高中数学数列专题大题训练

合集下载

高中数学数列知识及练习题附答案

高中数学数列知识及练习题附答案

数列的概念和性质(一)练习题及时反馈1.(1)2+n n ;(2)1)1(2+-n n 一.巩固提高 1.C.;2.A ; 3D. 二.能力提升 5.(1)n a =)12)(12(+-n n n :(2)n a =)1()1(1+--n n n(3)n a =n 3174-(为了寻求规律,将分子统一为4,则有144,114,84,54,……;所以n a =n3174-)(4)n a =110-n (5)n a =9934(1102-n ). 由(4)的求法可得1a =9934(102-1), 2a =9934(104-1),3a =9934(106-1),……故n a =9934(1102-n )6.(1))12(3--n ; (2)1)1()1(+++n n n n ;(3)⎪⎩⎪⎨⎧-=为正偶数)为正奇数)(n n n n a n (221;或41)1(2--+=n n n a .(评注:⎩⎨⎧=为正偶数)为正奇数)(n n g n n f a n ()()(,则:)(4)1(1)(2)1(1n g n f a nn n -++--=)数列的概念和性质(二)答案:即时反馈1. ⎩⎨⎧∈≥--==),2(22)1(1*N n n n n a n 即时反馈2.分析:)32)(12(2232)11(1211+++=+++=++n n n n a n b bn nn 138448422>++++=n n n n ,所以数列}{n b 是单调递增数列.即时反馈3.数列}{n a 中最小的项是7a =8a =16 分析:法1:直接由二次函数性质求出法2:由n a >1-n a 且n a <1+n a 求出: 及时反馈4.(1)21(2) 1+n a 43=n a (),1*N n n ∈≥1+n S 43=21+n S (),1*N n n ∈≥ 巩固提高.1.D 2.D 3.B 4.B能力提升.5.D. 分析:n a =2212121)1(-=⋯⋯⋯⋯-n n a a a a a a n n ,所以5a =16256. B. 分析:经计算可知每6个数数列将会重复出现,2008a =4a =-17.⎩⎨⎧==12b c 或⎩⎨⎧=-=63b c ;. 8. 320-=a分析:计算出32-=a ,33=a ,4a =0,所以20a =32-=a 9.n a =n110. 3a =2 分析:当n =3时,3a 4a =(3+2)(0+2)=10,由于n a 为非负整数,所以3a 的可能取值为1,2,5,10.当3a =1时,4a =10,4a 5a =(1+2)(3+2)=15,得5a =23,不合题意; 当3a =2时,4a =5,4a 5a =(2+2)(3+2)=20,得5a =4;此时5a 6a =(5+2) (2+2)=28,6a =7,……当3a =5时,4a =2,4a 5a =(5+2)(3+2)=35,得5a =235不合题意; 当3a =10时,4a =1,4a 5a =(10+2)(3+2)=60,得5a =60;此时5a 6a =(1+2)(10+2)=36,6a =53,不合题意 综合可知:3a =211.(1)1,21, 31,41,51. (2) n a =n 1. 12.⎪⎩⎪⎨⎧∈≥+==),2(12)1(0+n N n n n n a等差数列概念和性质等差数列性质应用答案即时反馈1. B; 即时反馈2. ;即时反馈3. ;即时反馈4. 5个 巩固提高 1:B. 由于奇偶-S S =5d =15,所以d =32:B. 由15321=++a a a 可知52=a ,所以5(5-d )(5+d )=80,故d =3而=++131211a a a 312a =3(d a 102+)=105 3:B. 由于25a =1264=+a a ,所以5a =6,所以9S =95a =544: B. 由于41a a +=1332=+a a 且21=a 得4a =11,所以d =3,而=++654a a a 35a =3(4a +d )=425:=m 0;公差d =2. 由公式Bn An S n +=2(2dA =)直接可得 能力提升 6. C7. 130. 由于230a =15a +45a ,所以30a =50,而60a +15a =30a +45a ,所以60a =130 8.11-+n n . 由于有21+n 个奇数项,21-n 个偶数项,所以项数之比为11-+n n 9. 5 . 由3227=偶奇S S 得奇偶奇偶+-S S S S =27322732+-,即5953546=d ,所以d =5 10. 10. 