二进制、十进制和十六进制及其相互转换的公式

合集下载

进制转化公式

进制转化公式

进制转化公式进制转化是数学中一个常见的操作,用于将数字在不同进制之间进行转换。

进制是数学表示法的一种方式,不同进制对应着不同的基数。

目前常用的进制有十进制、二进制、八进制和十六进制。

在十进制中,我们使用0-9这十个数字进行计数。

例如数字456表示的意思是4乘以100加5乘以10加6乘以1。

而在二进制中,只使用0和1进行计数。

例如数字101表示的意思是1乘以4加0乘以2加1乘以1。

八进制和十六进制则使用了更多的符号表示数值,分别使用0-7和0-9以及A-F这些字符进行计数。

进制转化的公式主要根据进制的特点来进行推导,以下是一些常见的进制转化公式:1. 十进制转二进制:将十进制数不断除以2,直到商为0,然后将每一步的余数倒序排列即可得到二进制数。

2. 二进制转十进制:将二进制数从右到左,每一位乘以2的相应指数,再将结果相加即可得到十进制数。

3. 十进制转八进制:将十进制数不断除以8,直到商为0,然后将每一步的余数倒序排列即可得到八进制数。

4. 八进制转十进制:将八进制数从右到左,每一位乘以8的相应指数,再将结果相加即可得到十进制数。

5. 十进制转十六进制:将十进制数不断除以16,直到商为0,然后将每一步的余数倒序排列,并将10-15分别用A-F表示即可得到十六进制数。

6. 十六进制转十进制:将十六进制数从右到左,每一位乘以16的相应指数,再将结果相加即可得到十进制数。

通过以上公式,我们可以在不同进制之间进行转化。

进制转化不仅在数学中有着重要的应用,同时在计算机科学和信息技术领域也扮演着重要的角色。

例如,计算机内部使用二进制进行数据存储和计算,而网络通信中常使用十六进制表示数据。

掌握进制转化公式对于进行数值计算和理解计算机科学原理非常重要。

能够灵活运用进制转化公式,不仅可以提高计算效率,还能深入理解进制的含义和应用。

因此,我们需要在数学学习的过程中,仔细掌握并灵活运用进制转化公式,以便在实际应用中取得更好的成果。

二进制八进制十进制十六进制之间的进制转换

二进制八进制十进制十六进制之间的进制转换

二进制八进制十进制十六进制之间的进制转换详情可参考百度百科:进制转换这个词条【主要搞懂1和2两条,其他的进制之间的转化就迎刃而解,很好懂了】1. 十进制-> 二进制:将这个十进制数连续除以2的过程,第一步除以2,得到商和余数,将商再继续除以2,得到又一个商和余数,直到商为0。

最后将所有余数倒序排列,得到的数就是转换成二进制的结果。

2. 二进制-> 十进制:二进制数第1位的权值是2的0次方,第2位的权值是2的1次方,第3位的权值是2的2次方。

(例如1258这个十进制数,实际上代表的是:1x1000+2x100+5x10+8x1=1258)那么1011这个二进制数,实际上代表的是:1x8+0x4+1x2+1x1=11(十进制数11)。

(这里的8就是2的3次方,4就是2的2次方,2就是2的1次方,1就是2的0次方)3. 十进制-> 八进制:十进制数转换成八进制的方法,和转换为二进制的方法类似,唯一变化:除数由2变成8。

4. 八进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成8,第1位表示8的0次方,第二位表示8的一次方,第三位表示8的2次方,第四位表示8的3次方。

例如1314这个八进制数,十进制数就是1x512+3x64+1x8+4x1=716(十进制)5. 十进制-> 十六进制10进制数转换成16进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成16。

十六进制是0123456789ABCDEF这十六个字符表示。

那么单独一个A就是10,单独一个B就是11,CDEF,就分表表示12,13,14,15。

而10这个十六进制数,实际就是十进制中的16。

6. 十六进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成16,第1位表示16的0次方,第二位表示16的一次方,第三位表示16的2次方,第四位表示16的3次方。

7. 二进制<--->八进制,之间的相互转换,更简单一些,因为8本身是2的三次方。

二进制、十进制和十六进制及其相互转换的公式

二进制、十进制和十六进制及其相互转换的公式

计算机内部是以二进制形式表示数据和进行运算的;计算机内的地址等信号常用十六进制来表示,而人们日常又习惯用十进制来表示数据。

这样要表示一个数据就要选择一个适当的数字符号来规定其组合规律,也就是要确定所选用的进位计数制。

各种进位制都有一个基本特征数,称为进位制的“基数”。

基数表示了进位制所具有的数字符号的个数及进位的规律。

下面就以常用的十进制、二进制、八进制和十六进制为例,分别进行叙述。

一.常用的三种计数制1.十进制(Decimal)十进制的基数是10,它有10个不同的数字符号,即0、1、2、3、…、9。

它的计数规律是“逢十进一”或“借一当十”。

处在不同位置的数字符号具有不同的意义,或者说有着不同的“权”。

所谓的“权”就是每一位对其基数具有不同的倍数。

例如,一个十进制数为123.45=1×102十2×101十3×100十4×10-1十5×10-2等号左边为并列表示法.等号右边为多项式表示法,显然这两种表示法表示的数是等价的。

在右边多项式表示法中,1、2、3、4、5被称为系数项,而102、101、100、10-1、10-2等被称为该位的“权”。

一般来说,任何一个十进制数”都可以采用并列表不法表不如下:N10=dn-1d n-2…d1d 0. d-1d-2…d-m其中,下标n表示整数部分的位数,下标m表示小数部分的位数,d是0~9中的某一个数,即di∈(0,1,…,9)。

