围,即可得答案.【详解】根据题意,()f x 满足对任意x ∈R 的都有()()f x f x -=-,即函数()f x 为奇函数,则有(0)0f =;又由对任意的1x ,2(0,)x ∈+∞且12x x ≠时,总有1212()()0f x f x x x ->-,即函数()f x 在(0,)+∞上为增函数,若f (1)0=,则在区间(0,1)上,()0f x <,在区间(1,)+∞上,()0f x >,又由()f x 为奇函数,则在区间(,1)-∞-上,()0f x <,在区间(1,0)-上,()0f x >, 则()0g x 即2()3()5()()011f x f x f x g x x x --==--,即()010f x x <⎧⎨->⎩或()010f x x >⎧⎨-<⎩或()010f x x =⎧⎨-≠⎩, 解可得:10x -,即不等式()0g x 的解集为[1-,0];故答案为:[]1,0-.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于中档题. 17.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集.【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =,作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得, 所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃.故答案为:(3,0)(0,3)-⋃.【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.18.【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时再由零点分段法可得分段函数的解析式即可得解【详解】令由题意知当时c 可取最小值此时解得则所以所以的最小值为故答案为:【点睛】本题考查了二次函数 解析:198【分析】 由题意结合二次函数的图象与性质可得当c 可取最小值时,2a =-、12==b c ,再由零点分段法可得分段函数()f x 的解析式,即可得解.【详解】令()2h x x ax b =++,由题意知当()()()021h h h ==-时,c 可取最小值, 此时()421b a b b a b =++⎧⎨=-++⎩,解得212a b =-⎧⎪⎨=⎪⎩,则()102c h ==, 所以()112422422f x x a x b x c x x x =-+-+-=++-+- 171,41132,84153,2871,2x x x x x x x x ⎧+≥⎪⎪⎪+<<⎪=⎨⎪-+-<≤⎪⎪⎪--≤-⎩,所以()f x 的最小值为15193888f ⎛⎫=-+= ⎪⎝⎭. 故答案为:198. 【点睛】 本题考查了二次函数的图象与性质与应用,考查了零点分段法的应用及分段函数最值的求解,属于中档题.19.或【分析】由题意按照分类结合指数函数的性质可得方程即可得解【详解】当时是增函数则解得或(舍去);当时是减函数则解得或(舍去);综上或故答案为:或【点睛】关键点点睛:涉及指数函数单调性问题底数为参数时 解析:12或32【分析】由题意按照1a >、01a <<分类,结合指数函数的性质可得方程,即可得解.【详解】当1a >时,x y a =是增函数,则22a a a -=,解得32a =或0a =(舍去); 当01a <<时,x y a =是减函数,则22a a a -=,解得12a =或0a =(舍去); 综上,12或32故答案为:12或32 【点睛】关键点点睛:涉及指数函数单调性问题,底数为参数时,一般都要分类讨论,分底数大于1与底数大于0小于1两种情况解决.本题考查了指数函数单调性的应用,考查了运算求解能力及分类讨论思想.20.【分析】由题设中的定义可对分区间讨论设表示整数综合此四类即可得到函数的值域【详解】解:设表示整数①当时此时恒有②当时此时恒有③当时此时恒有④当时此时此时恒有综上可知故答案为:【点睛】此题是新定义一个 解析:{}0,1【分析】由题设中的定义,可对x 分区间讨论,设m 表示整数,综合此四类即可得到函数的值域【详解】解:设m 表示整数.①当2x m =时,1[0.5]2x m m +⎡⎤=+=⎢⎥⎣⎦,[]2x m m ⎡⎤==⎢⎥⎣⎦. ∴此时恒有0y =.②当21x m =+时,1[1]12x m m +⎡⎤=+=+⎢⎥⎣⎦,[0.5]2x m m ⎡⎤=+=⎢⎥⎣⎦. ∴此时恒有1y =.③当221m x m <<+时,21122m x m +<+<+0.52x m m ∴<<+ 10.512x m m ++<<+ 2x m ⎡⎤∴=⎢⎥⎣⎦,12x m +⎡⎤=⎢⎥⎣⎦∴此时恒有0y =④当2122m x m +<<+时,22123m x m +<+<+0.512x m m ∴+<<+ 11 1.52x m m ++<<+ ∴此时2x m ⎡⎤=⎢⎥⎣⎦,112x m +⎡⎤=+⎢⎥⎣⎦∴此时恒有1y =.综上可知,{}0,1y ∈.故答案为:{}0,1.【点睛】此题是新定义一个函数,根据所给的规则求函数的值域,求解的关键是理解所给的定义,一般从函数的解析式入手,要找出准确的切入点,理解[]x 表示数x 的整数部分,考察了分析理解,判断推理的能力及分类讨论的思想 三、解答题21.(1)减函数,证明见解析;(2)1m <-.【分析】(1)()212f x x x=-在区间()0+∞,上为减函数,运用单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤; (2)设()()20g x ax bx c a =++≠,由题意可得关于,,a b c 的方程,解得,,a b c 的值,可得222m x x ->,由参数分离和二次函数的最值求法,可得所求范围. 【详解】(1)当1m =时,()212f x x x=-,函数()f x 是区间()0+∞,上的减函数, 证明如下: 设1x ,2x 是区间()0+∞,上的任意两个实数,且12x x <, 则()()121222121122f x f x x x x x -=--+ ()()22212121212222121222x x x x x x x x x x x x ⎛⎫-+=+-=-+ ⎪⎝⎭. ∵120x x <<,∴210x x ->,210x x +>,22120x x >,∴()()120f x f x ->,()()12f x f x >,∴函数()f x 是区间()0,∞+上的减函数.(2)设()()20g x ax bx c a =++≠,则()2242g x ax bx c =++, ()()244644446g x x ax b x c ++=++++.又∵()()2446g x g x x =++,∴442,46,b b c c +=⎧⎨+=⎩∴2b =-,2c =-, 又∵()13g a b c =++=-,∴1a =,∴()222g x x x =--.∵()()g x f x >,∴222m x x->,∴()4220m x x x <-≠, 又∵()2422211x x x -=--,∴1m <-.【点睛】 方法点睛:该题考查的是有关函数的问题,解题方法如下:(1)先判断函数()f x 在()0,∞+上的单调性,再用定义证明,在证明的过程中,注意其步骤要求;(2)先用待定系数法求得函数()g x 的解析式,将恒成立问题转化为最值来处理,求得结果.22.(1)0a =;(2)62a -≤≤.