由于奇偶-S S =50d =25,且奇偶S S +=45,所以奇S =1011. d =-1 .10S -5S =++76a a ……+10a =-15,(10S -5S )-5S =5×5d =-25,所以d =-112. 16. 奇偶-S S =nd =6,=--112a a n 2(d n )1-=10.5,相除得n =8因此项数为16 13.72-. 1991955512()99,2192a a S a a a a a a +⨯==-+=⇒=-∴+=-,11651216()16()1691672222a a a a S +⨯+⨯-⨯====-等差数列性质应用(二)等差数列性质应用(二)练习答案:即时反馈1.(1)当1,231==d a 时,n n n n n S n +=-+=2212)1(23,由2)(2k k S S =得,2224)21(21k k k k +=+,即0)141(3=-k k ,又0≠k ,所以4=k . (2)设数列{}n a 的公差为d ,则在2)(2k k S S =中分别取2,1=k 得⎩⎨⎧==224211)()(S S S S 即⎪⎩⎪⎨⎧⨯+=⨯+=211211)2122(2344 d a d a a a ,由(1)得01=a 或11=a .当01=a 时,代入(2)得:0=d 或6=d ;当0,01==d a 时,0,0==n n S a ,从而2)(2k k S S =成立;当6,01==d a 时,则)1(6-=n a n ,由183=S ,216,324)(923==S S 知,239)(S S ≠,故所得数列不符合题意;当11=a 时,0=d 或2=d ,当11=a ,0=d 时,n S a n n ==,1,从而2)(2k k S S =成立;当11=a ,2=d 时,则2,12n S n a n n =-=,从而2)(2k k S S =成立,综上 共有3个满足条件的无穷等差数列;0=n a 或1=n a 或12-=n a n .另解:由2)(2k k S S =得22221111[(1)][(1)]22k a k d k a k d +-=+-,整理得12222211111111()()()042242d d k da d k a a d d da -+-+-++-=对于一切正整数k 都 成立,则有12212211110421*******d d da d a a d d da ⎧-=⎪⎪⎪-=⎨⎪⎪-++-=⎪⎩解之得:100d a =⎧⎨=⎩或101d a =⎧⎨=⎩或121d a =⎧⎨=⎩所以所有满足条件的数列为:0=n a 或1=n a 或12-=n a n .即时反馈2不是.提示:令1=n 得,321=+a a ,所以a a -=32当3≥n 时,12-=n a n ,若数列}{n a 是等差数列,则1a =a 1=,a a -=323=此时0=a 故这样的a 不存在.所以数列}{n a 不是等差数列即时反馈3.n a =)-()(-1211n n +(*N n ∈) 分析:(1)当n =1时,1a =1S =1(2)当2≥n 时,n a =n S -1-n S =)-()(-1211n n +,当n =1时,也适合, 所以n a =)-()(-1211n n +(2≥n ),(*N n ∈) 即时反馈4. A巩固提高:1. B 2.C 3.D 4.B 5.C能力提升:6.证明略7. 解+++963a a a ……99a +=66分析:设1T =+++741a a a ……97a +,2T =+++852a a a ……98a +,3T =+++963a a a ……99a +,则3T -2T =33d ,2T -1T =33d ,即2T =3T -33d ,1T =3T -66d所以1T +2T +3T =33T -99d =99,所以3T =668. 变式1.即n =7或n =8,n S 取最大值.分析:若用解法1,当n =215时,取最大值,但是215*N ∉,因此需取距215较近的正整数, 即n =7或n =8,n S 取最大值. 另两种解法略(同学们一定自己认真完成)变式2.(1)若n m +为偶数,则2n m k +=*N ∈,所以2n m S +最大 (2)若n m +为奇数,则2n m k +=*N ∉,所以21++n m S =21-+n m S 最大 分析:用解法3非常简单,另两种解法略(同学们一定自己认真完成) 解:由)(n m S S n m ≠=可知,对称轴为2n m k +=(1)若n m +为偶数,则2n m k +=*N ∈,所以2n m S +最大 (2)若n m +为奇数,则2n m k +=*N ∉,所以21++n m S =21-+n m S 最大9.①228n a n =+②21n a n =+③21n a n =④121(2)33n n a -=+⋅- 10. 4(1)n a n n =+。