同样,任意一个十进制数N都可以用多项式表示法表示如下:N10=dn-1×10n-1十…十d1×101十d 0×100十d-1×10-1十…十d-m×10-m 其中,m、n为正整数,di表示第i位的系数,10i称为该位的权。

所以某一位数的大小是由各系数项和其权值的乘积所决定的。

2.二进制(Binary)二进制的基数是2,它只有两个数字符号,即0和1。

二进制十进制和十六进制及其相互转换的公式

二进制十进制和十六进制及其相互转换的公式

二进制十进制和十六进制及其相互转换的公式二进制、十进制和十六进制是计算机科学中常用的数制。

在计算机中,数据以二进制的形式表示,但是对于人类来说,二进制形式并不直观,因此使用十进制和十六进制进行数据展示和计算更为常见。

本文将介绍二进制、十进制和十六进制之间的转换公式。

一、二进制转十进制二进制是由0和1两个数字组成的数制。

每一位二进制位所代表的数值是2的n次方,其中n为该二进制位的位置,从右向左逐渐增加。

例如,二进制数1101,可以表示为:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=8+4+0+1=13所以二进制数1101等于十进制数13二、十进制转二进制十进制数是由0-9这十个数字组成的数制。

将十进制数转换成二进制数的方法是不断地对十进制数进行除以2的整除运算,直到商为0,然后将每次的余数倒序排列。

例如,将十进制数53转换成二进制数:53÷2=26余126÷2=13余013÷2=6余16÷2=3余03÷2=1余11÷2=0余1三、十六进制和二进制、十进制的转换十六进制数是由0-9这十个数字和A-F这六个字母组成的数制,其中A代表10,B代表11,依此类推,F代表15、十六进制数可以很方便地将二进制数字转换成较短的字符表示,同时也更加直观。

1.二进制转十六进制:将二进制数每四位一组,从右向左进行分组,并将每个分组转换成对应的十六进制字符。

0110(6)1101(D)0101(5)1011(B)转换结果为6D5B。

2.十六进制转二进制:将十六进制数中的每个字符逐个转换成对应的四位二进制数。

例如,将十六进制数3A转换成二进制数:3->0011A->10103.十六进制转十进制:将十六进制数中的每个字符逐个转换成对应的十进制数,然后将这些十进制数相加即可得到结果。

例如,将十六进制数1F转换成十进制数:1*16^1+F*16^0=16+15=31所以十六进制数1F等于十进制数314.十进制转十六进制:将十进制数不断地进行除以16的整除运算,直到商为0,然后将每次的余数倒序排列,并将每个余数转换成对应的十六进制字符。

二进制和十六进制怎么转换

二进制和十六进制怎么转换

二进制和十六进制怎么转换一、二进制转十六进制各种进制之间的转换方法:一、不同的进位制数转化为十进制数:按权展开相加十进制是权是10;二进制是权是2;十六进制是权是16;八进制是权是8;例:110011(二进制数)=1*2^5+1*2^4+0*2^3+0*2^2+1*2^1+1*2^0=32+16+2+1=51 1507(八进制数)=1*8^3 + 5*8^2 + 0*8^1 + 7*8^0 = 8392AF5(十六进制数)=2*16^3 + A*16^2+ F*16^1 + 5*16^0 = 10997二、十进制数化为不同进制数整数部分:除权取余;小数部分:乘权取整例:十进制数13转化成二进制数13/2=6 余16/2=3 余03/2=1 余11/2=0 余1结果:1101三、二进制换算八进制将二进制数从右到左,三位一组,不够补0例:二进制数10110111011换八进制数:010 110 111 011结果为:2673四、二进制转换十六进制二进制数转换为十六进制数的方法也类似,从右到左,四位一组,不够补0如上题:0101 1011 1011结果为:5BB二、简介进制在基数b的位置记数系统(其中b是一个正自然数,叫做基数),b个基本符号(或者叫数字)对应于包括0的最小b个自然数。

要产生其他的数,符号在数中的位置要被用到。

最后一位的符号用它本身的值,向左一位其值乘以b。

一般来讲,若b是基底,我们在b进制系统中的数表示为的形式,并按次序写下数字a0a1a2a3...ak。

这些数字是0到b-1的自然数 [3] 。

一般来讲,b进制系统中的数有如下形式:数和是相应数字的比重 [3] 。

二进制计数17世纪至18世纪的德国数学家莱布尼茨,是世界上第一个提出二进制记数法的人。

用二进制记数,只用0和1两个符号,无需其他符号 [4] 。

二进制数据也是采用位置计数法,其位权是以2为底的幂。

例如二进制数据110.11,逢2进1,其权的大小顺序为2²、2¹、2º、、。

10进制和16进制的转换公式

10进制和16进制的转换公式

10进制和16进制的转换公式一、十进制转十六进制。

1. 整数部分。

- 方法:除16取余法。

将十进制数除以16,取余数,然后将商继续除以16,直到商为0。

最后将所有的余数从右到左排列,得到十六进制数。

- 例如:将十进制数250转换为十六进制。

- 250÷16 = 15·s·s10(余数10在十六进制中用A表示)- 15÷16 = 0·s·s15(余数15在十六进制中用F表示)- 所以,250_(10) = FA_(16)2. 小数部分。

