2.2.1对数与对数运算(第一课时)

合集下载

人教A版数学必修1课件:2.2.1对数及对数运算(1)

人教A版数学必修1课件:2.2.1对数及对数运算(1)

(1)54=625
(2) 2
6
1 64
1 m (3) ( ) 5.73 3
(5)
(4)
log 1 16 4
2
lg 0.01 2 (6) ln10 2.303
典 例 分 析 例2 求下列各式中x的值
(1)
(3) lg100
2 log 64 x 3
(2) (4)
log x 8 6
为底的对数叫自然对数(naturallogarithm),
为了简便,N的自然对数简记作lnN。
3. 几个常用的结论 (1)负数与零没有对数 (2) loga 1 0 (3) loga a 1 (4)对数恒等式:a 请同学们记下!
loga N
N
典 例 分 析
例1.将下列指数式化为对数式,对数式化为指数式.
4. 特殊的两种对数:
5.几个常用结论: 课后作业(自主学习册) 今日上交 P63 Ⅰ类题 P64Ⅱ类题 P64Ⅲ类题
若2x=15,则x= 若3x=8,则x=
2
3
3
7
4 若3x=9,则x= log 2 15
log 3 8
2
已知底数和幂的值,如何求指数呢?
1. 对数的定义
一般地,如果 a N a 0, a 1, 那么数 x叫做以a为底N的对数, 记作 ,a N x log
x
其中a叫做对数的底数,N叫做真数. 思考1:那么如何记忆呢?
§2.2.1 对数及对数运算
第一课时 对数
学习目标
1. 理解对数的定义. 2. 掌握指数式与对数式互换互化.(重点) 3.特殊的两种对数及常用结论.(重点)
新 课 引 入 练习:

2.2.1 对数及对数运算(1)

2.2.1 对数及对数运算(1)
2 ln e x 4因为 ln e x, 所以
2
因此e x e2
于是x 2
P64 1,2,3
1 log3 1 0 2 lg1 0 3 log0.5 1 0 4 ln1 0
loga 1 0
a =1
0
1 log3 3 2 lg10 1

2

(2)
log2 log3 log4 x 0
log2 3
7 0.4
aa N
b
a 0, 且a 1
log a N b
(1)负数与零没有对数 (2) loga 1 0 (3) loga a 1
(4)对数恒等式:a
loga N
N
5 loga a
n
n
例3、求 x 的值: (1)
2
log2x 1 3x 2x 1 1
1 6
1 3 6

2 2
1 2
1 log10 10
3
3
2 log10 1
0
以10为底的对数叫做常用对数:
log10 N lg N
3 loge e
1
4 loge 1
0
以e为底的对数叫做自然对数:
loge N ln N
例1:将下列指数式化为对数式,对数式化 为指数式.
1
3 log0.5 0.5 1 4 ln e 1
loga a 1
a =a
1
1 log3 3 4 5 2 log0.9 0.9 5
4
loga a n
n
3 ln e
8

8
4 2 3 log 0.6 0.6 5 7 log 89 89 6 0.4

(人教a版)必修一同步课件:2.2.1(第1课时)对数

(人教a版)必修一同步课件:2.2.1(第1课时)对数

2.从“三角度”看对数式的意义 角度一:对数式logaN可看作一种记号,只有在 a>0,a≠1,N>0时才有意义. 角度二:对数式logaN也可以看作一种运算,是在已知ab=N 求b的前提下提出的. 角度三:logaN是一个数,是一种取对数的运算,结果仍是一个 数,不可分开书写,也不可认为是loga与N的乘积. 3.loga1=0和logaa=1(a>0且a≠1)的应用 主要应用于求真数为1的对数值和真数与底数相等的对数值.
(2) l=og-1 9 2.
3
(4)( )-12=3.
3
(5)10-1.299=b. (6)e0.693=2.
【拓展提升】 1.对数中底数和真数的取值范围 (1)底数的取值范围:根据指数式与对数式的互化可知对数中的 底数也要大于0且不等于1. (2)真数的取值范围:根据指数式与对数式的互化可知:对数式 中的真数实际上是指数式中的幂,由于已经规定底数大于0且 不等于1,所以幂(即真数)为正数.因此,在解决含有对数式的 问题时,一定要注意真数的取值范围,保证真数大于0.
【知识点拨】
1.对数logaN中规定a>0且a≠1的原因
(1)a<0时,N取某些值时,logaN不存在,如根据指数的运算
性质可知,不存在实数x使( )1x=2成立,所以
2
log不(1)存2 在,
2
所以a不能小于0.
(2)a=0时,N≠0时,不存在实数x使ax=N,无法定义logaN;N=0 时,任意非零实数x,有ax=N成立,logaN不确定. (3)a=1时,N≠1,logaN不存在;N=1,loga1有无数个值,不能 确定.
【解析】1.选B.由对数的概念可知使对数loga(-2a+1)有意义
a 0,

2.2.1对数与对数运算 第一课时

2.2.1对数与对数运算 第一课时
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
2.2 2.2.1
对数函数 对数与对数运算
第 1 课时
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
想一想: 1. 一般地, 如果 ax=N(a>0, a≠1), 且 那么数 x 叫做以 a 为底 N 的对数, 记作 x=logaN, 其中 a 叫做对数的底数,N 叫做真数. 2.对数 loga N(a>0,且 a≠1)具有下列简单性质: (1)零和负数没有对数,即 N>0; (2)1 的对数为零,即 loga1=0; (3)底的对数等于 1,即 logaa=1. 3.常用对数:通常我们将以 10 为底的对数叫做常用对数.记作 lg_N. 4.自然对数:以 e 为底的对数称为自然对数.记作 ln_N. 5.对数与指数间的关系:当 a>0,a≠1 时,ax=N⇔x=logaN. 6.对数恒等式:alogaN=N.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
变式训练 11:已知 loga2=m,loga3=n,求 a2m
解:∵loga2=m,loga3=n ∴am=2,an=3 + ∴a2m 3n=a2m·3n=22×33=108. a
+ 3n
的值.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
对数的性质 【例 2】 求下列各式中 x 的值. (1)log2(log5x)=0; (2)log3(lg x)=1; 1 (3)log( 2-1) =x. 3+2 2

对数与对数运算(第一课时)教学设计

对数与对数运算(第一课时)教学设计
学生初次接触对数这一全新的概念,认识及应用需要一个过程.在教学过程中,借指数式演化到对数式,引导学生认清各部分关系,从而,将对数这一新知纳入已有的知识结构中.
教学内容分析
教学重点:对数式与指数式的互化以及对数运算性质
教学难点:推导对数运算性质
教学模式
“传递──接受式”与“探究式教学”相结合
教学主题
掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握
2.通过观察,探究,分析掌握指数式与对数式的互化。
(三)情感、态度和价值观
1.对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;
2.通过对数的运算法则的学习,培养学生的严谨的思维品质;
3.在学习过程中培养学生探究的意识;
学情分析
高一学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.学生已经完成了分数指数幂和指数函数的学习,了解了研究函数的一般方法,经历了从特殊到一般,具体到抽象的研究过程.
例题讲解(性质应用)
例2用 , , 表示下列各式:
(1) (2)
解:(1)
(2)
=
例3求下列各式的值:
(1) (2)
解:(1)
(2)
(七)评价与小结
1.对数定义(关键)
2.指数式与对数式互换(重点)
式子
名称
----幂的底数
----幂的指数
----幂值
----对数的底数
----以 为底 的对数
----真数
(停顿)这是因为 ,所以 。因此, 中真数N也要求大于零,所以在 , 的条件下,指数式与对数式是可以相互转化的。
由真数 ,得到负数与零一定没有对数。