高中数学--《数列》测试题(含答案)

高中数学--《数列》测试题(含答案)

高中数学--《数列》测试题(含答案)1.(08年五市联考文)若数列为等比数列,则是的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案解析】答案:B2.(06年江西卷)已知等差数列的前项和为,若,且三点共线(该直线不过点),则等于()A.100 B.101 C.200 D.201【答案解析】答案:A解析:依题意,a1+a200=1,故选A3.(08年汕头金山中学理)在等差数列中,已知,那么等于()A.4 B.6 C.12 D.16【答案解析】答案:A4.(06年北京卷文)如果-1,a,b,c,-9成等比数列,那么()(A)b=3,ac=9 (B)b=-3,ac=9 (C)b=3,ac=-9 (D)b=-3,ac=-9【答案解析】答案:B解析:由等比数列的性质可得ac=(-1)×(-9)=9,b×b=9且b与奇数项的符号相同,故b=-3,选B5.(06年天津卷文)设是等差数列,则这个数列的前6项和等于(A)12(B)24(C)36(D)48【答案解析】答案:B解析:是等差数列,∴,则这个数列的前6项和等于,选B.6.(06年重庆卷理)在等差数列中,若,是数列的的前n项和,则的值为()(A)48 (B)54 (C)60 (D)66【答案解析】答案:B解析:在等差数列中,若,则,是数列的的前n项和,则==54,选B.7.(06年重庆卷文)在等差数列中,若且,的值为(A)2 (B)4 (C)6 (D)8【答案解析】答案:D解析:a3a7=a52=64,又,所以的值为8,故选D8.(07年重庆卷理)若等差数列{}的前三项和且,则等于()A.3 B.4 C. 5 D. 6【答案解析】答案:A解析:由可得9.(07年重庆卷文)在等比数列{an}中,a1=8,a4=64,,则公比q为(A)2 (B)3 (C)4 (D)8【答案解析】答案:A解析:由可得10.(07年四川卷理)()(A)0(B)1(C)(D)【答案解析】答案:D解析:选D.本题考查型的极限.原式或原式.11.(07年四川卷文)等差数列中,,,其前项和,则()(A)9(B)10(C)11(D)12【答案解析】答案:B解析:由等差数列的前n项和公式可得选B.12.(07年陕西卷理)各项均为正数的等比数列的前n项和为Sn,若Sn=2,S30=14,则S40等于(A)80(B)30 (C)26 (D)16【答案解析】答案:B解析:由等比数列的性质可知选B13.(07年湖南卷文)在等比数列中,若,则该数列的前10项和为A. B. C. D.【答案解析】答案:B解析:由,所以14.(08年长郡中学一模文)在等比数列中,如果()A.135 B.100 C.95 D.80【答案解析】答案:A15.(07年江西卷理)()A.等于B.等于C.等于D.不存在【答案解析】答案:B解析:=,选B16.(08年长郡中学二模理)在等差数列中,为的前项和,若,则等于A.3 B. 2 C. D.【答案解析】答案:B17.(07年广东卷理)已知数列{}的前n项和,第k项满足5<<8,则k=(A)9 (B)8 (C)7 (D)6【答案解析】答案:B;解析:a1=S1= -8,而当n≥2时,由an=Sn-Sn-1求得an=2n-10,此式对于n=1也成立。

高中数学等比数列专项训练题(含答案)

高中数学等比数列专项训练题(含答案)