【分析】(1)当0a =时,由()43f x x =+判断,当0a ≠时,由()(),f a f a -的关系判断; (2)根据()g x 是偶函数,将()()6g x a g x +≤-,转化为 ()()6g x a g x +≤-,再根据()g x 在[)0,+∞是增函数,转化为[]1,2x ∈时,6x a x +≤-恒成立求解.【详解】(1)当0a =时,()43f x x =+是偶函数, 当0a ≠时,a a ≠-,而()()()420f a f a a --=≠,()f x 不可能是偶函数, 所以当0a =时,()f x 是偶函数;(2)由()g x 是偶函数知()()g x a g x a +=+,()()66g x g x -=-,且x a +,60x -≥,因为()g x 在[)0,+∞是增函数,及()()6g x a g x +≤-,所以当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,66x x a x -≤+≤-恒成立,即当[]1,2x ∈时,662a x -≤≤-恒成立, 所以62a -≤≤.【点睛】方法点睛:函数奇偶性与单调性求参数问题,当涉及到偶函数时,要利用()()()f x f x f x -==转化为求解.23.(1)(][),01,-∞⋃+∞;(2)【分析】(1)分函数()f x 在区间[]1,2t t ++上单调递增和单调递减两种情况讨论,可得出关于实数t 的不等式,由此可解得实数t 的取值范围;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立,利用参变量分离法可得出265m x x <-+,利用二次函数求出函数()265g x x x =-+在区间[]1,1-上的最小值,由此可得出实数m 的取值范围.【详解】(1)二次函数()243f x x x =-+的图象开口向上,对称轴为直线2x =. ①若函数()f x 在区间[]1,2t t ++上单调递增,则12t +≥,解得1t ≥;②若函数()f x 在区间[]1,2t t ++上单调递减,则22t +≤,解得0t ≤.综上所述,实数t 的取值范围是(][),01,-∞⋃+∞;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立,则265m x x <-+对任意的[]1,1x ∈-恒成立,令()()226534g x x x x =-+=--,则函数()g x 在区间[]1,1-上单调递减, 所以,()()min 10g x g ==,0m ∴<.因此,实数m 的取值范围是(),0-∞.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.24.(1)23,106()0,0(23),01x xx x x x f x x x ⎧+-≤<⎪⎪⎪==⎨⎪-+<≤⎪⎪⎩;(2) [){}(]5,202,5--;(3)⎤⎥⎝⎦. 【分析】 (1)利用函数为奇函数有()()f x f x -=-求(0,1]x ∈上的解析式,且(0)0f =即可得()f x 的解析式;(2)根据(1)所得解析式及对应定义域即可求其值域;(3)讨论10a -≤<、01a <<、1a =时不等式成立,结合()f x 的区间单调性即可求得a 的取值范围.【详解】(1)由题意,令(0,1]x ∈,则[1,0)x -∈-,即23()236x xx x x f x ---+-==+, 又∵()()f x f x -=-,有(0,1]x ∈时,()(23)x x f x =-+, ∴23,106()0,0(23),01x xx x x x f x x x ⎧+-≤<⎪⎪⎪==⎨⎪-+<≤⎪⎪⎩. (2)由(1)解析式知:()f x 在[1,0)-和(0,1]上递减,对应值域分别为(2,5]、[5,2)--,则有:()f x 的值域[){}(]5,202,5--. (3)1()()0a f f a a -+<,即1()(1)f a f a<-,有[1,0)(0,1]a ∈-,∴当10a -≤<时,11a a >-,解得12a +<-或12a >,无解; 当01a <<时,11a a >-,解得a <a >1a <<; 当1a =时,1()(1)5(1)(0)0f a f f f a ==-<-==成立;∴综上有1,1]2a ∈. 【点睛】关键点点睛:首先利用函数奇偶性求函数解析式,并依据所得解析式和定义域求值域,再由函数不等式,结合区间单调性,在区间[1,0)(0,1]-⋃上讨论参数使不等式成立,求参数范围. 25.(1)(,1)(3,)-∞-+∞;(2)()222221{102,02a a a g a a a a a a ++<-=-<+<.【分析】(1)通过讨论x 的范围,去掉绝对值号,得到关于x 的不等式,解出即可;(2)通过讨论a 的范围,求出()f x 的最小值,得g (a )的解析式即可.【详解】(1)当0a =时,220()(1)||20x x f x x x x x x x ⎧=+-=⎨-<⎩, 因为f (x )>3,03x x ⎧∴⎨>⎩或203230x x x x <⎧∴>⎨-->⎩或1x <-. 所以不等式的解集为(,1)(3,)-∞-+∞. (2)由222(1)()(1)||(1)x a x a x a f x x x x a a x a x a ⎧-++<=+--=⎨+-⎩由22a a <+得2a <.①当1a <-时:122,4a a a a a +<<+>,所以函数在(2,)a a 上单调递减, 又10a +<,所以函数在(,2)a a +上单调递减, 所以函数()f x 在R 上单调递减,则g (a )2()(2)(1)(2)22min f x f a a a a a a ==+=++-=++②当10a -<时:此时22a a a <+,14a a +>,所以函数在(2,)a a 上单调递减, 又10a +≥,所以函数在(,2)a a +上单调递增,所以函数()f x 在[2x a ∈,]a 上单调递减,在[x a ∈,2]a +上单调递增,则2()()()(1)min g a f x f a a a a a ===+-=③当02a <时:此时22a a a <+,因为10a +>,所以函数()f x 在[2x a ∈,2]a +上单调递增,则2()()(2)(1)22min g a f x f a a a a a a ===+-=+综上()222221{102,02a a a g a a a a a a ++<-=-<+<.【点睛】关键点睛:解答本题的关键是通过图象分析出每一种情况下分段函数的单调性,再利用函数的单调性得到函数的最小值.26.(1)0;(2)1a ≤-.【分析】(1)由()f x 为偶函数有()(11)f f -=即可求a 的值;(2)由绝对值不等式及函数不等式在区间有解,讨论2,02x x ><≤,应用参变分离将问题转化为不等式能成立问题即可求a 的取值范围.【详解】(1)因为()f x 为偶函数,则有()(11)f f -=,即1616a a -=+,解得0a =. (2)①当2x >时,()16f x x ≤-有解,即2216x ax x +≤-有解,1621a x x≤--+,所以max 16211a x x ⎛⎫≤--+=- ⎪⎝⎭当且仅当x = ②当02x <≤时,()16f x x ≤-有解,即1616ax x x+≤-有解, 216161a x x≤--+,所以2max 1616111a x x ⎛⎫≤--+=- ⎪⎝⎭当2x =时等号成立; 综上,实数a的取值范围是1a ≤-.【点睛】结论点睛:本题考查不等式的有解问题,可按如下规则转化:一般地,将函数不等式转化为()a f x ≤或()a f x ≥在区间能成立.(1)()a f x ≤即在相应区间内仅需()max a f x ≤即可.(2)()a f x ≥即在相应区间内仅需()min a f x ≥即可.。