- 方法:乘16取整法。

将十进制小数乘以16,取整数部分,然后将小数部分继续乘以16,直到小数部分为0或者达到要求的精度。

最后将所有的整数部分从上到下排列,得到十六进制小数部分。

- 例如:将十进制小数0.625转换为十六进制。

- 0.625×16 = 10.0,取整数10(十六进制中为A)- 所以,0.625_(10) = 0.A_(16)二、十六进制转十进制。

1. 整数部分。

- 方法:位权展开法。

对于十六进制整数a_na_n - 1·s a_1a_0(a_i为十六进制的数码),其十进制值为a_n×16^n+a_n - 1×16^n - 1+·s+a_1×16^1+a_0×16^0。

- 例如:将十六进制数3A_(16)转换为十进制。

- 3A_(16)=3×16^1+10×16^0=48 + 10=58_(10)(其中A = 10)2. 小数部分。

- 方法:位权展开法。

对于十六进制小数0.b_1b_2·s b_m(b_i为十六进制的数码),其十进制值为b_1×16^- 1+b_2×16^-2+·s+b_m×16^-m。

- 例如:将十六进制小数0.2_(16)转换为十进制。

二、八、十、十六进制之间的相互转换

二、八、十、十六进制之间的相互转换

在计算机应用中,二进制使用后缀B表示;十进制使用后缀D表示,八进制用Q表示,十六制使用后缀H表示。

1、二、八、十六进制数转十进制各位数字分别乖以各自的基数的(N-1)次方,其和相加之和便是相应的十进制数。

个位,N=1;十位,N=2...举例:110B=1*2的2次方+1*2的1次方+0*2的0次方=0+4+2+0=6D110Q=1*8的2次方+1*8的1次方+0*8的0次方=64+8+0=72D110H=1*16的2次方+1*16的1次方+0*16的0次方=256+16+0=272D2、十进制数转二、八、十六进制数方法是相同的,即整数部分用除基取余的算法,小数部分用乘基取整的方法,然后将整数与小数部分拼接成一个数作为转换的最后结果。

要将十进制转为各进制的方式,只需除以各进制的权值,取得其余数,第一次的余数当个位数,第二次余数当十位数,其余依此类推,直到被除数小于权值,最后的被除数当最高位数。

十进制转二进制如:55转为二进制2|5527――1 个位13――1 第二位6――1 第三位3――0 第四位1――1 第五位最后被除数1为第七位,即得110111十进制转八进制如:5621转为八进制8|5621702 ――5 第一位(个位)87 ――6 第二位10 ――7 第三位1 ――2 第四位最后得八进制数:12765十进制数十六进制如:76521转为十六进制16|765214782 ――9 第一位(个位)298 ――14 第二位18 ――10 第三位1 ――2 第四位最后得12AE93、二进制数转换八、十、十六进制数二进制转八进制:从小数点位置开始,整数部分向左,小数部分向右,每三位二进制为一组用一位八进制的数字来表示,不足三位的用0补足,就是一个相应八进制数的表示。

010110.001100B=26.14Q八进制转二进制反之则可。

二进制转十进制:当前位乘以基数2的(N-1)次方计算公式:二进制数据N位数字乘以2的N-1次方的积的总和例:10101011B=( )D数据1 0 1 0 1 0 1 1N-1位7 6 5 4 3 2 1 0相应的十进制值即为:27 +25+23+21+20=128+32+8+2+1=171二进制转十六进制:从小数点位置开始,整数部分向左,小数部分向右,每四位二进制为一组用一位十六进制的数字来表示,不足四位的用0补足,就是一个相应十六进制数的表示。

软考复习(计算机组成原理)

软考复习(计算机组成原理)

整数:
X [X]反= (2n -1)+X 0 ≥ X > -2n-1 2n-1 > X ≥ 0
[+0]反=00000000 ; [-0]反 =11111111
4 移码(增码)表示法
[X]移= 2n-1 + X 2n-1 -1 ≥X≥ -2n-1 X1 = 0101 0101 [X1]补=0101 0101 [X1]移=1101 0101 X2 = -0101 0101 [X2]补=1010 1011 [X2]移=0010 1011
1).R进制转换成十进制的方法 按权展开法:先写成多项式,然后计算十进制结果. N= dn-1dn-2• • • • • •d1d0d-1d-2 • • • • • •d-m =dn-1 ×Rn-1 + dn-2 ×Rn-2 + • • • • • •d1 ×R1 + d0 ×R0 + d-1 ×R-1 + d-2 ×R-2 + • • • • • •d-m ×R-m
码、反码和移码。
原码、补码、反码和移码 及运算
1.原码表示法 符号:用“0”表示正号,用“1”表示负 号 有效值部分:用二进制的绝对值表示。
小数: X 1- 2-(n-1) ≥X≥0 0≥X≥-(1-2-(n-1) )
[X]原 =
1-X=1+|X|
完成下列数的真值到原码的转换 X1 = + 0.1011011 [X1]原=0.1011011 X2 = - 0.1011011 [X2] 原=1.1011011

1. 数值符号的表示
真值和机器数 真值:正、负号加某进制数绝对值的形 式称为真值。如二进制真值: X=+1011 y=-1011 机器数:符号数码化的数称为机器数 如 :X=01011 Y=11011

二进制、八进制、十进制、十六进制之间的转换

二进制、八进制、十进制、十六进制之间的转换

⼆进制、⼋进制、⼗进制、⼗六进制之间的转换⼆进制是Binary,简写为B⼋进制是Octal,简写为O⼗进制为Decimal,简写为D⼗六进制为Hexadecimal,简写为H⽅法为:⼗进制数除2取余法,即⼗进制数除2,余数为权位上的数,得到的商值继续除2,依此步骤继续向下运算直到商为0为⽌。