改变教学方式注重主体参与——“2.2.1对数与对数运算(第一课时)”教学实录与评析

改变教学方式注重主体参与——“2.2.1对数与对数运算(第一课时)”教学实录与评析

【 点评】教师 以问题 3为载体 ,引导学 生思考接下来应该研 生 :因为 Y=lg o ̄ x与 =a 等价 ,所以两个式子 中 n的取值 究解决 的问题是对数函数的图象 与性质. 此过程 中学生需要 思 y 在

样.
考 研 究 函 数 图 象 的 一般 方 法 ( 从特 殊 到 一般 ) 即 ,还 要 动 手 实 践
师 :说得 有道 理 !把 Y= ( a>0 ,且 a )化 为对 数式 象) 、Ⅱ ≠1 , 、Y的取值 范 围是什 么 ,Y=lg 的结构特征是 什 么. og
时 , 等于什么 ?
生 3 =lg : o #.
学生通过积极 的思考和 活动 ,从具体 到抽象 的过程 中主动地获
() 1 Y=l  ̄ o x的图象都过定点 g
般地 ,把 函数 Y=l  ̄ ( o x n>0 g ,且 。 ) 叫做对 数 函数 , ≠1
其 中 自变量 ∈( ,+。 . 0 o)
() 2 Y=lg oa x的图象都 在


轴的



侧 ,且 以



师 :注意函数 Y l 与函数 = 都是一个整体 ,不能割 为渐近线. =o ( ) 0<a<1 ,Y=lg 3 当 时 oa X的图象 呈 裂开.继续思考有何特征? 趋势 ; >1 o x的图象呈 g 生。 :右边对数式 的系数与指数都为 1 的系数与指数也都 。 时 ,Y=l . ,
符合 我们 的认识规律.在下列坐标系 中,已经给 出了Y=lg o2 x与
Y = lg o

的图象 ,请用列表 、描点 、连线 的方法 ,在 此坐标 系


o x与 g o x的 图象 .( g 图略 . ) 生 :常数 。 应该 与指数 函数 中 a的取值 一样 ,自变量 与 中 画 出 Y=l 3 Y=l & ( 师 引领 学 生 完成 填 表 ,描 点 、连 线 由 学 生 完成 . 教 )

2.2.1对数与对数运算1

2.2.1对数与对数运算1

自测自评
1.下列各式中正确的有____4____个.
①log4 16 =2;②log16 4 =12; ③lg 100=2;④lg 0.01=-2.
2.已知
1 logx16
=-4,则x=____2____.
3.若logx7 y =z,则____B____.
A.y7=xz
B.y=x7z
C.y=7xz
一、选择填空题
1.将下列指数式写成对数式:
(1)2-6=
1 64
,____________;
(2)___________.
2.将下列对数式写成指数式:
(1)log327=a,______; (2)lg 0.01=-2,________.
1.(1)log2614=-6 (2)log135.73=m 2.(1)3a=27 (2)10-2=0.01
(2)设a>0,a≠1,则有a0=1 ,∴loga1=0,即1的对数 为0;
(3)设a>0,a≠1,则有a1=a ,∴logaa=1,即底数的 对数为1.
4.对数恒等式
(1)如果把ab=N中的 b写成logaN,则有:alogaN=N; (2)如果把x=logaN中的N 写成ax,则有logaax=x.
例如:将指数式化为对数式: ①42=16,________;②102=100,________; ③4=2,________; ④10-2=0.01,________. (1)以10为底的对数叫做常用对数,并把常用对数log10N 简记为lgN; ①log416=2;②log10100=2; ③log42=12;④log100.01=-2
D.y=z7x
1.根据需要可将指数式与对数式相互转化,从而实 现化难为易,化繁为简.

2.2.1对数与对数运算

2.2.1对数与对数运算

2.2.1对数与对数运算(第一课时)教学目标:(1)掌握对数的概念与指、对数之间的关系; (2)自然对数和常用对数; (3)掌握对数式与指数式的互化; (4)掌握对数的基本运算性质. 教学重点: 对数概念的理解,对数式与指数式的相互转化. 教学难点: 对数概念的理解. 教学过程 (一)对数的概念若N a x =)1,0(≠>a a ,则x 叫做以.a 为底..N 的对数(Logarithm ), 记作:N x a log =其中a — 底数,N — 真数,N a log — 对数式 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =⇔=log ;并解决问题3 ○3 注意对数的书写格式. (二)对数的性质(1)负数和零没有对数;N >0; (2)1的对数是零:01log =a ; (3)底数的对数是1:1log =a a ; (4)对数恒等式:N a Na=log;(5)n a n a =log . (三)两种特殊的对数:常用对数:以10为底的对数叫作常用对数,并把记作10log lg N N 记为; 自然对数:以无理数2.71828为底的对数叫自然对数,并把e log ln N N 记为; (四)应用举例例1将下列指数式写成对数式,对数式写成指数式: (1)54=625; (2)2-6=641; (3)(31)m =5.73; (4)log 2116=-4; (5)lg0.01=-2; (6)ln10=2.303. 例2求下列各式中x 的值:(1) l og 64x=32-; (2)log x 8=6; (3)lg100=x; (4)-lne 2=x. 变式训练:①log 4x=21;②log x 27=43;③log 5(log 10x )=1. 例3以下四个命题中,属于真命题的是( )(1)若log 5x=3,则x=15 (2)若log 25x=21,则x=5 (3)若log x 5=0,则x=5 (4)若log 5x=-3,则x=1251A.(2)(3)B.(1)(3)C.(2)(4)D.(3)(4) 答案:C例4对于a >0,a≠1,下列结论正确的是( )(1)若M=N,则log a M=log a N (2)若log a M=log a N,则M=N (3)若log a M 2=log a N 2,则M=N(4)若M=N,则log a M 2=log a N 2A.(1)(3)B.(2)(4)C.(2)D.(1)(2)(4) 答案:C(五)(做一做)练习: 1.求下列各式的值:51log 25() 212l o g 16() 3l g 100() l g 0.00(4) 2.求下列各式的值15log 15(1) 0.4l o g 1(2) 9l o g 81(3) 2.5log 6.25(4) 7l o g 343(5) 3log 243(6) (七)作业布置书本64页练习1,2,3,4 1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 2.把下列各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a. 3.求下列各式中x 的值:(1)log 8x=32 ; (2)log x 27=43; (3)log 2(log 5x )=1; (4)log 3(lgx )=0. 4.计算(1)求log 84的值;(2)已知log a 2=m,log a 3=n,求a2m +n的值.第二课时教学目标掌握对数运算的性质 会利用指数运算公式进行推导 会运用运算性质进行化简求值 教学重点对数运算性质 教学难点利用运算性质化简、求值 教学过程(1)正因数积的对数等于同一底数各个因数的对数的和,即log a (MN )=log a M+log a N .注:M >0,N >0;a >0且a ≠1.(2)两个正数的商的对数等于被除数的对数减去除数的对数.例题 lg20-lg2=?例1 计算:(3)正数的幂的对数等于幂的底数的对数乘以幂指数.即log a (N )n =n ·log a N .(4)正数的正的方根的对数等于被开方数的对数除以根指数.即总结:对数的运算性质:如果0,0,10>>≠>N M a a 且则 (1)N M MN a a a log log )(log += (2)N M N Ma a alog log log -=(3)N n N a n a log )(log ⋅=例2 用log a x ,log a y ,log a z 表示下列各式:解:(注意(3)的第二步不要丢掉小括号.) 例3 计算:解:(生板书)(1)log 2(47×25)=log 247+log 225=7log 24+5log 22=7×2+5×1=19.第三课时教学目标掌握换底公式的内容,会对换底公式进行推导 教学重点换底公式及其应用 教学难点换底公式的递推公式 教学过程 换底公式:a b a log Nlog N (a,b 0,a,b 1,N 0)log b=>≠> 1. 证明:abb c c a log log log =(由脱对数→取对数引导学生证明) 证明:设x b a =l o g ,则b a x =两边取c 为底的对数,得:b a x b ac c c x c log log log log =⇒= a b x c c log log =∴,即abb c c a l o g l o g l o g =注:公式成立的条件:1,0,0,1,0≠>>≠>c c b a a ; 2. 由换底公式可推出下面两个常用公式:(1)ab b a log 1log =(2)b n m b a m a n log log =例题解析例题1:求32log 9log 278⋅的值; 分析:利用换底公式统一底数; 解法(1):原式=9103lg 32lg 52lg 33lg 227lg 32lg 8lg 9lg =⋅=⋅ 解法(2):原式=9103log 3533log 227log 32log 8log 9log 222222=⋅=⋅ 例题2:求证:z z y x y x log log log =⋅分析(1):注意到等式右边是以x 为底数的对数,故将z y log 化成以x 为底的对数;证明:z yzy z y x x x x y x log log log log log log =⋅=⋅ 分析(2):换成常用对数注:在具体解题过程中,不仅能正用换底公式,还要能逆用换底公式,如:z xzx log lg lg =就是换底公式的逆用; 例题3.已知518,9log 18==b a ,求45log 36的值(用a ,b 表示)分析:已知对数和幂的底数都是18,所以先将需求值的对数化为与已知对数同底后再求解;解:b a ==5log ,9log 1818 ,一定要求a -=12log 18aba -+=++==22log 15log 9log 36log 45log 45log 181818181836 强化练习(1)50lg 2lg 5lg 2⋅+(2)91log 81log 251log 532⋅⋅ (3))8log 4log 2)(log 5log 25log 125(log 125255842++++ (4)已知a =27log 12,试用a 表示16log 6; 归纳小结,强化思想1.对数运算性质2.换底公式:abb c c a log log log = 3.两个常用公式:(1)ab b a log 1log =(2)b n m b a m a n log log =作业布置 1、补充:(1)12527lg81lg 6log 2+⋅ (2)41log3log 8log 2914+- (3)已知514,7log 14==b a ,求28log 35 巩固提高练习2.计算下列各式的值 例2.已知lg2=a ,lg3=b ,请用a ,b 表示下列各式的值()252log 4⋅()31log 6()32log 5()8271log 9log 32⋅。