必修第一册第三单元《函数概念与性质》测试卷(含答案解析)

必修第一册第三单元《函数概念与性质》测试卷(含答案解析)

一、选择题1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2-B .ln 2C .0D .12.已知m R ∈,若函数()||x m f x e +=对任意x ∈R 满足()()20212120f x f x -=-,则不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是( ) A .[)1,,e e⎛⎤-∞⋃+∞ ⎥⎝⎦B .1,e e ⎡⎤⎢⎥⎣⎦C .[)10,,e e⎛⎤+∞ ⎥⎝⎦D .[),e +∞3.已知定义在R 上的偶函数()f x 满足:当0x ≥时,()2x f x =,且(2)(3)f x af x +≤-对一切x ∈R 恒成立,则实数a 的取值范围为( ) A .1,32⎡⎫+∞⎪⎢⎣⎭B .1,32⎛⎤-∞ ⎥⎝⎦C .[32,)+∞D .(0,32]4.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >>D .c b a >>5.设()f x 为定义在R 上的函数,函数()1f x +是奇函数.对于下列四个结论:①()10f =;②()()11f x f x -=-+; ③函数()f x 的图象关于原点对称; ④函数()f x 的图象关于点()1,0对称; 其中,正确结论的个数为( ) A .1B .2C .3D .46.已知函数()()2265m m m f x x-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断7.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( )A .(4)(0)(4)f f f -<<B .(0)(4)(4)f f f <-<C .(0)(4)(4)f f f <<-D .(4)(0)(4)f f f <<-8.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( ) A .-6 B .6 C .-8D .89.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,如函数()1sin 2f x x x =-的图像大致是( ) A . B .C .D .10.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得()()()2213310xf x x f x +-->成立的x 的取值范围是( )A .()1,+∞B .()11,1,5⎛⎫-+∞ ⎪⎝⎭ C .1,15⎛⎫⎪⎝⎭D .(),1-∞11.若01m n <<<且1mn =,则2m n +的取值范围是( ) A .[22,)+∞ B .[3,)+∞C .(22,)+∞D .(3,)+∞12.函数1()2lg f x x x=+- ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞13.设函数()f x 的定义域为D ,如果对任意的x D ∈,存在y D ∈,使得()()f x f y =-成立,则称函数()f x 为“呆呆函数”,下列为“呆呆函数”的是( ) A .2sin cos cos y x x x =+ B .2x y = C .ln x y x e =+D .22y x x =-14.若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( )A .(),4-∞-B .(),2-∞-C .()2,2-D .(),0-∞15.关于函数1()lg 1xf x x-=+,有下列三个命题: ①对于任意(1,1)x ∈-,都有()()f x f x -=-;②()f x 在(1,1)-上是减函数;③对于任意12,(1,1)x x ∈-,都有121212()()()1x x f x f x f x x ++=+; 其中正确命题的个数是( ) A .0B .1C .2D .3二、填空题16.已知定义在R 上的奇函数()y f x =满足(1)(1)f x f x -=+,且当(0,1)x ∈时,3()24x f x =-,则12(log 25)f =________.17.已知函数()()1502f x x x x =+->,则()f x 的递减区间是____. 18.若函数()f x 在定义域D 内的某区间M 上是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”.已知函数()()24g x x a x a =+-+在(]0,2上是“弱增函数”,则实数a 的值为______.19.已知函数()y f x =是奇函数,当0x <时,2()(R)f x x ax a =+∈,(2)6f =,则a = .20.已知()f x 是定义域为R 的奇函数,满足()()3f x f x =+,若()21f =-,则()2020f =______.21.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.22.幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,则a m +=____.23.如果方程24x +y |y |=1所对应的曲线与函数y =f (x )的图象完全重合,那么对于函数y =f (x )有如下结论:①函数f (x )在R 上单调递减;②y =f (x )的图象上的点到坐标原点距离的最小值为1; ③函数f (x )的值域为(﹣∞,2]; ④函数F (x )=f (x )+x 有且只有一个零点. 其中正确结论的序号是_____.24.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___. 25.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.26.已知函数()h x ,()g x (()0g x ≠)分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0h x g x h x g x ''-<,且()10h -=.若()()0h a g a <,则a 的取值范围为__________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由函数的奇偶性可得()()11f f =--,进而计算即可得解. 【详解】函数()f x 是定义在R 上的奇函数, 当0x ≤时,()(1)ln f x x -=+∴()()11ln[(1)1]ln 2f f =--=---+=-.故选:A. 【点睛】思路点睛:该题考查函数奇偶性的应用,解题思路如下: (1)根据奇函数的定义,可知(1)(1)=--f f ; (2)根据题中所给的函数解析式,求得函数值; (3)最后得出结果.2.C解析:C 【分析】先判断函数为偶函数,根据奇偶性求得0m =,将原不等式化为ln x e e ≥,等价于ln 1x ≥,进而可得答案.【详解】设2021x t -=,()()()()20212120f x f x f t f t -=-⇒=-, 所以()||x m f x e+=是偶函数,则||||x m x m e e +-+=恒成立,即()()2240x m x m x m x m mx +=-+⇔+=-+⇔=对任意x ∈R 恒成立, 所以0m =⇒()||x f x e =,因为11lnln ln x x x-==-, 所以()1ln ln2f x f e x ⎛⎫+≥ ⎪⎝⎭即为()()ln ln 2f x f x e +-≥, ()()ln 2ln 2ln xf x e f x e ee ≥⇒≥⇒≥,因为xy e =为增函数,所以可得ln 1x ≥,则ln 1x ≥或ln 1x ≤-, 解得x e ≥或10x e <≤, 即不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是[)10,,e e ⎛⎤+∞ ⎥⎝⎦,故选:C. 【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.3.C解析:C 【分析】根据题意,可得()f x 的解析式,分别求得当23x -≤≤时,3x >时,2x <-时,(2)f x +和(3)f x -的表达式,结合题意,即可求得a 的范围,综合即可得答案.【详解】由题意知:2,0()2,0x x x f x x -⎧≥=⎨<⎩当23x -≤≤时,20,30x x +≥-≥,所以2322x x a +-≤⋅,所以212x a -≥, 因为23x -≤≤,所以215max (2)232x a -≥==;当3x >时,20,30x x +>-<, 所以2(3)22x x a +--≤⋅,所以5232a ≥=; 当2x <-时,20,30x x +<-> 所以(2)322x x a -+-≤⋅,所以51232a -≥=, 综上32a ≥. 故选:C 【点睛】解题的关键是根据题意求得()f x 的解析式,分类讨论,将(2)f x +和(3)f x -进行转化,考查分类讨论的思想,属中档题.4.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数,所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题5.C解析:C【分析】令()()1g x f x =+,①:根据()00g =求解出()1f 的值并判断;②:根据()g x 为奇函数可知()()g x g x -=-,化简此式并进行判断;根据()1y f x =+与()y f x =的图象关系确定出()f x 关于点对称的情况,由此判断出③④是否正确. 【详解】令()()1g x f x =+,①因为()g x 为R 上的奇函数,所以()()0010g f =+=,所以()10f =,故正确; ②因为()g x 为R 上的奇函数,所以()()g x g x -=-,所以()()11f x f x -+=-+,即()()11f x f x -=-+,故正确;因为()1y f x =+的图象由()y f x =的图象向左平移一个单位得到的,又()1y f x =+的图象关于原点对称,所以()y f x =的图象关于点()1,0对称,故③错误④正确,所以正确的有:①②④, 故选:C. 【点睛】结论点睛:通过奇偶性判断函数对称性的常见情况:(1)若()f x a +为偶函数,则函数()y f x =的图象关于直线x a =对称; (2)若()f x a +为奇函数,则函数()y f x =的图象关于点(),0a 成中心对称.6.A解析:A 【分析】利用幂函数的定义求出m ,利用函数的单调性和奇偶性即可求解. 【详解】∵函数()()2265m m m f x x-=--是幂函数,∴25=1m m --,解得:m = -2或m =3. ∵对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,∴函数()f x 为增函数, ∴260m ->, ∴m =3(m = -2舍去) ∴()3=f x x 为增函数.对任意a ,b R ∈,且0a b +>, 则- a b >,∴()()()f a f b f b >-=-∴()()0f a f b +>. 故选:A 【点睛】(1)由幂函数的定义求参数的值要严格按照解析式,x 前的系数为1; (2)函数的单调性和奇偶性是函数常用性质,通常一起应用.7.C解析:C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【详解】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.8.C解析:C 【分析】由奇函数f (x )满足f (x -4)=-f (x )可推出周期为8,对称轴为2x =,画出函数大致图象,由图象分析f (x )=m 的根的分布情况即可 【详解】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),令4x x =-得()()8f x f x -=,故()f x 周期为8,即()()()4(4)x f f x f f x x =+==---,即()()4f x f x -=,函数对称轴为2x =,画出大致图象,如图:由图可知,两个根关于6x =-对称,两个根关于2x =对称,设1234x x x x <<<, 则12346212224x x x x +=-⨯=-+=⨯=,,故12348x x x x +++=-, 故选:C【点睛】结论点睛:本题考查由函数的奇偶性,周期性,对称性求根的分布问题,常用以下结论: (1)()()()()1f x f x a f x f x a =-+=±+,,则()f x 的周期为2T a =;(2)()()2f x f a x =-,则函数的对称轴为x a =.9.A解析:A 【分析】由判断函数()f x 的奇偶性以及利用导数得出区间0,3π⎛⎫⎪⎝⎭的单调性即可判断. 【详解】()()()111sin sin sin ()222f x x x x x x x f x ⎛⎫-=---=-+=--=- ⎪⎝⎭则函数()f x 在R 上为奇函数,故排除B 、D.()1cos2f x x '=-,当0,3x π⎛⎫∈ ⎪⎝⎭时,1cos 2x >,即0fx所以函数()f x 在区间0,3π⎛⎫⎪⎝⎭上单调递减,故排除C 故选:A 【点睛】本题主要考查了函数图像的识别,属于中档题.10.C解析:C 【分析】根据0x >时()()0f x f x x'+>可得:()()0xf x f x '+>;令()()g x xf x =可得函数在()0,∞+上单调递增;利用奇偶性的定义可证得()g x 为偶函数,则()g x 在(),0-∞上单调递减;将已知不等式变为()()231g x g x >-,根据单调性可得自变量的大小关系,解不等式求得结果. 