读数要倒叙读。

⼩数:乘2取整法,即将⼩数部分乘以2,然后取整数部分,剩下的⼩数部分继续乘以2,然后取整数部分,剩下的⼩数部分⼜乘以2,⼀直取到⼩数部分为零。

如果永远不能为零,就同⼗进制数的四舍五⼊⼀样,按照要求保留多少位⼩数时,就根据后⾯⼀位是0还是1,取舍,如果是零,舍掉,如果是1,向⼊⼀位。

换句话说就是0舍1⼊。

读数要从前⾯的整数读到后⾯的整数,即读数要顺序读。

0.125 转⼆进制第⼀步,将0.125乘以2,得0.25,则整数部分为0,⼩数部分为0.25;第⼆步, 将⼩数部分0.25乘以2,得0.5,则整数部分为0,⼩数部分为0.5;第三步, 将⼩数部分0.5乘以2,得1.0,则整数部分为1,⼩数部分为0.0;第四步,读数,从第⼀位读起,读到最后⼀位,即为0.001。

积整数部分0.125 x 2 = 0.25 00.25 x 2 = 0.5 00.5 x 2 = 1.0 1150.125 转⼆进制10010110.0010.45 转⼆进制(保留到⼩数点第四位)第⼀步,将0.45乘以2,得0.9,则整数部分为0,⼩数部分为0.9;第⼆步, 将⼩数部分0.9乘以2,得1.8,则整数部分为1,⼩数部分为0.8;第三步, 将⼩数部分0.8乘以2,得1.6,则整数部分为1,⼩数部分为0.6;第四步, 将⼩数部分0.6乘以2,得1.2,则整数部分为1,⼩数部分为0.2; 算到这⼀步就可以了,因为只需要保留四位⼩数第五步, 将⼩数部分0.2乘以2,得0.4,则整数部分为0,⼩数部分为0.4;第六步, 将⼩数部分0.4乘以2,得0.8,则整数部分为0,⼩数部分为0.8;后⾯会⼀直循环重复第七步, 将⼩数部分0.8乘以2,得1.6,则整数部分为1,⼩数部分为0.6;。

二进制、十进制、十六进制相互转换

二进制、十进制、十六进制相互转换

⼆进制、⼗进制、⼗六进制相互转换1.⼆进制->10进制例如:1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13转化成⼗进制要从右到左⽤⼆进制的每个数去乘以2的相应次⽅不过次⽅要从0开始2.⼆进制转16进制:要将⼆进制转为16进制,只需将⼆进制的位数由右向左每四位⼀个单位分隔,分的不够的前边补零,⽤四位数的⼆进制数来代表⼀个16进制。

说的⽐较啰嗦,就是2^4=16,每四位⼆进制正好是1位16进制例如: 10112->0001 0112->18 (16)3. 10进制->2进制⽤10进制数不断除2,取余,余数倒写。

例如:302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余01/2 = 0 余1 故⼆进制为1001011104. 10进制转16进制:原理与转2进制⼀样,不断除16取余,余数倒写。

例如:23785/16=1486余9,1486/16=92余14,92/16=5余12,5/16=0余5⼗六进制中,10对应为a,11对应为b,15对应为f,再将余数倒写为5ce9,则⼗进制23785=⼗六进制5ce95. 16进制转10进制:与2进制转10进制⼀样。

例如:把上⾯的5ce9转成10进制:9*16^0+e*16^1+c*16^2+5*16^3 = 237856. 16进制转⼆进制:就把⼆进制转16进制倒过来就可以,16进制的每⼀位对应⼆进制的4位。

例如:ABA ->1010 B->1011 AB->10101011。

进制转化公式

进制转化公式

进制转化公式
进制转化公式主要包括二进制转十进制、十进制转二进制、十进制转十六进制和十六进制转十进制四种。

1. 二进制转十进制公式:
将二进制数从左往右排列,分别与2的幂相乘,然后求和。

例如,二进制数1101转化为十进制数的计算公式为:
1 * 2^3 + 1 * 2^
2 + 0 * 2^1 + 1 * 2^0 = 13
2. 十进制转二进制公式:
将十进制数不断地除以2,并记录余数。

直到商为0为止,将记录的余数倒序排列即可。

例如,十进制数26转化为二进制数的计算公式为:
26 ÷ 2 = 商13,余0
13 ÷ 2 = 商6,余1
6 ÷ 2 = 商3,余0
3 ÷ 2 = 商1,余1
1 ÷
2 = 商0,余1
倒序排列余数为11010
3. 十进制转十六进制公式:
将十进制数不断地除以16,并记录余数。

直到商为0为止,将记录的余数倒序排列并转换成对应的字母即可。

例如,十进制数314转化为十六进制数的计算公式为:
314 ÷ 16 = 商19,余10(A)
19 ÷ 16 = 商1,余3
1 ÷ 16 = 商0,余1
倒序排列余数为13A
4. 十六进制转十进制公式:
将十六进制数从左往右排列,分别与16的幂相乘,然后求和。

例如,十六进制数1E转化为十进制数的计算公式为:
1 * 16^1 + 14 * 16^0 = 30
注意:以上都是简化说明,实际计算还需要考虑到进位和进位借位等情况。