2.2.1对数与对数运算(一)

2.2.1对数与对数运算(一)

2.2.1对数与对数运算(一)教学目标(一) 教学知识点1. 对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用.教学重点对数的定义.教学难点对数概念的理解.教学过程一、复习引入:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?()x %81+=2⇒x =?也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容:定义:一般地,如果 ()1,0≠>a a a 的b 次幂等于N ,就是N a b=,那么数 b 叫做以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数.b N N a a b =⇔=log例如:1642= ⇔ 216log 4=; 100102=⇔2100log 10=;2421= ⇔212log 4=; 01.0102=-⇔201.0log 10-=. 探究:1。

是不是所有的实数都有对数?b N a =log 中的N 可以取哪些值?⑴ 负数与零没有对数(∵在指数式中 N > 0 )2.根据对数的定义以及对数与指数的关系,=1log a ? =a a log ? ⑵ 01log =a ,1log =a a ;∵对任意 0>a 且 1≠a , 都有 10=a ∴01log =a 同样易知: 1log =a a⑶对数恒等式如果把 N a b= 中的 b 写成 N a log , 则有 N aNa =log .⑷常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数N 10log 简记作lgN . 例如:5log 10简记作lg5; 5.3log 10简记作lg3.5.⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数N e log 简记作lnN . 例如:3log e 简记作ln3; 10log e 简记作ln10.(6)底数的取值范围),1()1,0(+∞ ;真数的取值范围),0(+∞. 三、讲解范例:例1.将下列指数式写成对数式:(1)62554= (2)64126=- (3)273=a(4)73.531=m )( 解:(1)5log 625=4; (2)2log 641=-6; (3)3log 27=a ; (4)m =73.5log 31. 例2. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.解:(1)16)21(4=- (2)72=128; (3)210-=0.01; (4)303.2e =10.例3.求下列各式中的x 的值: (1)32log 64-=x ; (2)68log =x (3)x =100lg (4)x e =-2ln 例4.计算: ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345.解法一:⑴设 =x 27log 9 则 ,279=x3233=x, ∴23=x ⑵设 =x 81log 43 则()8134=x, 4433=x , ∴16=x⑶令 =x ()()32log 32-+=()()13232log -++, ∴()()13232-+=+x, ∴1-=x⑷令 =x 625log 345, ∴()625534=x, 43455=x , ∴3=x解法二:⑴239log 3log 27log 239399===; ⑵16)3(log 81log 1643344== ⑶()()32log 32-+=()()132log 132-=+-+;⑷3)5(log 625log 334553434==四、练习:(书P64`)1.把下列指数式写成对数式(1) 32=8; (2)52=32 ; (3)12-=21; (4)312731=-.解:(1)2log 8=3 (2) 2log 32=5 (3) 2log 21=-1 (4) 27log 31=-312.把下列对数式写成指数式(1) 3log 9=2 ⑵5log 125=3 ⑶2log 41=-2 ⑷3log 811=-4 解:(1)23=9 (2)35=125 (3)22-=41 (4) 43-=811 3.求下列各式的值(1) 5log 25 ⑵2log 161⑶lg 100 ⑷lg 0.01 ⑸lg 10000 ⑹lg 0.0001 解:(1) 5log 25=5log 25=2 (2) 2log 161=-4 (3) lg 100=2 (4) lg 0.01=-2 (5) lg 10000=4 (6) lg 0.0001=-4 4.求下列各式的值(1) 15log 15 ⑵4.0log 1 ⑶9log 81 ⑷5..2log 6.25 ⑸7log 343 ⑹3log 243 解:(1) 15log 15=1 (2) 4.0log 1=0 (3) 9log 81=2 (4) 5..2log 6.25=2 (5) 7log 343=3 (6) 3log 243=5 五、课堂小结⑴对数的定义; ⑵指数式与对数式互换; ⑶求对数式的值.2.2.1对数与对数运算(二)教学目标(三) 教学知识点对数的运算性质. (四) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程; 3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值; 5.明确对数运算性质与幂的运算性质的区别. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题.教学重点证明对数的运算性质.教学难点对数运算性质的证明方法与对数定义的联系.教学过程一、复习引入:1.对数的定义 b N a =l o g 其中 ),1()1,0(+∞∈ a 与 ,0(+∞∈N 2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且3.重要公式:⑴负数与零没有对数; ⑵01log =a ,log =a a⑶对数恒等式N aNa =log4.指数运算法则 )()(),()(),(R n b a ab R n m aa R n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log NM log 1N log M log (MN)log a n a a a a a a a ∈=-=+=证明:①设a log M =p , a log N =q . 由对数的定义可以得:M =pa ,N =qa . ∴MN = pa qa =qp a+ ∴a log MN =p +q , 即证得a log MN =a log M + a log N .②设a log M =p ,a log N =q . 由对数的定义可以得M =pa ,N =qa .∴q p q pa aa N M -== ∴p N M a -=log 即证得N M N M a a a log log log -=. ③设a log M =P 由对数定义可以得M =pa ,∴nM =npa ∴a log nM =np , 即证得a log nM =n a log M .说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式. ①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如110log 2log 5log 101010==+. ③真数的取值范围必须是),0(+∞:)5(log )3(log )5)(3(log 222-+-=-- 是不成立的. )10(log 2)10(log 10210-=-是不成立的. ④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠,N M N M a a a log log )(log ±≠±.2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zyx zxya a . 解:(1)zxyalog =a log (xy )-a log z=a log x+a log y- a log z (2)32log zyx a=a log (2x3log )z y a -= a log 2x +a log 3log z y a -=2a log x+z y a a log 31log 21-.例2. 计算(1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg 解:(1)5log 25= 5log 25=2 (2)4.0log 1=0.(3)2log (74×25)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19.(4)lg 5100=52lg1052log10512==. 例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+(3) .18lg 7lg 37lg214lg -+- 说明:此例题可讲练结合.解:(1) 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+=2lg )2lg 5(lg 5lg ++=2lg 5lg +=1;(2) 25log 20lg 100+=5lg 20lg +=100lg =2; (3)解法一:lg14-2lg37+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.解法二:lg14-2lg37+lg7-lg18=lg14-lg 2)37(+lg7-lg18=lg 01lg 18)37(7142==⨯⨯评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质. 例4.已知3010.02lg =,4771.03lg =, 求45lg例5.课本P66面例5.20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M ,其计算公式为 M =lg A -lg A 0.其中,A 是被测地震的最大振幅,A 0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1); (2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).3.课堂练习:教材第68页练习题1、2、3题. 4.课堂小结对数的运算法则,公式的逆向使用.=n a a log n2.2.1对数与对数运算(三)教学目标(五) 教学知识点1. 了解对数的换底公式及其推导;2.能应用对数换底公式进行化简、求值、证明; 3.运用对数的知识解决实际问题。