【详解】当0x >时,()()0f x f x x'+> ()()0xf x f x '∴+>令()()g x xf x =,则()g x 在()0,∞+上单调递增()f x 为奇函数 ()()()()g x xf x xf x g x ∴-=--== ()g x ∴为偶函数则()g x 在(),0-∞上单调递减()()()2213310xf x x f x ∴+-->等价于()()231g x g x >-可得:231x x >-,解得:115x << 本题正确选项:C 【点睛】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.11.D解析:D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【详解】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >,函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论.12.C解析:C 【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解. 【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃ 故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.13.C解析:C 【分析】根据“呆呆函数”的定义可知:函数()f x 的值域关于原点对称,由此逐项判断. 【详解】根据定义可知:()f x 为“呆呆函数”⇔()f x 的值域关于原点对称, A .2111sin cos cos sin 2cos 2222y x x x x x =+=++1242y x π⎛⎫=++∈ ⎪⎝⎭⎣⎦,此时值域不关于原点对称,故不符合;B .()20,xy =∈∞+,值域不关于原点对称,故不符合;C .ln x y x e =+,当0x →时,y →-∞,当x →+∞时,+y →∞, 所以()ln ,xy x e =+∈-∞+∞,值域关于原点对称,故符合;D .()[)222111,y x x x =-=--∈-+∞,值域不关于原点对称,故不符合, 故选:C. 【点睛】本题考查新定义函数,涉及到函数值域的分析,主要考查学生的分析理解能力,难度一般.14.B解析:B 【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果【详解】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立,所以2(1)m m +<,即2m <-,故选B . 【点睛】本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法15.D解析:D 【分析】当(1,1)x ∈-时,函数1()1xf x lgx-=+恒有意义,代入计算()()f x f x -+可判断①;利用分析法,结合反比例函数及对数函数的单调性和复合函数“同增异减”的原则,可判断②;代入分别计算12()()f x f x +和1212()1x x f x x ++,比照后可判断③. 【详解】 解:1()1xf x lgx-=+,当(1,1)x ∈-时, 1111()()()101111x x x xf x f x lg lg lg lg x x x x+-+--+=+===-+-+,故()()f x f x -=-,即①正确; 12()(1)11x f x lglg x x -==-++,由211y x=-+在(1,1)-上是减函数,故()f x 在(1,1)-上是减函数,即②正确; 12121212121212121211111()()()11111x x x x x x x x f x f x lglg lg lg x x x x x x x x ----+--+=+==+++++++; 12121212121212121212111()1111x x x x x x x x x x f lg lg x x x x x x x x x x +-+++--==+++++++,即③正确 故三个结论中正确的命题有3个 故选:D . 【点睛】本题以命题的真假判断为载体考查了函数求值,复合函数的单调性,对数的运算性质等知识点,属于中档题.二、填空题16.【分析】由对称性奇偶性得出周期性然后再结合周期性和奇偶性进行计算【详解】因为则又函数为奇函数所以所以是周期函数周期为4又所以故答案为:【点睛】结论点睛:本题考查函数的奇偶性对称性周期性函数具有两个对 解析:1316-【分析】由对称性、奇偶性得出周期性,然后再结合周期性和奇偶性进行计算. 【详解】 因为(1)(1)f x f x -=+,则()(2)f x f x =-,又函数为奇函数,所以()()(2)(2)(4)f x f x f x f x f x =--=-+=--=+,所以()f x 是周期函数,周期为4. 又125log 254-<<-,所以111122222252525(log 25)(4log 25)(log )(log )(log )161616f f f f f =+==--=-225log 163253132416416⎛⎫=--=-+=- ⎪⎝⎭.故答案为:1316-. 【点睛】结论点睛:本题考查函数的奇偶性、对称性、周期性.函数()f x 具有两个对称性时,就具有周期性.(1)()f x 的图象关于点(,0)m 对称,又关于直线xn =对称,则()f x 是周期函数,4m n -是它的一个周期;(2)()f x 的图象关于点(,0)m 对称,又关于点(,0)n (m n ≠)对称,则()f x 是周期函数,2m n -是它的一个周期;(3)()f x 的图象关于直线x m =对称,又关于直线x n =(m n ≠)对称,则()f x 是周期函数,2m n -是它的一个周期.17.【分析】将绝对值函数化为分段函数形式判断单调性【详解】由题意当时函数单调递减;当时函数在上单调递增在上单调递减;当时函数单调递增;综上所述函数的单调递减区间为故答案为:解析:()10,1,22⎛⎫⎪⎝⎭, 【分析】将绝对值函数化为分段函数形式,判断单调性. 【详解】由题意()151,02215151,222215,22x x x f x x x x x x x x x ⎧+-<<⎪⎪⎪=+-=--+<≤⎨⎪⎪++≥⎪⎩,当102x <<时,函数15()2f x x x =+-单调递减;当122x ≤<时,函数15()2f x x x =--+,在1(,1)2上单调递增,在(1,2)上单调递减; 当2x ≥时,函数15()2f x x x =+-单调递增; 综上所述,函数()152f x x x =+-的单调递减区间为()10,1,22⎛⎫ ⎪⎝⎭,, 故答案为:()10,1,22⎛⎫⎪⎝⎭,. 18.4【分析】由在上的单调性求出a 的一个范围再令则在上是减函数分类讨论根据的单调性求参数a 的范围两范围取交集即可得解【详解】由题意可知函数在上是增函数解得令则在上是减函数①当时在上为增函数不符合题意;②解析:4 【分析】由()g x 在(]0,2上的单调性求出a 的一个范围,再令()()f x h x x=,则()h x 在(]0,2上是减函数,分类讨论根据()h x 的单调性求参数a 的范围,两范围取交集即可得解. 【详解】由题意可知函数()()24g x x a x a =+-+在(]0,2上是增函数,402a -∴≤,解得4a ≤, 令()()4f x ax a xxh x +==+-,则()h x 在(]0,2上是减函数, ①当0a ≤时,()h x 在(]0,2上为增函数,不符合题意;②当0a >时,由对勾函数的性质可知()h x在上单调递减,2≥,解得4a ≥,又4a ≤,4a ∴=.故答案为:4 【点睛】本题考查函数的单调性、一元二次函数的单调性,属于中档题.19.5【分析】先根据函数的奇偶性求出的值然后将代入小于0的解析式建立等量关系解之即可【详解】函数是奇函数而则将代入小于0的解析式得解得故答案为5解析:5 【分析】先根据函数的奇偶性求出(2)f -的值,然后将2x =-代入小于0的解析式,建立等量关系,解之即可. 【详解】∴函数()y f x =是奇函数,()()f x f x ∴-=-,而(2)6f =,则(2)(2)6f f -=-=-, 将2x =-代入小于0的解析式得(2)426f a -=-=-,解得5a =, 故答案为5.20.1【分析】首先根据题中所给的条件判断出函数的最小正周期结合奇函数的定义求得结果【详解】因为所以函数是以3为周期的周期函数且是定义域为的奇函数所以故答案为:1【点睛】该题考查的是有关函数的问题涉及到的解析:1 【分析】首先根据题中所给的条件,判断出函数的最小正周期,结合奇函数的定义,求得结果. 【详解】因为()()3f x f x =+,所以函数()f x 是以3为周期的周期函数, 且是定义域为R 的奇函数,所以(2020)(67432)(2)(2)1f f f f =⨯-=-=-=, 故答案为:1. 【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与周期性的综合应用,属于简单题目.21.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞.【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.22.3【分析】由幂函数为偶函数且在(0+∞)上是单调递减函数可得m2-2m-3<0且m2-2m-3为偶数m ∈Z 且解出即可【详解】∵幂函数为偶函数且在上是减函数∴且为偶数且解得12且只有时满足为偶数∴故答解析:3 【分析】由幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在(0,+∞)上是单调递减函数,可得m 2-2m -3<0,且m 2-2m -3为偶数,m ∈Z ,且1=1a -.解出即可. 【详解】∵幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,∴2230m m --<,且223m m --为偶数,m N ∈,且1=1a -. 解得13m -<<,0m =,1,2, 且=2a ,只有1m =时满足223=4m m ---为偶数. ∴1m =.3a m +=故答案为:3. 【点睛】本题考查幂函数的性质,根据幂函数性质求参数值,可根据幂函数性质列不等式和等式,求解即可,属于基础题.23.②④【分析】根据题意画出方程对应的函数图象根据图像判断函数单调性值域最值以及函数零点个数的判断数形结合即可选择【详解】当y≥0时方程y|y|=1化为(y≥0)当y <0时方程y|y|=1化为(y <0)解析:②④ 【分析】根据题意,画出方程对应的函数图象,根据图像判断函数单调性、值域、最值以及函数零点个数的判断,数形结合即可选择. 【详解】当y ≥0时,方程24x +y |y |=1化为2214x y +=(y ≥0),当y <0时,方程24x +y |y |=1化为2214x y -=(y <0).作出函数f (x )的图象如图:由图可知,函数f (x )在R 上不是单调函数,故①错误; y =f (x )的图象上的点到坐标原点距离的最小值为1,故②正确; 函数f (x )的值域为(﹣∞,1],故③错误;双曲线2214x y -=的渐近线方程为y 12=±,故函数y =f (x )与y =﹣x 的图象只有1个交点, 即函数F (x )=f (x )+x 有且只有一个零点,故④正确. 故答案为:②④. 【点睛】本题考查函数单调性、值域以及零点个数的判断,涉及椭圆和双曲线的轨迹绘制,以及数形结合的数学思想,属综合中档题.24.-1【解析】试题解析:-1 【解析】 试题因为2()y f x x =+是奇函数且(1)1f =,所以,则,所以.考点:函数的奇偶性.25.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点解析:1 【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1 【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.26.【分析】令根据当时可得因此函数在时单调递减又为奇函数由于可得即可求得答案【详解】①令当时函数在时单调递减;的解集为②函数()分别是定义在上的奇函数和偶函数是上的奇函数当时的解集为综上所述不等式的解集 解析:()()1,01,-⋃+∞【分析】 令()()()h x F x g x =,根据当0x <时, ()()()()0h x g x h x g x ''-<可得()0F x '<,因此函数()F x 在0x <时单调递减,又()F x 为奇函数,由于()10h -=,可得(1)(1)0F F -==,即可求得答案. 【详解】 ①令()()()h x F x g x =. 当0x <时, ()()()()0h x g x h x g x ''-<,∴()()()()2()()0h x g x h F x g x x g x '=''-< ∴函数()F x 在0x <时单调递减;()10h -=,(1)(1)0F F ∴-==∴()0F a <的解集为()1,0-②函数()h x ,()g x (()0g x ≠)分别是定义在R 上的奇函数和偶函数∴()()()()()()h x h x F x F x g x g x --==-=-- ∴()F x 是R 上的奇函数,∴当0x >时,()0F a <的解集为(1,)+∞综上所述,不等式()()0h a g a <的解集为:()()1,01,-⋃+∞. 故答案为:()()1,01,-⋃+∞. 【点睛】本题主要考查了根据函数单调性和奇偶性解不等式,解题关键是掌握根据题意构造函数的方法和由导数判断函数单调性的解题方法,考查了分析能力和计算能力,属于中档题.。