二进制_十进制_十六进制之间的转换算法则

二进制_十进制_十六进制之间的转换算法则

二进制_十进制_十六进制之间的转换算法则1.二进制转十进制:二进制是由0和1组成的数制系统。

转换算法如下:-从右向左,每一位的权值是2的n次方,n从0开始递增。

-将每一位上的数字与对应的权值相乘。

-将所有结果相加,得到十进制数。

例如,将二进制数1011转换为十进制数:(1×2³)+(0×2²)+(1×2¹)+(1×2⁰)=8+0+2+1=112.十进制转二进制:十进制是由0-9组成的数制系统。

转换算法如下:-将十进制数除以2,得到的商和余数。

-将余数从下往上排列,得到二进制数。

例如,将十进制数25转换为二进制数:25÷2=12余112÷2=6余06÷2=3余03÷2=1余11÷2=0余13.十进制转十六进制:十六进制是由0-9和A-F(或a-f)组成的数制系统。

转换算法如下:-将十进制数除以16,得到的商和余数。

-将余数从下往上排列,得到十六进制数。

余数大于9时,用A-F表示。

例如,将十进制数137转换为十六进制数:137÷16=8余98÷16=0余8从下往上排列余数得到十六进制数:894.十六进制转十进制:十六进制转换为十进制较为简单,每一位的权值是16的n次方,n从0开始递增。

将每一位上的数字与对应的权值相乘,然后将所有的结果相加,得到十进制数。

例如,将十六进制数3F转换为十进制数:(3×16¹)+(F×16⁰)=48+15=635.二进制转十六进制:二进制转十六进制可以通过二进制转换为十进制,然后十进制转换为十六进制的方法实现。

首先将二进制数转换为十进制数:(1×2⁶)+(1×2⁵)+(0×2⁴)+(1×2³)+(1×2²)+(0×2¹)+(1×2⁰)=64+32+0+8+4+0+1=109然后将十进制数转换为十六进制数:109÷16=6余13、因为13大于9,所以用D表示。

二进制、十进制、八进制、十六进制四种进制之间相互的转换

二进制、十进制、八进制、十六进制四种进制之间相互的转换

二进制、十进制、八进制、十六进制四种进制之间相互的转换一.在计算机应用中,二进制使用后缀b表示;十进制使用后缀d表示八制使用后缀Q表示,十六制使用后缀H表示。

二.二进制,十六进制与十进制的计算转换1.二进制转换为十进制计算公式:二进制数据X位数字乘以2的X-1次方的积的总和例:b=( )d相应的十进制值即为:27 +25+23+21+20=128+32+8+2+1=1712.十六进制转换十进制计算公式:二进制数据X位数字乘以16的X-1次方的积的总和(与二进制转换十制进同理的,将底数换为16)注意:在十六进制中,10-15依次用A,B,C,D,E,F表示例:1F3E H=()d计算:1*16的3次方+15*16的2次方+3*16的1次方+14*16的0次方=1*4096+15*256+3*16+14=7998三.十进制与二进制,十六制的计算转换1.十进制转换为二进制十进制数据数字除以2的余数的逆序组合例:404d=( )b2|404余02|202余02|101余02|50余12|25余02|12余12|6余02|3余12|1计算结果便是:02.十进制转换十六进制。

与上面同理,注意的是10以上的数字用字母表示,除数是16十六进制与二进制的转换,建议通过十进制来进行中转。

带小数点的十进制转换为二进制时同理,小数店后的数位指数为负指数===================================================================== =================关于“进制之间的转换”问题的分析指导在计算机文化一书中,在其中一个章节里面详细介绍了进制之间的转换,而且在考试中进制转换也占了一定的比例,虽然分数不是很多,但是因为平时大家接触的不多,并且有点繁复,所以很多学员在做这种题目,要么选择猜答案,要么选择放弃。

笔者觉得只要掌握了方法,其实这些题目也很简单的,下面我就对进制的转换进行具体的分析和讲解,以供大家参考。

2进制、10进制和16进制的相互转换

2进制、10进制和16进制的相互转换

整数时十进制与二进制相互转换:二进制的1101转化成十进制1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13转化成十进制要从右到左用二进制的每个数去乘以2的相应次方,不过次方要从0开始。

相反,用十进制的13除以2,每除一下将余数就记在旁边,最后按余数从下向上排列就可得到1101。

由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。

这种做法称为“按权相加”法。

2的0次方是12的1次方是22的2次方是42的3次方是82的4次方是162的5次方是322的6次方是642的7次方是1282的8次方是2562的9次方是5122的10次方是10242的11次方是20482的12次方是40962的13次方是81922的14次方是163842的15次方是32768有小数点的十进制与二进制之间的转换:十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。

例如19.95 转2进制分为两个步骤:(1) 小数点前:19/2=9余19/2=4 余14/2=2 余02/2=1 余01/2=0 余1由下往上取余数10011(2) 小数点后0.95*2 = 1.9 取整1(1.9-1)*2 = 1.8 取整1(1.8-1)*2 = 1.6 取整1(1.6-1)*2 = 1.2 取整1(1.2-1)*2 = 0.4 取整0(0.4-0)*2 = 0.8 取整0(0.8-0)*2 = 1.6 取整1(1.6-1)*2 = 1.2 取整1假设小数精度为8位,从上往下去则小数点后为0.11110011故19.95 转化为二进制为10011.11110011整数时八进制数转换为十进制数:八进制就是逢8进1。