2.2.1对数与对数运算

2.2.1对数与对数运算

的值?
思考6:换底公式在对数运算中有什么意 义和作用?
知识探究(二):换底公式的变式
思考1:log a b 与 log b a 有什么关系?
思考2: log
a
n
N与 loபைடு நூலகம் a N 有什么关系?
理论迁移
例1 计算:
(1) log 8 9 log 27 32 ; (2)(log2125+log425+log85)·
知识探究(一):积与商的对数
思考1:求下列三个对数的值:log232, log24 , log28.你能发现这三个对数之 间有哪些内在联系? 思考2:将log232=log24十log28推广到一 般情形有什么结论?
思考3:如果a>0,且a≠1,M>0,N>0, 你能证明等式loga(M·N)=logaM十 logaN成立吗?
结论:
1.对数运算的基本性质. (1)log a M log a N log a ( M N ) M log a M log a N log a (2 ) N n (3 ) log a M n log a M 2.对数运算的三个常用结论. (1)log a a 1; (2) log a 1 0 ; log a N (3 ) a N.
.
3.同底数的两个对数可以进行加、减 运算,可以进行乘、除运算吗?
是一种表示,如何求得x的值?
18 4.由 1.01 得 13
x
,但这只
知识探究(一):对数的换底公式
log 2 5 x log 2 3 log 2 3 ,从而有 3x 5 .
x
log 2 5 x ,则 思考1:假设 log 2 3
思考3:在指数式ax=N和对数式x=logaN 中,a,x,N各自的地位有什么不同?

2.2.1对数与对数运算(1)

2.2.1对数与对数运算(1)

1 log (4) 2 2 4 1 (4) 22 4
lg 0.001 (4 )
(4)-3
16
(3 ) lg100 (3 )2
选做题
3.求下列各式中x的取值范围: (1)log2 x 1 15 (2) log 2 3
x 1
(3 ) log2 ( x 2 3x 2)
(4 ) log2 ( x 2) (4)x 2
探究点二 对数与指数之ቤተ መጻሕፍቲ ባይዱ存在什么样的转化关系?
问题1 将下列指数式表示成对数式。
1 m (1) 5 625 (2) ( ) 5.73 (3) 2 6 1 3 64
4
答: (1) 4 log5 625 ( 2) m log1 5.73
3
(3) 6 log 2
1 64
变式 将下列对数式表示成指数式。
(1) x log2 1
2 求出下式中x的值
(1) x log8 64
(2) logx 27 3
(3) log7 x 2
(1) x 2
.
(2) x 3
(3) x 49
四、引导探究
探究点一 对数的概念
例1 求下列各式中x的值
1 x 2 (1) 2
1 x 2 (2) 4
1 x ,x 0 解:(1) 2
x0 (2 )
x 1或 x 2 (3)
七、强化补清
见清学稿
1.负数和零没有对数(对数的真数大于零)
2.loga 1 0,loga a 1
√ √
小结 3 对数的性质
(1) loga N (a 0, a 1) 中,零和负数没有对数,即
N 0

高中数学:2.2.1对数与对数运算 (1)

高中数学:2.2.1对数与对数运算  (1)