高中数学等比数列专项训练题(含答案)一、单选题1.设是等比数列,且。

则()A。

12 B。

24 C。

30 D。

322.记S_n为等比数列{a_n}的前n项和.若a_5–a_3=12,a_6–a_4=24,则A。

2n–1 B。

2–2^(1–n) C。

2–2n–1 D。

2^(1–n)–13.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()=()A。

3699块 B。

3474块 C。

3402块 D。

3339块4.在等差数列().A.有最大项,有最小项 B.有最大项,无最小项 C.无最大项,有最小项 D.无最大项,无最小项5.数列,则()中。

若,中。

.记,则数列A。

2 B。

3 C。

4 D。

56.设比()为等比数列的前___,已知。

则公A。

3 B。

4 C。

5 D。

67.在公比为2的等比数列{a_n}中,前n项和为S_n,且S_7–2S_6=1,则a_1+a_5=()A。

5 B。

9 C。

17 D。

338.已知正项等比数列,则n为()满足,若,A。

5 B。

6 C。

9 D。

109.已知数列成等差数列,则()1.缺少选项,无法回答。

2.缺少选项,无法回答。

3.答案为B。

根据等比数列的通项公式,第n项为$a_n=a_1q^{n-1}$,代入式中可得$\frac{a_1(q^n-1)}{q-1}=S_n$。

4.答案为D。

由于等比数列的公比为正数,所以只有选项D成立。

5.缺少选项,无法回答。

6.缺少选项,无法回答。

7.答案为A。

由于等比数列的通项公式为$a_n=a_1q^{n-1}$,所以$\frac{a_{n+1}}{a_n}=q$,即$a_{n+1}=a_nq$。

代入式中可得$\frac{a_1(q^{n+1}-1)}{q-1}=S_{n+1}$。

高中数学数列多选题专项训练100附答案

高中数学数列多选题专项训练100附答案

一、数列多选题1.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0答案:ABD 【分析】对于A ,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 2.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+答案:BD 【分析】根据选项求出数列的前项,逐一判断即可. 【详解】解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设; 选项D : ,符合题设解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设;选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 3.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( )A .数列{}n a 的前n 项和为4n S n =B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 答案:ABC 【分析】数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】数列的前项和为,且满足,, ∴,化为:,∴数列是等差数列,公差为4, ∴,可得解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4,∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题4.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC .【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 5.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值答案:ABD 【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.6.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅答案:ABC 【分析】由已知求得公差的范围:,把各选项中的项全部用表示,并根据判断各选项. 【详解】 由题知,只需, ,A 正确; ,B 正确;,C 正确; ,所以,D 错误. 【点睛】本题考查等差数列的性解析:ABC 【分析】由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】 由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩,()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d+=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误. 【点睛】本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.7.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列答案:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数, 是等方差数解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题. 8.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.9.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列答案:ABC 【分析】由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.解析:ABC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c时,{}n a 是等差数列, 00a c b ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.10.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =答案:AD 【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】解:,,故正确A.由,当时,,有最小值,故B 错误. ,所以,故C 错误. ,,故D 正确.解析:AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-, 131131213+11778392dS a d d d ⨯==-+=-,故D 正确.故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。