八进制数采用0~7这八数来表达一个数。

八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方,以此类推。

二进制、八进制、十进制、十六进制的互相转换

二进制、八进制、十进制、十六进制的互相转换

⼆进制、⼋进制、⼗进制、⼗六进制的互相转换在编程⼯作种,我们时常需要对不同的进制的数进⾏转换,以⽅便我们的⼯作、阅读和理解。

在计算机领域,主要设计⼆进制、⼋进制、⼗进制和⼗六进制,下⾯我们就来讲讲这四种机制的整数相互转换⽅法。

⼀、查表法就是我们制作⼀张包含各种进制的值⼀⼀对应数值表,需要时查表就得,但是,我们知道,这不太现实,因为数是⽆穷的,我们不可能做⼀张⽆穷的表。

在次但是,这也不是说查表法就不⽤了,其实我们⼀直在使⽤,你可能会说,没有,没见过,不对,有的,就在你的脑海⾥,我相信绝⼤部分程序员都有,⽐如,问你,(15)10对应的⼗六进制是多少,你肯定张⼝就答(F)16,为什么你能很快答出,是因为我们在⽇常⼯作和学习中,⽆形在脑海⾥建⽴了这张表。

只是这张表很有限,更⼤的数你就不能⼀⼝答了,所以需要其他的转换⽅法,但是其他⽅法会⽤到查表法。

我们⾄少要建⽴起如下的⼀张表⼆、短除法短除法运算⽅法是先⽤⼀个除数除以能被它除尽的⼀个质数,以此类推,除到商是质数为⽌。

具体在我们的进制换算⾥,当⼀个M进制数转N进制数时,就是⽤这个数除N取余,逆序排列。

具体做法是:将N作为除数,⽤M进制整数除以N,可以得到⼀个商和余数;保留余数,⽤商继续除以N,⼜得到⼀个新的商和余数;仍然保留余数,⽤商继续除以N,还会得到⼀个新的商和余数;如此反复进⾏,每次都保留余数,⽤商接着除以N,直到商为0时为⽌下⾯举例:⼗进制转⼆进制、⼋进制、⼗六进制(10)10--->(x)2结果为(10)10--->(1010)2(100)10--->(x)8结果为(100)10--->(144)8 。

(100)10--->(x)16结果为(100)10--->(64)16⼋进制转⼆进制、⼗进制、⼗六进制(27)8--->(x)2结果为(27)8--->(10111)2(27)8--->(x)10⾸先查表得 (10)10<===>(12)8有如下算式结果为(27)8--->(23)10(756)8--->(x)16⾸先查表得 (16)10<===>(20)8(E)16<===>(16)8有如下算式结果,(756)8--->(1EE)16⼆进制转其他进制和⼗六进制转其他进制我就不⼀⼀举例了,通过上⾯的例⼦,我们可以看到⽤短除法我们是可以进⾏任意进制的相互转换的,同时我们也可以发现,将⾼进制向低进制(只限于这⼏种进制,我们姑且认为⾼低顺序为:⼆进制<⼋进制<⼗进制<⼗六进制)转换时,要先有⼀步进制基数的查表换算过程,在加上我们⼈对⼆、⼋、⼗六进制的四则运算不熟悉,所以这三种进制进⾏短除法换算⽐较困难。

二进制 十进制 十六进制转换

二进制 十进制 十六进制转换

二进制数转换成十进制数二进制的1101转化成十进制1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13 转化成十进制要从右到左用二进制的每个数去乘以2的相应次方不过次方要从0开始相反用十进制的数除以 2 每除一下将余数就记在旁边最后按余数从下向上排列就可得到1101或者用下面这种方法:13=8+4+0+1=8+4+1(算出等于13就行了)由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。

这种做法称为"按权相加"法。

例如二进制数1000110转成十进制数可以看作这样:数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后十进制数即2的2-1次方+2的3-1次方+2的7-1次方即2+4+64=70 次方数即1的位数减一。

2的0次方是1 2的1次方是2 2的2次方是4 2的3次方是8 2的4次方是16 2的5次方是32 2的6次方是64 2的7次方是128 2的8次方是256 2的9次方是512 2的10次方是1024 2的11次方是2048 2的12次方是4096 2的13次方是8192 2的14次方是16384 2的15次方是32768 2的16次方是65536 2的17次方是131072 2的18次方是262144 2的19次方是524288 2的20次方是1048576编辑本段十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。