第2课时 对数的运算[目标] 1.理解对数的运算性质;2.能用换底公式将一般对数转化成自然对数或常用对数;3.了解对数在简化运算中的作用.[重点] 对数的运算性质的推导与应用.[难点] 对数的运算性质的推导和换底公式的应用.知识点一 对数的运算性质[填一填]如果a >0,且a ≠1,M >0,N >0.那么: (1)log a (M ·N )=log a M +log a N . (2)log a MN =log a M -log a N .(3)log a M n =n log a M (n ∈R ).[答一答]1.若M ,N 同号,则式子log a (M ·N )=log a M +log a N 成立吗? 提示:不一定,当M >0,N >0时成立,当M <0,N <0时不成立.2.你能推导log a (MN )=log a M +log a N 与log a MN =log a M -log a N (M ,N >0,a >0且a ≠1)两个公式吗?提示:①设M =a m ,N =a n ,则MN =a m +n .由对数的定义可得log a M =m ,log a N =n , log a (MN )=m +n .这样,我们可得log a (MN )=log a M +log a N . ②同样地,设M =a m ,N =a n , 则MN =a m -n .由对数定义可得log a M =m , log a N =n ,log a MN =m -n ,即log a MN=log a M -log a N .知识点二 换底公式[填一填]换底公式常见的推论: (1)log an b n =log a b ;(2)log am b n =n m log a b ,特别log a b =1log b a ;(3)log a b ·log b a =1; (4)log a b ·log b c ·log c d =log a d .[答一答]3.换底公式的作用是什么?提示:利用换底公式可以把不同底数的对数化为同底数的对数. 4.若log 34·log 48·log 8m =log 416,求m 的值. 提示:∵log 34·log 48·log 8m =log 416, ∴lg4lg3·lg8lg4·lg mlg8=log 442=2, 化简得lg m =2lg3=lg9,∴m =9.类型一 对数运算性质的应用[例1] 计算下列各式: (1)12lg 3249-43lg 8+lg 245; (2)2lg2+lg31+12lg0.36+13lg8;(3)lg25+23lg8+lg5lg20+(lg2)2.[分析] (1)(2)正用或逆用对数的运算性质化简;(3)用lg2+lg5=1化简.[解] (1)(方法1)原式=12(5lg2-2lg7)-43×32lg2+12(2lg7+lg5)=52lg2-lg7-2lg2+lg7+12lg5=12lg2+12lg5=12(lg2+lg5)=12lg10=12. (方法2)原式=lg427-lg4+lg(75)=lg 42×757×4=lg(2×5)=lg 10=12.(2)原式=lg4+lg31+lg0.6+lg2=lg12lg (10×0.6×2)=lg12lg12=1. (3)原式=2lg5+2lg2+(1-lg2)(1+lg2)+(lg2)2 =2(lg5+lg2)+1-(lg2)2+(lg2)2=2+1=3.利用对数的运算性质解决问题的一般思路:(1)把复杂的真数化简;(2)正用公式:对式中真数的积、商、幂、方根,运用对数的运算法则,将它们化为对数的和、差、积、商,然后再化简;(3)逆用公式:对式中对数的和、差、积、商,运用对数的运算法则,将它们化为真数的积、商、幂、方根,然后化简求值.[变式训练1] (1)计算:log 53625=43;log 2(32×42)=9.(2)计算:lg8+lg125=3;lg 14-lg25=-2;2log 36-log 34=2.类型二 换底公式的应用[例2] (1)计算:(log 32+log 92)·(log 43+log 83); (2)已知log 189=a,18b =5,试用a ,b 表示log 3645. [解] (1)原式=⎝⎛⎭⎫lg2lg3+lg2lg9⎝⎛⎭⎫lg3lg4+lg3lg8 =⎝⎛⎭⎫lg2lg3+lg22lg3⎝⎛⎭⎫lg32lg2+lg33lg2=3lg22lg3·5lg36lg2=54. (2)由18b =5,得log 185=b ,∴log 3645=log 18(5×9)log 18(18×2)=log 185+log 1891+log 182=log 185+log 1891+log 18189=log 185+log 1892-log 189=a +b 2-a .利用换底公式可以统一“底”,以方便运算.在用换底公式时,应根据题目特点灵活换底.由换底公式可推出常用结论:log a b ·log b a =1.[变式训练2] 计算下列各式:(1)(log 2125+log 425+log 85)·(log 52+log 254+log 1258). (2)log 89log 23×log 6432. 解:(1)方法1:原式=(log 253+log 225log 24+log 25log 28)(log 52+log 54log 525+log 58log 5125)=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55 =⎝⎛⎭⎫3+1+13log 25·(3log 52)=13log 25·log 22log 25=13. 方法2:原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.(2)方法1:原式=log 29log 28÷log 23×log 232log 264=2log 233÷log 23×56=59.方法2:原式=lg9lg8÷lg3lg2×lg32lg64=2lg33lg2×lg2lg3×5lg26lg2=59.类型三 与对数方程有关的问题[例3] (1)若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,求xy 的值;(2)解方程:log 2x +log 2(x +2)=3.[解] (1)由题可知lg[(x -y )(x +2y )]=lg(2xy ), 所以(x -y )(x +2y )=2xy ,即x 2-xy -2y 2=0.所以⎝⎛⎭⎫x y 2-xy -2=0. 解得x y =2或xy=-1.又因为x >0,y >0,x -y >0.所以x y =2.(2)由方程可得log 2x +log 2(x +2)=log 28. 所以log 2[x (x +2)]=log 28, 即x (x +2)=8.解得x 1=2,x 2=-4. 因为x >0,x +2>0,所以x =2.对数方程问题的求解策略:利用对数运算性质或换底公式将方程两边写成同底的对数形式,由真数相等求解方程,转化过程中注意真数大于零这一条件,防止增根.[变式训练3] (1)方程lg x +lg(x -1)=1-lg5的根是( B ) A .-1 B .2 C .1或2D .-1或2(2)已知lg x +lg y =2lg(x -2y ),则log2 xy的值为4. 解析:(1)由真数大于0,易得x >1,原式可化为lg x (x -1)=lg2⇒x (x -1)=2⇒x 2-x -2=0⇒x 1=2,x 2=-1(舍).(2)因为lg x +lg y =2lg(x -2y ), 所以lg xy =lg(x -2y )2,所以xy =(x -2y )2,即x 2-5xy +4y 2=0. 所以(x -y )(x -4y )=0,解得x =y 或x =4y . 因为x >0,y >0,x -2y >0,所以x =y 应舍去, 所以x y =4.故log 2 xy =log 2 4=4.类型四 对数的实际应用[例4] 人们对声音有不同的感觉,这与它的强度有关系.声音强度I 的单位用瓦/平方米(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10lg I I 0(单位为分贝,L 1≥0,其中I 0=1×10-12 W/m 2,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:树叶沙沙声的强度是1×10-12W/m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8W/m 2,试分别求出它们的强度水平.[解] 由题意,可知树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,故LI 1=10·lg1=0,则树叶沙沙声的强度水平为0分贝;耳语的强度是I 2=1×10-10W/m 2,则I 2I 0=102,故LI 2=10lg102=20,即耳语声的强度水平为20分贝. 同理,恬静的无线电广播强度水平为40分贝.对数运算在实际生产和科学技术中运用广泛,其运用问题大致可分为两类:一类是已知对数应用模型(公式),在此基础上进行一些实际求值.计算时要注意利用“指、对互化”把对数式化成指数式.另一类是先建立指数函数应用模型,再进行指数求值,此时往往将等式两边进行取对数运算.[变式训练4] 抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg2≈0.301 0)解:设至少抽n 次可使容器内空气少于原来的0.1%,则a (1-60%)n <0.1%a (设原先容器中的空气体积为a ),即0.4n <0.001,两边取常用对数得n ·lg0.4<lg0.001,所以n >lg0.001lg0.4=-32lg2-1≈7.5.故至少需要抽8次.1.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( B ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c解析:由换底公式得log a b ·log c a =lg b lg a ·lg alg c =log c b ,所以B 正确.2.2log 32-log 3329+log 38的值为( B )A.12 B .2 C .3D.13解析:原式=log 34-log 3329+log 38=log 34×8329=log 39=2.3.lg 5+lg 20的值是1.解析:lg 5+lg 20=lg(5×20)=lg 100=1.4.若a >0,且a ≠1,b >0,且b ≠1,则由换底公式可知log a b =lg b lg a ,log b a =lg alg b ,所以log a b =1log b a ,试利用此结论计算1log 321+1log 721=1.解析:1log 321+1log 721=1lg21lg3+1lg21lg7=lg3lg21+lg7lg21=lg (3×7)lg21=1. 5.计算:(1)3log 72-log 79+2log 7⎝⎛⎭⎫322; (2)(lg2)2+lg2·lg50+lg25.解:(1)原式=log 78-log 79+log 798=log 78-log 79+log 79-log 78=0.(2)原式=lg2(lg2+lg50)+2lg5=lg2·lg100+2lg5 =2lg2+2lg5=2(lg2+lg5)=2lg10=2.——本课须掌握的两大问题1.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N ,③log a M ±log a N =log a (M±N ). 2.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.学习至此,请完成课时作业19。