深圳市光明中学必修一第二单元《函数》测试卷(答案解析)

深圳市光明中学必修一第二单元《函数》测试卷(答案解析)

一、选择题1.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞2.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A .4,5⎡⎤--⎣⎦B .5,4⎡⎤⎣⎦C .[]3,4-D .3,5⎡⎤⎣⎦3.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)4.定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度的最大值为( ) A .1B .74C .114 D .725.若()f x 是偶函数,其定义域为(,)-∞+∞,且在[0,)+∞上是减函数,则(1)f -与2(22)f a a ++的大小关系是( )A . 2(1)(22)f f a a ->++B .2(1)(22)f f a a -<++C .2(1)(22)f f a a -≥++D . 2(1)(22)f f a a -≤++6.方程2x y +=所表示的曲线大致形状为( )A .B .C .D .7.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞8.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .39.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .110.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤- D .5(3)()2f f -<-11.函数f (x )=x 2+2ln||2x x的图象大致为( )A .B .C .D .12.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 二、填空题13.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.14.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.15.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.16.已知对于任意实数x ,函数f (x )都满足f (x )+2f (2-x )=x ,则f (x )的解析式为______.17.已知二次函数f (x )=ax 2﹣2x +1在区间[1,3]上是单调函数,那么实数a 的取值范围是_____.18.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________19.函数21y ax ax =++的定义域是R ,则a 的取值范围是_________.20.已知函数()4f x x a a x=-++,若当[]1,4x ∈时,()5f x ≤恒成立,则实数a 的取值范围是______.三、解答题21.已知函数()2112f x a a x=+-,实数a R ∈且0a ≠.(1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a > 时,()f x 的定义域和值域都是[],m n ,求n m -的最大值; (3)若1≥x 时不等式()22a f x x ≤恒成立,求实数a 的取值范围.22.已知函数()()12f x x x =+-. (1)作出函数()f x 的图象.(2)判断直线y a =与()()12f x x x =+-的交点的个数; (3)已知方程()1221x x m +-=-有三个实数解.求m 的取值范围. 23.已知()f x 是定义域为R +的增函数,且对任意正实数a 和b ,都有()()()1f ab f a f b =+-.(1)证明:当1x >时,()1f x >;(2)若又知1()02f =,解不等式(32)(1)()2f x f x f x -+-<+.24.已知二次函数()2()f x ax bx a b R =+∈、满足:①()()11f x f x +=-;②对一切x ∈R ,都有()f x x ≤.(1)求()f x ;(2)是否存在实数(),m n m n <使得()f x 的定义域为[],m n 、值域为[]3,3m n ,如果存在,求出m ,n 的值;如果不存在,说明理由.25.已知函数22()3mx f x x n+=+是奇函数,且()523f =(1)求实数m 和n 的值;(2)利用“函数单调性的定义”判断()f x 在区间[]2,1--上的单调性,并求()f x 在该区间上的最值.26.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【详解】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.2.B解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.3.D解析:D 【分析】任设120x x <<,则211x x >,21()1x f x <-,根据定义可得()f x 在(0,)+∞上为递减函数,令1x y ==得(1)1f =-,令18,8x y ==可得(8)4f =-,可得(2)2f =-,将不等式化为[(3)](2)f x x f ->,利用单调性和定义域可解得结果. 【详解】任设120x x <<,则211x x >,21()1x f x <-,所以()()()()222111111111x x f x f x f x ff x f x x x ⎛⎫⎛⎫=⋅=++<-+= ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在(0,)+∞上为递减函数,在()()()1f xy f x f y =++中,令1x y ==得(1)2(1)1f f =+,得(1)1f =-,令18,8x y ==得11(1)(8)(8)()188f f f f =⨯=++,所以(8)1124f =---=-, 又(8)(2)(4)1f f f =++(2)(2)(2)113(2)2f f f f =++++=+4=-,所以(2)2f =-,()(3)3f x f x +->-可化为()(3)12(2)f x f x f +-+>-=,所以[(3)](2)f x x f ->,所以030(3)2x x x x >⎧⎪->⎨⎪-<⎩,解得01x <<或23x <<.故选:D 【点睛】关键点点睛:利用定义判断函数的单调性以及求出(2)f 是解题关键.4.B解析:B 【分析】根据定义作出函数()f x 的解析式和图象,根据函数值域,求出对应点的坐标,利用数形结合进行判断即可. 【详解】其中(1,1)A ,(3,3)B , 即()233,133313x x x f x x x x ⎧--=⎨-+⋅<<⎩或,当3()4f x =时,当3x 或1x 时,由33|3|4x --=,得9|3|4x -=,即34C x =或214G x =,当7()4f x =时,当13x <<时,由27334x x -+=,得52E x =,由图象知若()f x 在区间[m ,]n 上的值域为3[4,7]4,则区间[m ,]n 长度的最大值为537244E C x x -=-=,故选:B . 【点睛】利用数形结合思想作出函数的图象,求解的关键是对最小值函数定义的理解.5.C解析:C 【分析】由()f x 是偶函数,可知(1)(1)f f -=,故只需比较(1)f 与2(22)f a a ++的大小即可,而2222(1)11a a a ++=++≥,再结合函数()f x 的单调性,即可得(1)f 与2(22)f a a ++大小关系.【详解】因为()f x 是偶函数,所以(1)(1)f f -=,又2222(1)11a a a ++=++≥,()f x 在[0,)+∞上是减函数,所以2(22)(1)f a a f ++≤,即2(22)(1)f a a f ++≤-. 故选:C 【点睛】关键点点睛:本题主要考查利用函数的单调性比较大小,关键是借助函数的奇偶性,将要比较的函数值对应的自变量转化到同单调区间上,并且比较它们的大小,再利用单调性作出判断.6.D解析:D 【分析】先利用方程得到图像的对称性,再作0y ≥,0x ≥时的图像,利用对称性即得结果. 【详解】由方程2x =可知图像关于原点中心对称,也关于坐标轴对称.20,44x y =-≤≤,20,22x x =-≥-≤≤.当0y ≥,0x ≥时,方程2x =转化成()22y x =-,作图如下:再利用对称性即得图像为 D. 故选:D. 【点睛】本题解题关键是利用绝对值的性质得到图像的对称性,就只需要画0y ≥,0x ≥部分图像,即突破问题.7.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.8.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.9.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.10.B解析:B 【分析】对于(1)(1)(1)f x f x f +=-+,令0x =,可推出(1)(1)0f f =-=;令2x =-,推出(3)0f -=;令32x =-,推出51()()22f f -=-,最后结合()f x 的单调性得解.【详解】解:对于(1)(1)(1)f x f x f +=-+,令0x =,则(1)(1)(1)f f f =-+,(1)0f ∴-=,()f x 是偶函数,∴(1)(1)0f f =-=,令2x =-,则(21)(21)(1)f f f -+=--+,即(1)(3)(1)f f f -=-+,(3)0f ∴-=, 令32x =-,则33(1)(1)(1)22f f f -+=--+,51()()22f f ∴-=-,()f x 在区间[1-,0]为减函数,51()()(1)0(3)22f f f f ∴-=-<-==-,故选:B . 【点睛】函数的单调性与奇偶性的综合运用,灵活运用赋值法是解题的关键.11.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1=,x 223a-+=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;二、填空题13.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可. 【详解】若存在[1,)x ∈+∞,不等式2212a x x x -+成立,即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x =-+,[1,)x ∈+∞,问题转化为求()f x 的最大值, 而2117()2()48f x x=-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>;()f x m <有解min ()f x m ⇔<.14.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.15.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.16.【分析】用2-x 换上f (x )+2f (2-x )=x①中的x 得到f (2-x )+2f (x )=2-x②这样①②联立即可解出f (x )【详解】由题意因为f (x )+2f (2-x )=x①;∴f (2-x )+2f (x ) 解析:()4f x x 3=- 【分析】用2-x 换上f (x )+2f (2-x )=x①中的x 得到,f (2-x )+2f (x )=2-x②,这样①②联立即可解出f (x ). 【详解】由题意,因为f (x )+2f (2-x )=x①; ∴f (2-x )+2f (x )=2-x②; ①②联立解得()43f x x =-. 故答案为()43f x x =-. 【点睛】本题主要考查了函数的解析式的求解,其中解答中根据题意,联立方程组求解是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.17.【分析】根据二次函数的性质列不等式解不等式求得的取值范围【详解】由于为二次函数所以其对称轴为要使在区间上是单调函数则需其对称轴在区间两侧即或解得或或所以的取值范围是故答案为:【点睛】本小题主要考查二解析:()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦【分析】根据二次函数的性质列不等式,解不等式求得a 的取值范围. 【详解】由于()f x 为二次函数,所以0a ≠,其对称轴为1x a=, 要使()f x 在区间[]1,3上是单调函数,则需其对称轴1x a=在区间[]1,3两侧, 即11a≤或13a ≥,解得0a <,或1a ≥,或103a <≤, 所以a 的取值范围是()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦故答案为:()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦.【点睛】本小题主要考查二次函数的单调性,属于中档题.18.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域. 【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-. 【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.19.【分析】根据函数的解析式可知当定义域为时说明在上恒成立则对进行分类讨论确定满足条件的的范围【详解】由题意可得在上恒成立①当时则恒成立符合题意;②当时则解得综上可得∴实数的取值范围为故答案为:【点睛】 解析:[)0,4【分析】根据函数的解析式,可知当定义域为R 时,说明210ax ax ++>在R 上恒成立,则对a 进行分类讨论,确定满足条件的a 的范围. 【详解】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意; ②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<, ∴实数a 的取值范围为[)0,4. 故答案为:[)0,4. 【点睛】不等式20ax bx c ++>的解是全体实数(或恒成立)的条件是:当0a =时,00b c >=,;当0a ≠时,00a >⎧⎨∆<⎩; 不等式20ax bx c ++<的解是全体实数(或恒成立)的条件是当0a =时,00bc <=,;当0a ≠时,00a <⎧⎨∆<⎩.20.【分析】对分段讨论去绝对值计算求解【详解】当时可得当时符合题意;当时则不符合题意;当时此时不符合题意综上的取值范围是故答案为:【点睛】本题考查函数不等式的恒成立问题解题的关键是对分段讨论求解 解析:(],1-∞【分析】对a 分段讨论去绝对值计算求解. 【详解】当1a ≤时,()44f x x a a x x x=-++=+,可得当[]1,4x ∈时,()45f x ≤≤,符合题意;当14a <<时,()42,14,4a x x a xf x x a x x ⎧-+≤<⎪⎪=⎨⎪+≤≤⎪⎩,则()1325f a =+>,不符合题意;当4a ≥时,()42f x a x x=-+,此时()13211f a =+≥,不符合题意, 综上,a 的取值范围是(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数不等式的恒成立问题,解题的关键是对a 分段讨论求解.三、解答题21.(1)单调递增,理由见解析;(2;(3)312a -≤≤且0a ≠.【分析】(1)根据函数单调性的定义先设120<m x x n ≤<≤,然后化简判断()()12f x f x -的正负,即可判断单调性;(2)由函数单调性可得,m n 是方程()222210a x a a x -++=的不相等的两个正数根,利用韦达定理可求出a 的范围,进而求出n m -的最大值; (3)不等式等价于211222x a a x x x-≤+≤+对1≥x 恒成立,求出1()2h x x x =+最小值和1()2g x x x=-的最大值即可解出. 【详解】 (1)设120<m x x n ≤<≤, 则()()1212222121211x x f x f x a x a x a x x --=-+=, 120<m x x n ≤<≤,12120,0x x x x ∴>-<,()()12f x f x ∴<,故()f x 在[],m n 上单调递增;(2)由(1)可得0m n <<时,()f x 在[],m n 上单调递增,()f x 的定义域和值域都是[],m n ,(),()f m m f n n ∴==,则,m n 是方程2112x a a x+-=的不相等的两个正数根, 即()222210a x a a x -++=有两个不相等的正数根,则()2222122122Δ2402010a a a a a x x a x x a ⎧=+->⎪⎪+⎪+=>⎨⎪⎪=>⎪⎩,解得12a >,n m ∴-=== 1,2a ∞⎛⎫∈+ ⎪⎝⎭,32a ∴=时,n m -(3)221()2a f x a a x=+-,则不等式()22a f x x ≤对1≥x 恒成立, 即21222x a a x x -≤+-≤,即211222x a a x x x-≤+≤+对1≥x 恒成立, 令1()2h x x x=+,则()h x 在[1,)+∞单调递增,min ()(1)3h x h ∴==,令1()2g x x x=-,则()g x 在[1,)+∞单调递减,max ()(1)1g x g ∴==-, 222321a a a a ⎧+≤∴⎨+≥-⎩,解得312a -≤≤且0a ≠.【点睛】关键点睛:由函数单调性得出,m n 是方程()222210a x a a x -++=的不相等的两个正数根,利用韦达定理可求出a 的范围是解决第二问的关键,第三问不等式的恒成立问题需要分离参数求最值.22.(1)图象见解析;(2)答案见详解;(3)5182m -<<. 【分析】(1)先去绝对值,化简函数成分段函数形式()()()()()12,112,1x x x f x x x x ⎧+-≥-⎪=⎨-+-<-⎪⎩,把握关键点分段画出函数图象即可;(2)结合(1)中图象,数形结合即得结果; (3)由额(2)中结果即得92104m -<-<,即求得参数范围. 【详解】解:(1)函数()()12f x x x =+-,去绝对值可得()()()()()12,112,1x x x f x x x x ⎧+-≥-⎪=⎨-+-<-⎪⎩,即1x ≥-时,()f x 是开口向上、对称轴为12x =、零点为-1和2的抛物线的一部分;1x <-时,()f x 是开口向下、对称轴为12x =、零点为-1和2的抛物线的一部分,作图如下:(2)由(1)中图象,数形结合知, 当0a >或94a <-时,直线y a =与()()12f x x x =+-有1个交点;当0a =或94a =-时,直线y a =与()()12f x x x =+-有2个交点; 当904a -<<时,直线y a =与()()12f x x x =+-有3个交点; (3)方程()1221x x m +-=-有三个实数解,即21y m =-与()()12f x x x =+-有三个交点,由(2)可知92104m -<-<,即5182m -<<, 所以m 的取值范围为5182m -<<. 【点睛】本题解题关键在于去绝对值写出分段函数,根据二次函数关键点(零点、对称轴、顶点)正确作图,再数形结合,依次突破. 23.(1)证明见解析;(2)12x <<. 【分析】(1)计算出(1)f 后由单调性可证;(2)求得(2)2f =,利用定义不等式可化为([(32)(1)](2)f x x f x --<,然后由单调性求解. 【详解】解(1)令1a b ==,代入条件式子得(1)1f =;()f x 在R +上单调递增∴当1x >时,()(1)1f x f >=,得证.(2)令1,22a b ==,代入①式得1(1)()(2)1(2)22f f f f =+-⇒= (32)(1)()2f x f x f x ∴-+-<+(32)(1)()(2)f x f x f x f ⇔-+-<+320,10,0,[(32)(1)]1(2)1x x x f x x f x ->⎧⎪->⎪⇔⎨>⎪⎪--+<+⎩11121(32)(1)223x x x x x x x ⎧>⎧>⎪⎪⇔⇔⇔<<⎨⎨--<<<⎪⎪⎩⎩.【点睛】关键点点睛:本题考查抽象函数的单调性的应用,解关于抽象函数的不等式,关键是利用函数的定义,把不等式转化为12()()f x f x <形式,然后由单调性求解.转化时注意函数的定义域.24.(1)21()2f x x x =-+;(2)存在,40m n =-⎧⎨=⎩.【分析】(1)由(1)(1)f x f x +=-,得到20b a +=,再由()f x x ≤恒成立,列出方程组,求得,a b 的值,得到函数的解析式;(2)假设存在()m n m n <、,根据题意得到[],m n 必在对称轴的左侧,且()f x 在[],m n 单调递增,列出方程组,即可求解. 【详解】(1)因为22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++,22(1)(1)(1)(2)f x a x b x ax a b x a b -=-+-=-+++,由()()11f x f x +=-可知,20a b +=,由于对一切x ∈R ,都有()f x x ≤即2()(1)0f x x ax b x -=+-≤,于是由二次函数的性质可得()()21400*a b a <⎧⎪⎨∆=--⨯≤⎪⎩ 由()*知()210b -≤,而()210b -≥,所以()210b -=即1b =,将1b =代入20a b +=得12a =-, 所以21()2f x x x =-+; (2)因为221111()(1)2222f x x x x =-+=--+≤, 若存在满足条件的实数(),m n m n <则必有132n ≤,解得16n ≤, 又因为()f x 在(],1-∞上单调递增,所以()f x 在[],m n 上单调递增.所以()()33fm m fn n ⎧=⎪⎨=⎪⎩,22132132m m mn n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得40m n =-⎧⎨=⎩或04m n =⎧⎨=-⎩,因为m n <,所以40m n =-⎧⎨=⎩, 故存在4m n =-⎧⎨=⎩满足条件.【点睛】关键点点睛:本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,以及根据函数的值域判断出函数在[,]m n 上的单调性是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.25.(1)2m =;0n =;(2)单调递增;()max 43f x =-,()min 53f x =-. 【分析】(1)根据函数的奇偶性的关系建立方程即可求实数m 和n 的值;(2)利用定义证明函数的单调性,即取值,作差,变形,定号,下结论,再利用单调性即可求最值.【详解】(1)∵()f x 是奇函数,∴()()f x f x -=-, ∴222222333mx mx mx x n x n x n+++=-=-++--. 所以33x n x n -+=--,解得:0n =,又()523f =, ∴425(2)63m f +==,解得2m =. ∴实数m 和n 的值分别是2和0.(2)由(1)知22222()333x x f x x x+==+. 任取[]12,2,1x x ∈--,且12x x <,则()()()()1212121212121212133x x f x f x x x x x x x x x ⎛⎫--=--=- ⎪⎝⎭, ∵1221x x -≤<≤-,∴120x x -<,121x x >,1210x x ->,∴()()120f x f x -<,即()()12f x f x <,∴函数()f x 在区间[]2,1--上单调递增,∴()()max 413f x f =-=-,()()min 523f x f =-=-. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.26.(1)(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+;(2)3a >-. 【分析】 (1)利用函数的奇偶性,列方程组,求函数的解析式;(2)由(1)知,()()2,[1,)a f x g x x x x∞+=++∈+,方法一,讨论a 的正负,以及函数的单调性,转化为求函数的最小值大于0,求a 的取值范围;方法二,利用参变分离,()22a x x >-+,转化为求函数最大值,即求a 的取值范围.【详解】(1)由已知条件()()2a f x g x x x-=+-——① ①式中以x -代替x ,得()()2a f x g x x x ---=---——② 因为()f x 是奇函数,()g x 是偶函数,故()(),()()f x f x g x g x -=--=②可化为()()2a f x g x x x --=---——③ ①-③,得22()2a f x x x =+故(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+ (2)由(1)知,()()2,[1,)a f x g x x x x ∞+=++∈+ 当0a ≥时,函数()()f x g x +的值恒为正;当0a <时,函数()()2a f x g x x x +=++在[1,)+∞上为增函数 故当1x =时,()f x 有最小值3a +故只需30a +>,解得30a -<<.综上所述,实数a 的取值范围是(3,)-+∞法二:由(1)知,()()2a f x g x x x+=++ 当[1,)x ∈+∞时,()()0f x g x +>恒成立,等价于()22a x x >-+ 而二次函数()222(1)1y x x x =-+=-++在[1,)+∞上单调递减 1x =时,max 3y =-故3a >-【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.。