1. 十进制整数转换为二进制整数十进制整数转换为二进制整数采用"除2取余,逆序排列"法。

具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

进制转化公式

进制转化公式

进制转化公式进制转换是数学中一项重要的技巧,在日常生活和学术研究中具有广泛的应用。

它可以将一个数字在不同的进制之间进行转换,例如二进制、十进制、八进制和十六进制等。

进制转换有一套公式和方法,通过这些公式和方法,我们可以准确地将一个数字从一种进制转换为另一种进制。

本文将介绍进制转换的公式并详细说明其应用。

首先,我们来介绍几种常见的进制,它们分别是二进制、十进制、八进制和十六进制。

二进制是计算机中常用的进制,它只包含两个数字0和1。

十进制是我们平常使用的进制,它包含十个数字0到9。

八进制是一种较少使用的进制,它包含八个数字0到7。

十六进制是计算机中也较为常见的进制,它包含十六个数字0到9和字母A到F。

要理解进制转换的公式,首先需要了解在不同进制下的数字表示方法。

以十进制为例,一个数字的每一位的权值是10的幂,从右到左分别为10^0、10^1、10^2等。

例如,数字123表示为1×10^2 +2×10^1+ 3×10^0。

同样地,在二进制中,一个数字的每一位的权值是2的幂。

例如,二进制数1101表示为1×2^3 + 1×2^2 + 0×2^1 + 1×2^0。

有了这些基础知识,接下来我们介绍进制转换的公式。

首先是二进制转换为十进制的公式。

假设一个二进制数为b1b2b3...bn,其中bi为二进制的每一位数字。

那么它对应的十进制数为b1×2^(n-1) +b2×2^(n-2) + ... + bn×2^0。

接下来是十进制转换为二进制的公式。

对于一个十进制数d,我们可以通过除以2的操作来将其转换为二进制。

具体方法是:将d除以2,得到商和余数。

将余数写在一边,然后将商再次除以2,得到新的商和余数,将余数写在前一个余数的左边。

以此类推直到商为0为止,最后将余数按从右到左的顺序排列就得到了对应的二进制数。

接下来是十进制转换为八进制的公式。

各进制间相互转换

各进制间相互转换

各进制间相互转换1、⼗进制转⼆进制 ⼗进制数除2取余法,即⼗进制数除2,余数为权位上的数,得到的商值继续除(余数倒序)2、⼆进制转⼗进制 把⼆进制数按权展开、相加即得⼗进制数 10010110 76543210 1*2^7 + 0*2^6 + 0*2^5 + 1*2^4 +0*2^3 + 1*2^2 + 1*2^1 + 0*2^03、⼋进制转⼆进制 ⼋进制数通过除2取余法,得到⼆进制数,对每个⼋进制为3个⼆进制,不⾜时在最左边补零。

(余数倒序) 226 100101104、⼆进制转⼋进制 3位⼆进制数按权展开相加得到1位⼋进制数。

(注意事项,3位⼆进制转成⼋进制是从右到左开始转换,不⾜时补0) 10010110 010 010 110 0*2^2 + 1*2^1 +0*2^0 0*2^2 + 1*2^1 +0*2^0 1*2^2 + 1*2^1 +0*2^0 2 2 65、⼗六进制转⼆进制 ⼗六进制数通过除2取余法,得到⼆进制数,对每个⼗六进制为4个⼆进制,不⾜时在最左边补零(余数倒序) 12C 1001011006、⼆进制转⼗六进制 与⼆进制转⼋进制⽅法近似,⼋进制是取三合⼀,⼗六进制是取四合⼀。

(注意事项,4位⼆进制转成⼗六进制是从右到左开始转换,不⾜时补0) ⼗进制 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ⼗六进制 1 2 3 4 5 6 7 8 9 A B C D E F 100101100 0001 0010 1100 0*2^3 + 0*2^2 + 0*2^1 + 1*2^0 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 1*2^3 + 1*2^2 + 0*2^1 + 0*2^0 1 2 C 12C7、⼗进制与⼋进制与⼗六进制之间转换 ①、转换为⼆进制在转换 ②、直接法—把⼗进制转⼋进制或者⼗六进制按照除8或者16取余,直到商为0为⽌(余数倒序) ③、⼋进制或⼗六进制转换为⼗进制,把⼋进制、⼗六进制数按权展开、相加即得⼗进制数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机内部是以二进制形式表示数据和进行运算的;计算机内的地址等信号常用十六进制来表示,而人们日常又习惯用十进制来表示数据。

这样要表示一个数据就要选择一个适当的数字符号来规定其组合规律,也就是要确定所选用的进位计数制。

各种进位制都有一个基本特征数,称为进位制的“基数”。

基数表示了进位制所具有的数字符号的个数及进位的规律。

下面就以常用的十进制、二进制、八进制和十六进制为例,分别进行叙述。

一.常用的三种计数制1.十进制(Decimal)十进制的基数是10,它有10个不同的数字符号,即0、1、2、3、…、9。

它的计数规律是“逢十进一”或“借一当十”。

处在不同位置的数字符号具有不同的意义,或者说有着不同的“权”。

所谓的“权”就是每一位对其基数具有不同的倍数。

例如,一个十进制数为123.45=1×102十2×101十3×100十4×10-1十5×10-2等号左边为并列表示法.等号右边为多项式表示法,显然这两种表示法表示的数是等价的。

在右边多项式表示法中,1、2、3、4、5被称为系数项,而102、101、100、10-1、10-2等被称为该位的“权”。

一般来说,任何一个十进制数”都可以采用并列表不法表不如下:N10=dn-1d n-2…d1d 0. d-1d-2…d-m其中,下标n表示整数部分的位数,下标m表示小数部分的位数,d是0~9中的某一个数,即di∈(0,1,…,9)。

同样,任意一个十进制数N都可以用多项式表示法表示如下:N10=dn-1×10n-1十…十d1×101十d 0×100十d-1×10-1十…十d-m×10-m其中,m、n为正整数,di表示第i位的系数,10i称为该位的权。

所以某一位数的大小是由各系数项和其权值的乘积所决定的。

2.二进制(Binary)二进制的基数是2,它只有两个数字符号,即0和1。

计算规律是“逢二进一”或“借一当二”。

例如:(101.01)2=1×23十1×22十0×21十1×20十0×2-1十1×2-2任何一个二进制数N都可以用其多项式来表示:N2=dn-1×2n-1十dn-2×2n-2十…十d1×21十d 0×20十d-1×2-1十d-2×2-2十…十d-m×2-m式中任何一位数值的大小都可以用该位的系数项di和权值2i的积来确定。