高中数学试卷 代数——数列练习题

高中数学试卷 代数——数列练习题

高中数学试卷代数——数列练习题一、单选题1.已知数列{a n}的前n项和为S n,且S n=2(a n+1),则a2的值为()A.-4B.-2C.-6D.-82.已知等差数列{a n}中首项a1=2,公差d=1,则a5=()A.5B.6C.7D.83.设等差数列{a n}的前n项和为S n,若a2+a5+a8=15,则S9等于()A.60B.45C.36D.184.在等差数列{a n}中,如果a1+a2=25,a3+a4=45,则a1=()A.5B.7C.9D.105.在等差数列{a n}中,a1=3,a3=4则a5=()A.3B.4C.5D.-16.各项均为正数的等比数列{a n}中,a2a4=4,则a1a5+a3的值为()A.5B.3C.6D.87.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难次日脚痛减一半六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则此人第6天走了()A.48里B.24里C.12里D.6里8.若等差数列a n满足a3+a5+a7+a9+a11=80,则a8﹣12a9=()A.8B.9C.10D.119.已知数列{a n}的前n项和公式为S n=n2﹣6n+3,则a7+a8+a9+a10等于()A.7B.13C.33D.4010.等差数列{a n} 中,a5>0,a4+a7<0,则{a n} 的前n项和S n中最大的项为()A.S4B.S5C.S6D.S711.已知甲乙两车间的月产值在2011年元月份相同,甲以后每个月比前一个月增加相同的产值,乙以后每个月比前一个月增加产值的百分比相同.到2011年7月份发现两车间的月产值又相同,比较甲乙两个车间2011年4月月产值的大小,则有()A.甲大于乙B.甲等于乙C.甲小于乙D.不确定12.已知数列{a n}是递增的等比数列,且a1+a4=18,a2a3=32,若{a n}的前n项和S n满足S k+10−S k=216−26,则正整数k等于()A.5B.6C.7D.813.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n﹣1,则a12+a22+a32+…+a n2等于()A.(3n﹣1)2B.12(9n−1)C.9n﹣1D.14(3n−1)14.埃及同中国一样,也是世界上著名的文明古国.古埃及人的分数运算特别奇葩而且复杂,采用的思路可以说是世界上独一无二的.古埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数叫做埃及分数,或者叫单分子分数.埃及分数求和是一个古老而饶有兴趣的数学问题,下面的几个埃及分数求和不正确的是()A.12+14+18+116+132+164=6364B.122−1+142−1+162−1+⋯+1502−1=5051C.12+14+16=1112D.11+2+11+2+3+⋯+11+2+3+⋯+50=495115.等差数列a1,a2,⋅⋅⋅,a n(n≥3,n∈N∗),满足|a1|+|a2|+⋅⋅⋅+|a n|=|a1+1|+|a2+1|+⋅⋅⋅+|a n+1|=|a1−2|+|a2−2|+⋅⋅⋅+|a n−2|=2019,则()A.n的最大值为50B.n的最小值为50C.n的最大值为51D.n的最小值为5116.设正项等比数列{a n}的前n项乘积为T n,已知a5=1,T3=2T7,则T n的()A.最大值为32B.最大值为1024C.最小值为132D.最小值为1102417.数列{a n}的首项a1=−23,前n项和为S n.已知S n+1S n+2=a n(n≥2),则使S n≥m恒成立的最大实数m=()A.−1B.−89C.−98D.−79二、填空题18.已知数列{a n}的前n项和为S n,a1=1,a n+1=S n,n∈N∗,则S n=. 19.已知等差数列{a n}的前n项和为S n,若a5+a7+a9=15,则S13=. 20.如果数列{a n}的前n项和S n=2a n−1,则此数列的通项公式a n=.21.设数列{a n}满足a1=1,a2=3且a n+2−2a n+1+a n=2,则a4−a3=,数列{a n}的通项a n=.22.已知等差数列{a n}的前三项为a−1,a+1,2a+3,则此数列的通项公式为23.记S n为等差数列{a n}的前n项和.若a3+a4=24,则S6=.24.实数2和8的等比中项是.25.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+⋅⋅⋅+log3a10=;26.已知数列{a n}为等比数列,S n为其前n项和,a2=2,S8=0,则S99=.27.在各项均为正数的等比数列{a n}中,若a2=2,则a1+2a3的最小值是.28.若f(x)+f(1−x)=2,a n=f(0)+f(1n)+f(2n)+...+f(n−1n)+f(1)( n∈N∗),则数列{a n}的通项公式是.29.等比数列{a n}的前n项和为S n,若a3=2S2+1,a4=2S3+1,则公比q等于.30.在数列的每相邻两项之间插入此两项的平均数,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1、2进行“扩展”,第一次得到数列1、32、2;第二次得到数列1、54、32、74、2;第n次得到数列1、x1、x2、⋯、2,则第n次得到的数列项数为;记第n次得到的数列的所有项和为a n=1+x1+x2+⋅⋅⋅+2,则数列{a n}的前n项和S n=.31.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于20尺,该女子所需的天数至少为.32.已知等差数列{a n},对任意n∈N+都有a1C n0+a2C n1+a3C n2+⋯+a n+1C n n=n⋅2n+1成立,则数列{1a n+1a n+2}的前n项和T n=.33.设[x] 为不超过x的最大整数,a n为[x[x]](x∈[0,n))可能取到所有值的个数,S n是数列{1a n+2n}前n项的和,则下列结论正确的是.