高中数学第二章对数函数2.2.1对数与对数运算第1课时对数学案(含解析)新人教版

高中数学第二章对数函数2.2.1对数与对数运算第1课时对数学案(含解析)新人教版

§2.2对数函数2.2.1 对数与对数运算第1课时对数学习目标 1.理解对数的概念、掌握对数的性质(重、难点).2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重点).知识点1 对数1.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数【预习评价】(正确的打“√”,错误的打“×”)(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对数的运算实质是求幂指数.( )提示(1)×因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)×log32表示以3为底2的对数,log23表示以2为底3的对数,所以(2)错;(3)√由对数的定义可知(3)正确.知识点2 对数的基本性质 (1)负数和零没有对数. (2)log a 1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 【预习评价】若log 32x -33=1,则x =________;若log 3(2x -1)=0,则x =________.解析 若log 32x -33=1,则2x -33=3,即2x -3=9,x =6;若log 3(2x -1)=0,则2x -1=1,即x =1. 答案 6 1题型一 对数的定义【例1】 (1)在对数式y =log (x -2)(4-x )中,实数x 的取值范围是________; (2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log 216=4;③10-2=0.01;④log5125=6.(1)解析 由题意可知⎩⎪⎨⎪⎧4-x >0,x -2>0,x -2≠1,解得2<x <4且x ≠3.答案 (2,3)∪(3,4)(2)解 ①由54=625,得log 5625=4. ②由log 216=4,得24=16. ③由10-2=0.01,得lg 0.01=-2. ④由log5125=6,得(5)6=125.规律方法 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 【训练1】 将下列指数式化为对数式,对数式化为指数式:(1)43=64;(2)ln a =b ;(3)⎝ ⎛⎭⎪⎫12m=n ;(4)lg 1000=3.解 (1)因为43=64,所以log 464=3;(2)因为ln a =b ,所以e b=a ;(3)因为⎝ ⎛⎭⎪⎫12m=n ,所以log 12n =m ; (4)因为lg 1 000=3,所以103=1 000. 题型二 利用指数式与对数式的互化求变量的值 【例2】 (1)求下列各式的值.①log 981=________.②log 0.41=________.③ln e 2=________. (2)求下列各式中x 的值. ①log 64x =-23;②log x 8=6;③lg 100=x ;④-ln e 2=x .(1)解析 ①设log 981=x ,所以9x =81=92,故x =2,即log 981=2;②设log 0.41=x ,所以0.4x =1=0.40,故x =0,即log 0.41=0;③设ln e 2=x ,所以e x =e 2,故x =2,即ln e 2=2. 答案 ①2 ②0 ③2(2)解 ①由log 64x =-23得x =64-23=43×(-23)=4-2=116; ②由log x 8=6,得x 6=8,又x >0,即x =816=23×16=2;③由lg 100=x ,得10x=100=102,即x =2; ④由-ln e 2=x ,得ln e 2=-x ,所以e -x=e 2, 所以-x =2,即x =-2.规律方法 对数式中求值的基本思想和方法 (1)基本思想.在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解. (2)基本方法.①将对数式化为指数式,构建方程转化为指数问题. ②利用幂的运算性质和指数的性质计算.【训练2】 利用指数式、对数式的互化求下列各式中x 的值. (1)log 2x =-12;(2)log x 25=2;(3)log 5x 2=2.解 (1)由log 2x =-12,得2-12=x ,∴x =22. (2)由log x 25=2,得x 2=25. ∵x >0,且x ≠1,∴x =5. (3)由log 5x 2=2,得x 2=52,∴x =±5.∵52=25>0,(-5)2=25>0, ∴x =5或x =-5.题型三 利用对数的性质及对数恒等式求值 【例3】 (1)71-log 75;(2)100⎝⎛⎭⎪⎪⎫12lg 9-lg 2; (3)alog ab ·log bc(a ,b 为不等于1的正数,c >0).解 (1)原式=7×7-log 75=77log 75=75. (2)原式=10012lg 9×100-lg 2=10lg 9×1100lg 2=9×1102lg 2 =9×110lg 4=94.(3)原式=(alog ab )log bc=blog bc=c .规律方法 对数恒等式a log a N =N 的应用 (1)能直接应用对数恒等式的直接应用即可.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.【训练3】 (1)设3log 3(2x +1)=27,则x =________.(2)若log π(log 3(ln x ))=0,则x =________. 解析 (1)3log 3(2x +1)=2x +1=27,解得x =13.(2)由log π(log 3(ln x ))=0可知log 3(ln x )=1,所以ln x =3,解得x =e 3. 答案 (1)13 (2)e 3课堂达标1.有下列说法:(1)只有正数有对数;(2)任何一个指数式都可以化成对数式;(3)以5为底25的对数等于±2;(4)3log 3(-5)=-5成立.其中正确的个数为( )A.0B.1C.2D.3解析 (1)正确;(2),(3),(4)不正确. 答案 B2.使对数log a (-2a +1)有意义的a 的取值范围为( ) A.a >12且a ≠1B.0<a <12C.a >0且a ≠1D.a <12解析 由题意知⎩⎪⎨⎪⎧-2a +1>0,a >0,a ≠1,解得0<a <12.答案 B3.方程lg(2x -3)=1的解为________.解析 由lg(2x -3)=1知2x -3=10,解得x =132.答案1324.计算:2log 23+2log 31-3log 77+3ln 1=________.解析 原式=3+2×0-3×1+3×0=0. 答案 05.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18;(2)⎝ ⎛⎭⎪⎫17a =b ;(3)lg 11 000=-3;(4)ln 10=x .解 (1)由2-3=18可得log 218=-3;(2)由⎝ ⎛⎭⎪⎫17a=b 得log 17b =a ;(3)由lg 11 000=-3可得10-3=11 000;(4)ln 10=x 可得e x=10.课堂小结1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a ab =b ;(2)a log a N =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化基础过关1.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是( ) A.①③ B.②④ C.①②D.③④解析 lg(lg 10)=lg 1=0,ln(ln e)=ln 1=0,故①②正确;若10=lg x ,则x =1010,故③错误;若e =ln x ,则x =e e,故④错误. 答案 C2.log a b =1成立的条件是( ) A.a =b B.a =b 且b >0 C.a >0,a ≠1D.a >0,a =b ≠1解析 由log a b =1得a >0,且a =b ≠1. 答案 D3.设a =log 310,b =log 37,则3a -b 的值为( )A.107B.710C.1049D.4910解析 3a -b=3a÷3b=3log 310÷3log 37=10÷7=107.答案 A4.若log (1-x )(1+x )2=1,则x =________. 解析 由题意知1-x =(1+x )2, 解得x =0或x =-3.验证知,当x =0时,log (1-x )(1+x )2无意义, 故x =0时不合题意,应舍去.所以x =-3. 答案 -35.若log 3(a +1)=1,则log a 2+log 2(a -1)=________.解析 由log 3(a +1)=1得a +1=3,即a =2,所以log a 2+log 2(a -1)=log 22+log 21=1+0=1. 答案 16.将下列指数式化成对数式,对数式化成指数式. (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)⎝ ⎛⎭⎪⎫13-4=81;(4)27=128.7.求下列各式中的x 的值. (1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12=2-1.(4)由log 5(log 2x )=0,得log 2x =1.∴x =21=2. (5)由x =log 2719,得27x=19,即33x=3-2, ∴x =-23.能力提升8.对于a >0且a ≠1,下列说法正确的是( )(1)若M =N ,则log a M =log a N ;(2)若log a M =log a N ,则M =N ;(3)若log a M 2=log a N 2,则M =N ;(4)若M =N ,则log a M 2=log a N 2.A.(1)(2)B.(2)(3)(4)C.(2)D.(2)(3)解析 (1)中若M ,N 小于或等于0时,log a M =log a N 不成立;(2)正确;(3)中M 与N 也可能互为相反数且不等于0;(4)中当M =N =0时不正确. 答案 C9.已知log 3(log 5a )=log 4(log 5b )=0,则a b的值为( ) A.1 B.-1 C.5D.15解析 由log 3(log 5a )=0得log 5a =1,即a =5,同理b =5,故a b=1. 答案 A 10.方程3log 2x =127的解是________. 解析 3log 2x =3-3,∴log 2x =-3,x =2-3=18.答案 1811.若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a +1b=________.解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,则a =2k -2,b =3k -3,a +b =6k ,即4a =2k,27b =3k ,所以108ab =6k,∴108ab =a +b ,∴108=1a +1b.答案 10812.(1)若f (10x)=x ,求f (3)的值; (2)计算23+log 23+35-log 39.解 (1)令t =10x,则x =lg t ,∴f (t )=lg t ,即f (x )=lg x ,∴f (3)=lg 3. (2)23+log 23+35-log 39=23·2log 23+353log 39 =23×3+359=24+27=51.13.(选做题)若log 2(log 12(log 2x ))=log 3(log 13(log 3y ))=log 5(log 15(log 5z ))=0,试确定x ,y ,z 的大小关系.解 由log 2(log 12(log 2x ))=0,得log 12(log 2x )=1,log 2x =12,x =212=(215)130.由log 3(log 13(log 3y ))=0,得log 13(log 3y )=1,log 3y =13,y =313=(310)130.由log 5(log 15(log 5z ))=0,得log 15(log 5z )=1,log 5z =15,z =515=(56)130.∵310>215>56,∴y >x >z .。