3.十六进制(Hexadecimal)十六进制的基数为16,它有16个数字符号、即0~9、A~F。

其中A、B、C、D、E、F分别代表十进制数的10、11、12、13、14、15。

各位之间“逢十六进一”或者“借一当十六”。

各位的权值为16i。

例如:(2C7.1F)16=2×162十12×161十7×160十1×16-1十15×16-2二.3种计数制之间的相互转换对于同一个数,可以采用不同的计数制来表示,其形式也不同。

如:(11)10=(1011)2=(B)161.R进制转换成十进制的方法具体的方法是先将其并列形式的数写成其多项式表示形式,然后,经计算后就可得到其十进制的结果。

这种方法披称为按权展开法。

对于一个任意的R进制数N都可以写成如下形式:N=dn-1 dn-2…d1 d0d -1d-2…d-m=dn-1×Rn-1十…十d1×R1十d 0×R0十d-1×R-1十…十d-m×R-m其中,R为进位基数,Ri是对应位的权值,di为系数项,特此式求和计算之后,即可以完成R进制数对十进制数的转换。

例如,写出(1101.01)2、(10D)16的十进制数。

(1101.01)2=1×23十1×22十0×21十1×20十0×2-1十0×2-2,=8十4十1十0.25=13.25(10D) 16=1×162十0×161十13×160=256+13=2692.十进制转换成二进触方法十进制数转换成二进制数一般分为两个步骤,即整数部分的转换和小数部分的转换。

(1)整数部分的转换除2取余法:这种方法是由于D10=N2=dn-1×2n-1十dn-2×2n-2十…d1×21十d0×20,所以具体方法是把给定的十进制整数除以2,取其余数作为二进制整数最低位的系数do,然后继续将整数部分除以2,所得余数作为二进制整数次低位的系数d1,一直重复下去,最后可以得到二进制整数部分。

例如,将(327)10转换成二进制数。

327余数各项系数除以2=163…1d0……81…1d1……40…1d2……20…0d3……10…0d4……5…0d5……2…1d6……1…0d7……0…1d8所以,(327)10=d8 d7 d6 d5 d4 d3 d2d1 d0=(101000111)2。

此方法可扩展为陈R取余法。

如将R设为16,则可将十进制整数转变为十六进制整数。

减权定位法:因为D10=N2=dn-1×2n-1十dn-2×2n-2十…d1×21十d0×20,所以二进制多项式中的每一项都有自己的权值。

若该项系数值为d i=0,则该项值为0,否则d i应为1。

根据这一对应关系,可提出减权定位的转换方法:将十进制数依次从二进制高位权值进行比较:若够减则对应位d i=1,减去该位权值后再往下比较;若不够减则对应值d i=0,越过该位与低一位的权值比较,如此进行直到余数为0为止。

例如,将(327)10转换成二进制数。

因为512(29)>327>256(28),所以从权值256对应值开始比较。

减权比较di位权327-256=71 1 2871<12802771-64=71267<320257<160247<80237-4=31223-2=11211-1=0120所以,(327)10=(101000111)2。

(2)小数部分的转换转换的方法是采用乘2取整数表示法。

由于D10=d-1×2-1十d-2×2-2十…d-m×2-m,所以具体方法是把给定的十进制小数乘以2,取其整数部分作为二进制小数的小数点后的第一位系数;然后再将乘积的小数部分继续乘以2,取所得积的整数部分作为小数后的第二位系数;依次重复做下去,就可以得到二进制小数部分。

例如,将(0.8125) 10。

转换成二进制小数。

整数部分系数部分2×0.8125=1.6251d-1=12×0.625=1.251d-2=12×0.25=0.50d-3=02×0.5=1.01d-4=1所以,(0.8125)10=d0 d-1 d-2 d-3 d-4=(0.1101)2。

在计算中可以按照所需的小数点位数,取其结果位近似值。

此方法可以扩展为乘R取整法.如将R变为16,则可将十进制小数部分直接变为十六进制小数。

3.二进制与十六进制的转换(1)二进制转换成十六进制4位二进制数的所有组合可表示十六进制数的16个代码,它们之间的对应关系如下:二进制:0000 0001 0010 0011 0100 0101 0110 0111十六进制:0 1 2 3 4 5 6 7二进制:1000 1001 1010 1011 1100 1101 1110 1111十六进制:8 9 A B C D E F进制转换的具体方法:从小数点开始,分别向左、向右,每4位二进制数为一组用十六进制数值来书写。

若小数点左侧位数不是4的倍数,则最左侧用0补充;若小数点右侧位数不是4的倍数,则最右侧用0补充。

例如,(110110111.01101)2=(0001 1011 0111.0110 1000) 2=(1B7.68) 16。

(2)十六进制转换成二进制具体的转换方法是:将每个十六进制数用4位二进制数来书写,转化后最左侧或者最右侧的0在书写的时候可以省去。

例如:(7AC.DE) 16=(111 1010 1100.1101 111)2例1:把(5/16) 10转换成二进制数。

解:5/16=5×2-4=(101) 2×(0.0001) 2=(0.0101) 2小数点向左移4位等于乘以2-4。

例2:把(19.125) 10转换成二进制数、十六进制数。

解:首先把整数部分(19) 10转换成二进制数:(19) 10=16十2十1=24十21十20=(10011) 2再把小数部分(0.125) 10转换成二进制数:0.125×2=0.2500.25×2=0.500.5× 2=1 1所以,(0.125) 10=(0.001) 2。

把整数与小数部分合起来结果为(19.125) 10=(10011.001) 2=(13.2) 16。

相关文档
最新文档