(1)a3=4(2)190是数列{a n}中的项(3)S10=56(4)当n=7时,a n+21n取最小值34.设 S n 是等差数列 {a n } 的前 n 项和,若 S 5S 10=13 ,则 S 5S 20+S 10=.三、解答题35.已知等差数列 {a n } 的前n 项的和为 S n ,且 a 3=3 , S 10=55 .(1)求数列 {a n } 的通项公式;(2)设 b n =a n2n ,求数列 {b n } 的前n 项和 T n .36.已知等差数列 {a n } 中, S n 是数列 {a n } 的前 n 项和,且 a 2=5,S 5=35.(1)求数列 {a n } 的通项公式;(2)设数列 {1S n −n } 的前 n 项和为 T n ,求 T n .37.已知等差数列 {a n } 中, a 3=6 , a 5+a 8=26 .(∈)求数列 {a n } 的通项公式;(∈)设 b n =2a n +n ,求数列 (x 0,1) 的前 n 项和 S n .38.已知等差数列{a n }的前n 项和为S n ,a 1+a 6=6,a 4=2.(1)求数列{a n }的通项公式; (2)求S n 的最大值及相应的n 的值.39.已知数列 {a n } 为等差数列,且公差不为0, a 3=5 , a 2 是 a 1 与 a 5 的等比中项.(1)求数列 {a n } 的通项公式,(2)记 b n =1a 2n ⋅a2n+2,求数列 {b n } 的前 n 项之和 T n . 40.已知等差数列 {a n } 中, a 2=3 , a 4=7 ,等比数列 {b n } 满足 b 1=a 1 , b 4=a 14 .(1)求数列 {a n } 通项公式 a n ; (2)求数列 {b n } 的前n 项和 S n .41.各项均为正数的数列 {a n } 满足 S n =a n 2+2a n +14(n ∈N ∗) ,其中 S n 为 {a n } 的前 n 项和.(1)求 a 1,a 2 的值; (2)求数列 {a n } 的通项公式.42.已知数列{a n }满足:a 1=12,对∀n ∈N +,都有a n+1=a n 2+n2+1.(1)设b n =a n −n ,n ∈N +,求证:数列{b n }是等比数列; (2)设数列{a n }的前n 项和为S n ,求S n .43.已知数列 {a n } 的前n 项和为 S n ,且 a 1=1 , S n =2a n+1 .(1)求数列 {a n } 的通项公式;(2)当b n=log32(3a n+1)时,求数列{1b n b n+1}的前n项和T n.44.在等差数列{a n}中,a1=1,a3=﹣3(∈)求数列{a n}的通项公式.(∈)若数列{a n}的前k项和S k=﹣35,求k的值.45.已知数列{a n}中,a1=2,其前n项和S n满足:S n=2a n+n−3.(∈)求数列{a n}的通项公式;(∈)令b n=1a n(a n−1),数列{b n}的前n项和为T n,证明:对于任意的n∈N∗,都有T n<56.46.记S n为数列{a n}的前n项和,T n为数列{S n}的前n项和,已知S n+T n=2.(1)求证:数列{S n}是等比数列;(2)求数列{na n}的前n项和A n.47.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(∈)求{a n}的通项公式;(∈)设c n=a n+b n,求数列{c n}的前n项和S n.48.数列{a n}中,a3=1,S n=a n+1(n=1,2,3…).(1)求a1,a2;(2)求数列{a n}的前n项和S n;(3)设b n=log2S n,存在数列{c n}使得c n⋅b n+3⋅b n+4=1,试求数列{c n}的前n项和.49.已知数列{a n}满足(1−1a1)(1−1a2)⋯(1−1a n)=1a n(n∈N∗),Sn是数列{a n}的前n项和.(∈)求数列{a n}的通项公式;(∈)若a p,30,S q成等差数列,a p,18,S q成等比数列,求正整数p,q的值;(∈)是否存在k∈N∗,使得√a k a k+1+16为数列{a n}中的项?若存在,求出所有满足条件的k的值;若不存在,请说明理由.50.已知数列{a n}的前n项和为S n,a1=2且S n=2S n−1+2(n≥2).(1)求{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为d n的等差数列,在数列{d n}中是否存在3项d m,d k,d p(其中m,k,p成等差数列)成等比数列?若存在,求出这样的3项;若不存在,请说明理由,答案解析部分1.【答案】A【知识点】数列递推式【解析】【解答】依题意,数列 {a n } 的前 n 项和为 S n ,当 n =1 时, a 1=S 1=2(a 1+1) ,解得 a 1=−2 , 当 n =2 时, S 2=2(a 2+2)=a 1+a 2 ,解得 a 2=−4 , 故答案为:A.【分析】根据递推关系即可依次求得 a 1 和 a 2 的值.2.【答案】B【知识点】等差数列的通项公式【解析】【解答】解:∵等差数列{a n }中首项a 1=2,公差d=1,∴a 5=2+4×1=6. 故选:B .【分析】利用等差数列的通项公式能求出该数列的第5项.3.【答案】B【知识点】等差数列的前n 项和;等差数列的性质 【解析】【解答】解: a 2+a 8=2a 5又 a 2+a 5+a 8=15 , 3a 5=15 , a 5=5S 9=9×(a 1+a 9)2=9×2×a 52=9×a 5=45故答案为:B【分析】由 a 2+a 5+a 8=15 求 a 5=5 ,再用 S 9=9a 5 即可4.【答案】D【知识点】等差数列的通项公式【解析】【解答】解:设数列的首项为 a 1 ,公差为 d ,由题意结合等差数列的通项公式可得:{a 1+(a 1+d)=25(a 1+2d)+(a 1+3d)=45 , 解得: {a 1=10d =5 . 故答案为:D .【分析】先设等差数列首项为a 1,公差为d ,通过等差数列的通项公式a n =a 1+(n −1)d ,即可得出答案。