2.2.1对数与对数运算(第一课时)

2.2.1对数与对数运算(第一课时)

2
lo g 1 5 .7 3 m 1 34 ( ) 16 2 2 10 0.01
e
2 .3 0 3
10
典例分析
例1 将下列指数式化为对数式,对数式化为指数式. 常用对数:以10为底的对数
lg 0.01
自然对数:以e为底的对数
其中无理数e=2.71828 ··· (5) lo g 1 0 0 .0 1 2
求a的取值范围
3、求等式 lg 1- 3x) = 1 ( 中的x的值
其中 a 叫做对数的底数,N叫做真数.
a N
x
x lo g a N
对数式
指数式
新课讲解
二、对数的性质 若 a 0, 且 a 1
a N
x
x lo g a N
2 lo g 4 1 6
1 2 x lo g 2 1 0 4 8 5 7 6 lo g 4 2
4 16
2
课本64页练习3,4
目标再现
1、理解对数的概念,了解对数与指数的关系;
2、理解和掌握对数的性质;
3、掌握对数式与指数式的关系 .
作业:课本74页A组1,2
课堂检测
1、已知 ln(lg x) = 0, 那么x等于( )
1 C、 10
(5- a D、e
2、已知对数式 b = log ( a-
典例分析
例1 将下列指数式化为对数式,对数式化为指数式. (1)54=645 (2)2
6
lo g 5 6 4 5 4

m
1 64
lo g 2
1 64
6
(3) ( ) 5 .7 3
3 (4) lo g 1 1 6 4

2.2.1对数与对数运算(一)2011.10

2.2.1对数与对数运算(一)2011.10

分析: 分析:
假设2007年我国国民生产总值为 年我国国民生产总值为a 假设 年我国国民生产总值为 亿元,如果每年平均增长 亿元,如果每年平均增长8%,那么经 , 过多少年国民生产总值是2007年的 倍? 年的2倍 过多少年国民生产总值是 年的
(1+8% = 2 ⇒x =? )
x
对数定义
一般地,如果 一般地,如果ax=N (a>0, a≠1) > 那么数x叫做以 为底 的对数(logarithm), 为底N的对数 那么数 叫做以a为底 的对数 叫做 , 记作x 记作x = logaN.
问题1 问题 将下列指数式写成对数式
1 (1) 5 = 625 (2) 2 = 64 1m a (3) 3 = 27 (4) ( ) = 5.73 3
4
−6
问题2 问题 将下列对数式写成指数式
(1) log1 16 = −4 (2) log2 128 = 7
(3) lg0.01= −2 (4) ln10 = 2.303
底数
x
指数
a = N ? x loga N
底数
x
指数
a = N ? x loga N
底数 幂
x
指数
a = N ? x loga N
底数 幂 底数
x
指数
x
真数
a = N ? x loga N
底数 幂 底数
指数
x
真数
a = N ? x loga N
底数 幂 对数 底数
探究: 探究:
1. 是不是所有的实数都有对数? 是不是所有的实数都有对数? x = logaN中的 可以取哪些值? 中的N可以取哪些值 中的 可以取哪些值?
(

《对数与对数运算》教案(第1课时)

《对数与对数运算》教案(第1课时)

2.2 对数函数 2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持. 三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用. 教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排 3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? 抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.新知探究 提出问题(对于课本P 572.1.2的例8) ①利用计算机作出函数y=13×1.01x 的图象.②从图象上看,哪一年的人口数要达到18亿、20亿、30亿…? ③如果不利用图象该如何解决,说出你的见解? 即1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,x 分别等于多少? ④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形. 讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P 的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若1318=1.01x ,则x 称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)的x 次幂等于N,就是a x =N,那么数x 叫做以a 为底N 的对数(logarithm),记作x=log a N,其中a 叫做对数的底数,N 叫做真数. 有了对数的定义,前面问题的x 就可表示了: x=log 1.011318,x=log 1.011320,x=log 1.011330. 由此得到对数和指数幂之间的关系:例如:42=16⇔2=log 416;102=100⇔2=log 10100;421=2⇔21=log 42;10-2=0.01⇔-2=log 100.01①为什么在对数定义中规定a>0,a≠1?②根据对数定义求log a 1和log a a(a>0,a≠1)的值. ③负数与零有没有对数? ④Na alog =N 与log a a b =b(a>0,a≠1)是否成立?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21; 若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a≠1. ②log a 1=0,log a a=1.因为对任意a>0且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =a Na alog =N,即a Na alog =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(a Na alog =N 叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗? 活动:同学们阅读课本P 68的内容,教师引导,板书. 解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5. ②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10. 应用示例思路1例1将下列指数式写成对数式,对数式写成指数式: (1)54=625;(2)2-6=641;(3)(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数.对(3)根据指数式与对数式的关系,m 在指数位置上,m 是以31为底5.73的对数. 对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂. 对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂. 对(6)根据指数式与对数式的关系,10在真数位置上,10是e 的2.303次幂. 解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m; (4)(21)-4=16;(5)10-2=0.01;(6)e 2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据. 变式训练课本P 64练习 1、2.例2求下列各式中x 的值: (1)log 64x=32-;(2)log x 8=6; (3)lg100=x;(4)-lne 2=x. 活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log 64x=-32,所以x=6432-=(2))32(6-⨯=2-4=161.(2)因为log x 8=6,所以x 6=8=23=(2)6.因为x>0,因此x=2. (3)因为lg100=x,所以10x =100=102.因此x=2.(4)因为-lne 2=x,所以lne 2=-x,e -x =e 2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解. 变式训练求下列各式中的x : ①log 4x=21;②log x 27=43;③log 5(log 10x )=1. 解:①由log 4x=21,得x=421=2;②由log x 27=43,得x 43=27,所以x=2734=81;③由log 5(log 10x )=1,得log 10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是( ) (1)若log 5x=3,则x=15 (2)若log 25x=21,则x=5 (3)若log x 5=0,则x=5 (4)若log 5x=-3,则x=1251 A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4) 活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于(1)因为log 5x=3,所以x=53=125,错误;对于(2)因为log 25x=21,所以x=2521=5,正确;对于(3)因为log x 5=0,所以x 0=5,无解,错误; 对于(4)因为log 5x=-3,所以x=5-3=1251,正确. 总之(2)(4)正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2对于a >0,a≠1,下列结论正确的是( )(1)若M=N,则log a M=log a N (2)若log a M=log a N,则M=N (3)若log a M 2=log a N 2,则M=N(4)若M=N,则log a M 2=log a N 2 A.(1)(3) B.(2)(4) C.(2) D.(1)(2)(4) 活动:学生思考,讨论,交流,回答,教师及时评价. 回想对数的有关规定.对(1)若M=N,当M 为0或负数时log a M≠log a N,因此错误; 对(2)根据对数的定义,若log a M=log a N,则M=N,正确; 对(3)若log a M 2=log a N 2,则M=±N,因此错误;对(4)若M=N=0时,则log a M 2与log a N 2都不存在,因此错误. 综上,(2)正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3计算:(1)log 927;(2)log 4381;(3)log )32((2-3);(4)log 345625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log 927,则9x =27,32x =33,所以x=23; (2)设x=log 4381,则(43)x =81,34x =34,所以x=16; (3)令x=log )32(+(2-3)=log )32(+(2+3)-1,所以(2+3)x =(2+3)-1,x=-1; (4)令x=log 345625,所以(345)x =625,534x=54,x=3.解法二:(1)log 927=log 933=log 9923=23; (2)log 4381=log 43(43)16=16; (3)log )32(+(2-3)=log )32(+(2+3)-1=-1;(4)log 345625=log 345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据. 变式训练课本P 64练习 3、4. 知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x=log 42;(4)x=log 20.5;(5)4=log 5625; (6)-2=log 391;(7)-2=log 4116. 2.把下列各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =31;(5)24=16;(6)(31)-3=27;(7)(3)6 =x;(8)x -6=64;(9)27=128;(10)3a =27. 3.求下列各式中x 的值: (1)log 8x=32-;(2)log x 27=43;(3)log 2(log 5x )=1;(4)log 3(lgx )=0.解:(1)因为log 8x=32-,所以x=832-=(23)32-=)32(32-⨯=2-2=41;(2)因为log x 27=43,所以x 43=27=33,即x=(33)34=34=81;(3)因为log 2(log 5x )=1,所以log 5x=2,x=52=25; (4)因为log 3(lgx )=0,所以lgx=1,即x=101=10. 4.(1)求log 84的值;(2)已知log a 2=m,log a 3=n,求a 2m +n 的值.解:(1)设log 84=x,根据对数的定义有8x =4,即23x =22,所以x=32,即log 84=32; (2)因为log a 2=m,log a 3=n,根据对数的定义有a m =2,a n =3,所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用. 拓展提升请你阅读课本75页的有关阅读部分的内容,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础. 课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数. 作业课本P 74习题2.2A 组 1、2. 【补充作业】1.将下列指数式与对数式互化,有x 的求出x 的值. (1)521-=51;(2)log 24=x;(3)3x =271; (4)(41)x=64;(5)lg0.000 1=x;(6)lne 5=x. 解:(1)521-=51化为对数式是log 551=21-; (2)x=log 24化为指数式是(2)x=4,即22x=22,2x=2,x=4; (3)3x =271化为对数式是x=log 3271,因为3x =(31)3=3-3,所以x=-3; (4)(41)x =64化为对数式是x=log 4164,因为(41)x =64=43,所以x=-3; (5)lg0.0001=x 化为指数式是10x =0.0001,因为10x =0.000 1=10-4,所以x=-4;(6)lne 5=x 化为指数式是e x =e 5,因为e x =e 5,所以x=5.2.计算51log 53log333+的值.解:设x=log 351,则3x =51,(321)x =(51)21,所以x=log513.所以351log 5log 3333+=513log 35+=515+=556. 3.计算Nc b c b a a log log log ∙∙(a>0,b>0,c>0,N>0).解:Nc b c b a alog log log ∙∙=Nc c b b log log ∙=Nc clog =N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备. (设计者:路致芳)。