第三章 函数的概念与性质(基础提升练)【单元测试】高一数学必修第一册(解析版)

第三章 函数的概念与性质(基础提升练)【单元测试】高一数学必修第一册(解析版)

第三章函数的概念与性质(基础提升测试卷)本试卷共4页,22小题,满分150分,考试用时120分钟。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2022·湖南·长郡中学高二期中)函数11y x =++的定义域为()A .[)4,1--B .[)()4,11,---+∞C .()1,-+∞D .[)4,-+∞【答案】B 【解析】【分析】偶次开根根号下为非负,分式分母不为零,据此列出不等式组即可求解.【详解】依题意4010x x +≥⎧⎨+≠⎩,解得41x x ≥-⎧⎨≠-⎩,所以函数的定义域为[)()4,11,---+∞.故选:B .2.(2022·甘肃庆阳·高一期末)若函数()y f x =在R 上单调递增,且()()23f m f m ->-,则实数m 的取值范围是()A .(),1-∞-B .()1,-+∞C .()1,+∞D .(),1-∞【答案】C 【解析】【分析】由单调性可直接得到23m m ->-,解不等式即可求得结果.【详解】()f x 在R 上单调递增,()()23f m f m ->-,23m m ∴->-,解得:1m >,∴实数m 的取值范围为()1,+∞.故选:C.3.(2015·山东·高考真题)已知函数()f x 是奇函数,当0x >时,()22f x x =+,那么()1f -的值是()A .3-B .1-C .1D .3【答案】A 【解析】【分析】根据奇函数的性质即可求解.【详解】函数()f x 是奇函数,当0x >时,()22f x x =+,∴()()()211123f f -=-=-+=-.故选:A.4.3.(2022·陕西西安·高二期末(文))已知函数()()()F x f x g x =+,其中()f x 是x 的正比例函数,()g x 是x 的反比例函数,且119,(1)93F F ⎛⎫== ⎪⎝⎭,则(2)F =()A .3B .8C .9D .16【答案】C 【解析】【分析】根据题意设(),()m f x kx g x x ==,则()()()m F x f x g x kx x =+=+,然后由119,(1)93F F ⎛⎫== ⎪⎝⎭列方程组求4.(2022·新疆·沙湾县第一中学高一期中)已知偶函数f (x )与奇函数g (x )的定义域都是[-2,2],它们在[0,2]上的图象如图所示,则关于x 的不等式f (x )·g (x )<0成立的x 的取值范围为()A .(-2,-1)∪(0,1)B .(-1,0)∪(0,1)C .(-1,0)∪(1,2)D .(-2,-1)∪(1,2)【答案】C 【解析】【分析】根据图象,函数()()⋅f x g x 的奇偶性以及符号法则即可解出.【详解】如图所示:当01x <<时,()0f x >,()0g x >,()()0f x g x ⋅>;当12x <<时,()0f x <,()0g x >,()()0f x g x ⋅<,故当0x >时,其解集为()1,2,∵()y f x =是偶函数,()y g x =是奇函数,∴()()⋅f x g x 是奇函数,由奇函数的对称性可得:当0x <时,其解集为()1,0-,综上:不等式()()0f x g x ⋅<的解集是()()1,01,2-.故选:C.5.(2022·广西北海·高二期末(文))若函数2112f x x x x ⎛⎫+=+ ⎪⎝⎭,且()4f m =,则实数m 的值为()AB C .D .3【答案】B 【解析】【分析】令1x t x+=,配凑可得()22f t t =-,再根据()4f m =求解即可【详解】令1x t x +=(2t ≥或2t ≤-),22221122x x t x x ⎛⎫+=+-=- ⎪⎝⎭,()22f t t ∴=-,()224f m m =-=,m ∴=故选;B6.(2022.全国卷)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A 【解析】【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .7.(2021·全国·高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则()A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B 【解析】【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+,故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f -=-=,其它三个选项未知.故选:B.8.(2022·河南·开封市东信学校模拟预测(文))已知()y f x =是R 上的奇函数,当0x >时,312()21xf x x x -=-++,则满足(23)0f m -≤的m 的取值范围是()A .[1,2]-B .[1,2]C .3(,1],22⎡⎤-∞-⎢⎥⎣⎦D .31,[2,)2⎡⎤+∞⎢⎥⎣⎦【答案】D 【解析】【分析】根据函数在公共的定义域函数单调性的性质及奇函数的性质,再利用函数单调性的定义即可求解.【详解】因为函数3123,1211x y x y x x -=-==-+++在(0,)+∞上均为减函数,∴312()21x f x x x -=++在(0,)+∞上为减函数.又3121(1)10211f -=-⋅+=+,且()y f x =是R 上的奇函数,∴(0)0,()f f x =在(,0)-∞上为减函数.又(1)0,(23)0f f m -=-≤,得1230m -≤-≤或231m -≥,解得312m ≤≤或2m ≥.所以实数m 的取值范围是31,[2,)2⎡⎤+∞⎢⎣⎦.故选:D.二、选择题:本题共4小题,每小题5分,共20分。

函数入门基础测试题及答案

函数入门基础测试题及答案

函数入门基础测试题及答案一、选择题1. 函数(function)是数学中的一种关系,其中每个元素都有一个相对应的元素。

请问以下哪项不是函数的特性?A. 唯一性B. 有序性C. 多元性D. 唯一确定性答案:B2. 如果一个函数的定义域是实数集,那么这个函数被称为:A. 奇函数B. 偶函数C. 定义域函数D. 无限函数答案:C3. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0B. 1C. 4D. 6答案:C二、填空题4. 函数y = f(x)中,自变量是_________,因变量是_________。

答案:x;y5. 如果一个函数满足f(x) = f(-x),那么这个函数被称为_________函数。

答案:偶函数三、解答题6. 已知函数f(x) = 2x - 3,请找出f(5)的值。

答案:将x=5代入函数f(x) = 2x - 3,得到f(5) = 2*5 - 3 =10 - 3 = 7。

7. 判断函数f(x) = x^2是否为奇函数或偶函数,并说明理由。

答案:函数f(x) = x^2是偶函数。

理由是对于所有x属于其定义域,都有f(x) = f(-x),即x^2 = (-x)^2。

四、计算题8. 计算函数f(x) = x^3 - 6x^2 + 11x - 6在x=2, x=3, x=4时的值。

答案:- 当x=2时,f(2) = 2^3 - 6*2^2 + 11*2 - 6 = 8 - 24 + 22 -6 = 0。

- 当x=3时,f(3) = 3^3 - 6*3^2 + 11*3 - 6 = 27 - 54 + 33 - 6 = 0。

- 当x=4时,f(4) = 4^3 - 6*4^2 + 11*4 - 6 = 64 - 96 + 44 - 6 = 6。

五、证明题9. 证明函数f(x) = x^2 + 2x + 1是一个奇函数。

答案:要证明f(x)是奇函数,我们需要证明对于所有x属于其定义域,都有f(-x) = -f(x)。

一次函数基础测试题及答案

一次函数基础测试题及答案

一次函数基础测试题及答案一、选择题1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.2.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.3.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.4.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )A .0b <B .2b <C .02b <<D .0b <或2b >【答案】D【解析】【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2.【详解】解∵B 点坐标为(b ,-b+2),∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0),∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,∴b 的取值范围为b <0或b >2.故选D .【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(b k -,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .5.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB (O 为坐标原点)的面积为( )A .32B .2C .23D .3【答案】C【解析】【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=23, 故选:C.【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.6.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.7.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y (米)与时间t (分)的函数关系如图所示,则下列结论错误的是( )A .他们步行的速度为每分钟80米;B .出租车的速度为每分320米;C .公司与火车站的距离为1600米;D .出租车与乙相遇时距车站400米.【答案】D【解析】【分析】 根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可.【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变, 即:甲步行的速度为每分钟480806米,乙步行的速度也为每分钟80米, 故A 正确;又∵甲乙再次相遇时是16分钟,∴16分乙共走了80161280米,由图可知,出租车的用时为16-12=4分钟,∴出租车的速度为每分12804320米,故B 正确;又∵相遇后,坐出租车去火车站比预计早到3分钟,设公司与火车站的距离为x 米, 依题意得:12380320xx ,解之得:1600x =, ∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米. 故C 正确,D 不正确.故选:D .【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.8.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+,解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小, ∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C【解析】 分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b ,将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩, 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是().①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+;③第40天,该植物的高度为14厘米;④该植物最高为15厘米.A.①②③B.②④C.②③D.①②③④【答案】A【解析】【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得:156kb⎧=⎪⎨⎪=⎩,∴直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,1406145y=⨯+=,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,1506165y=⨯+=,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.一次函数 y = mx +1m-的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为()A.-1 B.3 C.1 D.- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.【详解】∵一次函数y=mx+|m-1|中y随x的增大而增大,∴m>0.∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m1=3,m2=-1<0(舍去).故选B.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,已知正比例函数y1=ax与一次函数y2=12x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④【答案】D【解析】【分析】根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数21 2y x b=+ \过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<−2时,y1>y2,④正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.14.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1 【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.15.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是( ) A . B . C . D .【答案】B【解析】【分析】过C 作CD ⊥AB 于D ,先求出A ,B 的坐标,分别为(4,0),(0,3),得到AB 的长,再根据折叠的性质得到AC 平分∠OAB ,得到CD=CO=n ,DA=OA=4,则DB=5-4=1,BC=3-n ,在Rt △BCD 中,利用勾股定理得到n 的方程,解方程求出n 即可.【详解】过C 作CD ⊥AB 于D ,如图,对于直线,当x=0,得y=3;当y=0,x=4, ∴A (4,0),B (0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.16.在平面直角坐标系中,直线:1m y x =+与y 轴交于点A ,如图所示,依次正方形1M ,正方形2M ,……,正方形n M ,且正方形的一条边在直线m 上,一个顶点x 轴上,则正方形n M 的面积是( )A .222n -B .212n -C .22nD .212n +【答案】B【解析】【分析】由一次函数1y x =+,得出点A 的坐标为(0,1),求出正方形M 1的边长,即可求出正方形M 1的面积,同理求出正方形M 2的面积,即可推出正方形n M 的面积.【详解】一次函数1y x =+,令x=0,则y=1,∴点A 的坐标为(0,1),∴OA=1,∴正方形M 1的边长为22112+=, ∴正方形M 1的面积=222⨯=,∴正方形M 1的对角线为()()22222⨯=,∴正方形M 2的边长为222222+=,∴正方形M 2的面积=3222282⨯==,同理可得正方形M 3的面积=5322=,则正方形n M 的面积是212n -,故选B.【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y=12x+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【详解】解:直线y=12x+b经过点B时,将B(3,1)代入直线y=12x+b中,可得32+b=1,解得b=-12;直线y=12x+b经过点A时:将A(1,1)代入直线y=12x+b中,可得12+b=1,解得b=12;直线y=12x+b经过点C时:将C(2,2)代入直线y=12x+b中,可得1+b=2,解得b=1.故b的取值范围是-12≤b≤1.故选B.【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.20.如图,直线y=-x+m 与直线y=nx+5n (n≠0)的交点的横坐标为-2,则关于x 的不等式-x+m >nx+5n >0的整数解为( )A .-5,-4,-3B .-4,-3C .-4,-3,-2D .-3,-2【答案】B【解析】【分析】 根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n 中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x 的不等式-x+m >nx+5n >0的解集为-5<x <-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.。