高中数学数列多选题专项训练100含答案

高中数学数列多选题专项训练100含答案

一、数列多选题1.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=答案:BCD 【分析】根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-,故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.2.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 答案:ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a aa =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.3.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 答案:ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 4.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 答案:AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.5.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 6.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列答案:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD7.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥答案:BC 【分析】设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零,因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;若,解得,,故C 正确;D 错误; 故选:BC解析:BC 【分析】 设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断.【详解】 设公差d 不为零, 因为38a a =,所以1127a d a d +=+, 即1127a d a d +=--, 解得192a d =-,11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误;()()()()()()221101110910,10102222n n n n n n dd na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 8.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列答案:AD 【分析】利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断 【详解】 解:当时,, 当时,, 当时,满足上式, 所以,由于,所以数列为首项为,公差为2的等差数列, 因解析:AD 【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题9.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为22答案:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.10.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 答案:ABCD 【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.。

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。

)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。

高中数学数列题目训练卷

高中数学数列题目训练卷

高中数学数列题目训练卷在高中数学的学习中,数列一直是一个重点和难点内容。

为了帮助同学们更好地掌握数列相关知识,提高解题能力,特编制此数列题目训练卷。

一、选择题1、已知数列\(\{a_n\}\)的通项公式为\(a_n = 2n 1\),则\(a_5\)的值为()A 9B 11C 7D 52、等差数列\(\{a_n\}\)中,\(a_1 = 3\),\(d = 2\),则\(a_{10}\)等于()A 19B 21C 23D 253、等比数列\(\{b_n\}\)中,\(b_2 = 6\),\(b_4 =24\),则公比\(q\)的值为()A 2B 3C 4D \(\sqrt{2}\)4、数列\(1, 3, 6, 10, 15, \cdots\)的通项公式为()A \(a_n =\frac{n(n + 1)}{2}\)B \(a_n = n^2 n + 1\)C \(a_n = 2^n 1\)D \(a_n = n + 1\)5、已知等差数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),若\(S_9 = 72\),则\(a_5\)等于()A 8B 9C 10D 12二、填空题1、等比数列\(\{c_n\}\)中,\(c_1 = 1\),\(c_4 =8\),则\(c_7 =\)_____。