高一(人教A版)第二章数学课件:2.2.1对数与对数运算(第1课时对数)

高一(人教A版)第二章数学课件:2.2.1对数与对数运算(第1课时对数)
如果已知a和N,求x,就是对数运算.两个式子实质相同而形式
不同,互为逆运算.
(2)并非任何指数式都可以直接化为对数式,如(-3)2=9就不 能直接写成log-39,只有符合a>0,a≠1且N>0时,才有ax=N⇔x =logaN.
3/24/2014
研修班
18
求log(1-2x)(3x+2)中的x的取值范围. 【错解】 ∵对数的真数大于0,∴3x+2>0,
2-1)( x
2+1)=x
1 - ∴( 2-1) = 2+1= =( 2-1) 1 2-1 ∴x=-1.
3/24/2014
研修班
11
有关“底数”和“1”的对数,可利用对数的性质求出其值 “1”和“0”,化成常数,有利于化简和计算.
3/24/2014
研修班
12
2.求下列各式中的 x. 1 (1)log5(log2x)=0;(2)log3(ln x)=1;(3)log x= 2 -2. 【解析】 (1)由 log5(log2x)=0, 得 log2x=1, ∴x=21=2. (2)由 log3(ln x)=1 得 ln x=3;∴x=e3.
2 1 所以 x 的取值范围是{x|-3<x<2且 x≠0}.
3/24/2014
研修班
20
1.将下列对数式与指数式互化 1 (1)log 27=-3;(2)log 3x=6;(3)logx64=-6. 3
1 1 -2 (4)54=625;(5)3 =9;(6) =16. 4
-2
1 -3 -6 6 【解析】 (1) 3 = 27.(2)( 3) = x.(3)x =64.
3/24/2014 研修班 6
1 -3 5 【解析】 (1)3 =27;(2) 2 = 8 ; (3)( 2) =x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1对数与对数运算(第一课时)
1、2-3
=18
化为对数式为( )
A .log 182=-3
B .log 18
(-3)=2 C .log 218=-3 D .log 2(-3)=1
8
2、在b =log (a -2)(5-a)中,实数a 的取值范围是( )
A .a >5或a<2
B .2<a <3或3<a <5
C .2<a<5
D .3<a <4
3、有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx ,则x =10;④若e =lnx ,则
x =e 2,其中正确的是( )
A .①③
B .②④
C .①②
D .③④ 4、log a b =1成立的条件是( )
A .a =b
B .a =b ,且b>0
C .a>0,且a≠1
D .a>0,a =b≠1 5、若log a 7
b =
c ,则a 、b 、c 之间满足( ) A .b 7=a c B .b =a 7c C .b =7a c D .b =c 7a 6、如果f(e x )=x ,则f(e)=( ) A .1 B .e e C .2e D .0
7、方程2log3x =1
4
的解是( )
A .x =19
B .x =x
3
C .x = 3
D .x =9
8、若log 2(log 3x)=log 3(log 4y)=log 4(log 2z)=0,则x +y +z 的值为( ) A .9 B .8 C .7 D .6
9、已知log a x =2,log b x =1,log c x =4(a ,b ,c ,x >0且≠1),则log x (abc)=( ) A.47 B.27 C.72 D.74
10、方程log 3(2x -1)=1的解为x =________.
11、若a>0,a 2
=49,则log 23a =________.
12、若lg(lnx)=0,则x =________.
13、方程9x -6·3x -7=0的解是________. 14、将下列指数式与对数式互化:
(1)log 216=4; (2)log 13
27=-3; (3)log
3
x =6(x >0); (4)43=64;
(5)3-2=19; (6)(1
4
)-2=16.
15、计算:23+log23+35-log39.
16、已知log a b =log b a(a>0,且a≠1;b>0,且b≠1).求证:a =b 或a =1
b
.
17、 将下列指数式与对数式进行互化.
(1)64)41
(=x (2)51521
=- (3)327log 3
1-= (4)664log -=x
18、求下列各式中的x.(1)32log 8-=x ; (2)4
327log =x ;(3)0)(log log 52=x ;
19、计算:(1)lg14-2lg 37+lg7-lg18; (2)9lg 243lg ; (3)2
.1lg 10
lg 38lg 27lg -+.
20、 计算下列各式的值:(1)245lg 8lg 344932lg 21
+-;
(2)22)2(lg 20lg 5lg 8lg 3
2
5lg +⋅++.
21、(1)已知lg2 = 0.3010,lg3 = 0.4771,求lg 45;
(2)设log a x = m ,log a y = n ,用m 、n 表示][log 34
4y
x
a a ⋅;
(3)已知lgx = 2lga + 3lgb – 5lgc ,求x.。

相关文档
最新文档