必修一第二单元《函数》测试卷(含答案解析)

必修一第二单元《函数》测试卷(含答案解析)

一、选择题1.函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则12017f ⎛⎫⎪⎝⎭等于( ) A .116B .132 C .164D .11282.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)3.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦5.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)6.方程2x =所表示的曲线大致形状为( )A .B .C .D .7.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭8.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤-D .5(3)()2f f -<-9.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞10.已知函数的定义域为R ,且对任意的12,x x ,且12x x ≠都有()()()12120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( )A .(1,2)-B .[1,2]-C .(,1)(2,)-∞-+∞D .(,1][2,)-∞-+∞11.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1 B .0 C .-1 D .a12.如图是定义在区间[]5,5-上的函数()y f x =的图象,则下列关于函数()f x 的说法错误的是( )A .函数在区间[]53-,-上单调递增B .函数在区间[]1,4上单调递增C .函数在区间][3,14,5⎡⎤⋃⎣⎦-上单调递减D .函数在区间[]5,5-上没有单调性二、填空题13.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i Aϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.14.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.15.已知函数()()14f x a ax =--[]0,2上是减函数,则实数a 的取值范围是_____.16.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式()cos f x x<0的解集为________.17.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.18.已知定义在R 上的函数()f x 满足:①(1)0f =;②对任意x ∈R 的都有()()f x f x -=-;③对任意的12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-.记2()3()()1f x f xg x x --=-,则不等式()0g x ≤的解集______.19.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若()()0f f x A ∈,则0x 的取值范围是__________.20.函数()()122x x f x x N +⎡⎤⎡⎤=-∈⎢⎥⎢⎥⎣⎦⎣⎦的值域为_______(其中[]x 表示不大于x 的最大整数)三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数?(2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.23.已知函数()y f u =的定义域为A ,值域为B .如果存在函数()u g x =,使得函数[]()y f g x =的值域仍为B ,则称()u g x =是函数()y f u =的一个“等值域变换”.(1)若函数2()1y f u u ==+,1()u g x x x==+(x >0),请判断()u g x =是不是函数()y f u =的一个“等值域变换”?并说明理由;(2)已知单调函数()y f u =的定义域为{}12A u u =≤≤,若221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”,求实数a 的取值范围.24.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式. 25.已知函数()2mf x x x=++(m 为实常数). (1)当4m =时,试判断函数在[)2,+∞上的单调性,并用定义证明; (2)设0m <,若不等式()f x kx ≤在1[,1]2x ∈有解,求实数k 的取值范围. 26.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由③可得()11f =,1122f ⎛⎫=⎪⎝⎭,然后由②可得111113232n n n f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭,然后结合()f x 在[0,1]上非减函数可得答案. 【详解】由③得(10)1(0)1f f -=-=,111122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,∴()11f =,1122f ⎛⎫= ⎪⎝⎭. 由②得()12201111111111323232322n n n n n n f f f f f --⎛⎫⎛⎫⎛⎫⎛⎫======⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12231011111111232232232232n n n n nf f f f ----⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭⎝⎭.∵761113201723<<⨯且61123128f ⎛⎫= ⎪⨯⎝⎭,7113128f ⎛⎫= ⎪⎝⎭. 又()f x 在[0,1]上非减函数,∴112017128f ⎛⎫= ⎪⎝⎭, 故选:D 【点睛】关键点睛:解答本题的关键是由条件得到111113232n n n f f -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭. 2.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->,解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 4.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.5 120
t (时)
O s (千米) 1.5 2.5 轮船 快艇 《函数》基础测试
(一)选择题(每题4分,共32分)
1.下列各点中,在第一象限内的点是………………………………………………( )
(A )(-5,-3) (B )(-5,3) (C )(5,-3) (D )(5,3)
2.点P (-3,4)关于原点对称的点的坐标是……………………………………( )
(A )(3,4) (B )(-3,-4) (C )(-4,3) (D )(3,-4)
3.若点P (a ,b )在第四象限,则点Q (-a ,b -4)在象限是………………( )
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 4.函数y =
x -2+
3
1
-x 中自变量x 的取值范围是……………………………( ) (A )x ≤2 (B )x =3 (C )x <2且x ≠3 (D )x ≤2且x ≠3 6.若点(-m ,n )在反比例函数y =
x
k 的图象上,那么下列各点中一定也在此图象上的点
是……………………………………………………………………………………( ) (A )(m ,n ) (B )(-m ,-n ) (C )(m ,-n ) (D )(-n ,-m )
7.二次函数式y =x 2
-2 x +3配方后,结果正确的是………………………………( )
(A )y =(x +1)2-2 (B )y =(x -1)2+2 (C )y =(x +2)2+3 (D )y =(x -1)2+4
8.若二次函数y =2 x 2-2 mx +2 m 2-2的图象的顶点在x 轴上,则m 的值是( ) (A )0 (B )±1 (C )±2 (D )±
2
(二)填空题(每小题4分,共28分)
9.函数y =
3
)1(0
--x x 中自变量x 的取值范围是___________.
10.若反比例函数的图象过点(-1,2),则它的解析式为__________.
11.当m =_________时,函数(m 2-m )m
m x -22是一次函数. 12.已知一次函数y =kx +b (k ≠0),当x =1时,y =3;当x =0时,y =2.则函数解析式为________,
函数不经过第_____象限,y 随x 增大而________. 13.二次函数y =-x 2+mx +2的最大值是
4
9
,则常数m =_________. 14.如果二次函数y =ax 2+bx +c 的图象的顶点是(-2,4),且过点(-3,0),则a 为_____________. 15.若直线y =3 x +b 与两坐标轴所围成的三角形的面积为24,则b =_________.
16.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水
每吨收费0.5元,超计划部分每吨按0.8元收费.
(1)写出该单位水费y (元)与每月用水量x (吨)之间的函数关系式:
①用水量小于等于3000吨, ;②用水量大于3000吨, . (2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元.
若某月该单位缴纳水费1540元,则该单位用水 吨.
17.函数y =kx +b (k 、b 为常数)的图象如图所示,则关于x 的不等 式kx +b >0的解集是 。

18.一艘轮船和一艘快艇沿相同路线从甲港到乙港,如图中两条线段分别表示轮船与快艇离开出发点的距离与行驶时间的关系,根据图象回答下列问题: ①轮船比快艇早 小时出发,快艇比轮船早到 小时;
②快艇追上轮船用 小时,快艇行驶了 千米; ③轮船从甲港到乙港行驶时间是 小时;
19.如图,1l 表示商场一天的家电销售额与销售量的关系,2l 表示一天的销售成本与销售量的
关系.
①当2=x 时,销售额= 万元,销售成本= 万元.此时,商场是是赢利还是亏损?
②一天销售 件时,销售额等于销售成本. ③1l 对应的函数表达式是 . ④写出利润与销售量间的函数表达式.
(三)解答题
20.(6分)已知正比例函数的图象经过点(1,-2),求此函数的
解析式,并在坐标系中画出此函数的图象.
21.(8分)按下列条件,求二次函数的解析式:
(1)图象经过A (0,1),B (1,3),C (-1,1); (2)图象经过(3,1),且当x =2时有最大值为3.
22.(8分)已知二次函数y =2 x 2-4 x -6.
(1)求图象的开口方向、对称轴、顶点坐标,并画出草图. (2)求图象与x 轴的交点坐标,与y 轴的交点坐标. (3)当x 为何值时,y 随x 的增大而增大? (4)x 为何值时y ≥0?
23、我们知道,两条直线的交点坐标就是这两直线解析式联列时所组成的方程组的解.你能据此思想对下列方程组(或方程)的解进行讨论呢?
(1)22;
2;y x y x =-⎧⎪
⎨=⎪⎩
(2)2,1;y x y x =-⎧⎪⎨
=⎪⎩(3)3x =2x-6.
谢谢大家
24.(8分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快
减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.(1)若每件降价x 元,每天盈利y 元,求y 与x 的关系式.(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)每件衬衫降价多少元时,商场每天盈利最多?盈利多少元? 2 O
4 2 3
l 1
y (万元) x
l 2
· y
x
2
2。

相关文档
最新文档