2、等差数列\(\{d_n\}\)中,\(d_3 + d_7 = 10\),则\(d_5 =\)_____。

3、数列\(\{e_n\}\)的通项公式为\(e_n = 3n 2\),则其前\(n\)项和\(T_n =\)_____。

4、等比数列\(\{f_n\}\)的公比为\(2\),前\(5\)项和为\(62\),则首项\(f_1 =\)_____。

5、已知数列\(\{g_n\}\)满足\(g_{n + 1} = 2g_n + 1\),\(g_1 = 1\),则\(g_5 =\)_____。

三、解答题1、已知等差数列\(\{a_n\}\)中,\(a_1 = 5\),\(a_3 = 11\),求数列的通项公式及前\(n\)项和\(S_n\)。

高中数学数列大题带答案

高中数学数列大题带答案

数列综合大题1、在数列中,已知(.(Ⅰ)求及;(Ⅱ)求数列的前项和.2、己知数列的前n项和为,,当n≥2时,,,成等差数列. (1)求数列的通项公式;(2)设,是数列的前n项和,求使得对所有都成立的最小正整数.3、已知等比数列中,求的通项公式;令求数列{}的前项和4、数列中,,(是不为零的常数,),且成等比数列.(1)求的值;(2)求的通项公式; (3)若数列的前n项之和为,求证∈。

5、四川省广元市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?(2)到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%吗?为什么(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)6、设S n为等差数列{a n}的前n项和,已知a 9 =-2,S 8 =2.(1)求首项a1和公差d的值;(2)当n为何值时,S n最大?并求出S n的最大值.7、设数列的前项和为,,.(Ⅰ)求数列的通项公式;(Ⅱ)设是数列的前项和,求.8、设数列{a n}是等差数列,数列{b n}的前n项和S n满足且(Ⅰ)求数列{a n}和{b n}的通项公式:(Ⅱ)设T n为数列{S n}的前n项和,求T n.9、已知数列的前项和(为正整数)。

(1)令,求证:数列是等差数列,并求数列的通项公式;(2)令,,求使得成立的最小正整数,并证明你的结论.10、已知等差数列满足:(1)求数列的前20项的和;(2)若数列满足:,求数列的前项和.11、数列{}的前n项和为,,.(1)设,证明:数列是等比数列;(2)求数列的前项和;(3)若,.求不超过的最大整数的值。

高中数学数列100题整理(数列题库)

高中数学数列100题整理(数列题库)
76.当q=2,n=3时,用列举法表示集合A.
77.设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.
37.若1和a的等差中项是2,则a的值为()A.4 B.3 C.1 D.﹣4
38.在等比数列{an}中,若an>0,且a3,a7是x2﹣32x+64=0的两根,则log2a1+log2a2+log2a3+…+log2a9=()A.27 B.36 C.18 D.9
39.已∈N*,则数列{an}的通项公式为()A.an=( )n﹣1B.an=( )nC.an= D.an=
21.已知数列{an}的前n项和Sn=2an﹣2n+1,若不等式2n2﹣n﹣3<(5﹣λ)an对∀n∈N*恒成立,则整数λ的最大值为( )A.3 B.4 C.5 D.6
22.已知数列{an}满足a1=10,且2an+1=2an﹣3,若ak•ak+1<0,则正整数k=( )A.6 B.7 C.8 D.9
已知数列 是等比数列,首项 ,公比 ,其前 项和为 ,且 , , 成等差数列.
73.求数列 的通项公式;
74.若数列 满足 , 为数列 的前 项和,且 对任意 恒成立,求实数 的最大值.
75.(2018•北京)设 是等差数列,且 , +a3=5 .
(Ⅰ)求 的通项公式;
(Ⅱ)求 + +…+ .
已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.
23.已知由正数组成的等比数列{an}中,公比q="2," a1·a2·a3·…·a30=245,则a1·a4·a7·…·a28= ( ) A.25B.210C.215D.220

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。

高中数学《数列》复习专题

高中数学《数列》复习专题
检验:当n 1时, a1 1 12 2 满足已知条件.
1 n 1 练1.若an an 1 1 ( ) , a1 0, 求通项公式. 2 解:
专题2:求通项公式 1.累加型 an an1 f ( n) 2.累乘型 an an1 f ( n)
n 1个 an 1 q an 2 an q a
例3.数列 {an }满足an 3an1 1, a1 1, 求 {an }的通项公式 .
解: 设 为待定系数, an 3an 1 1
1 1 n 1 那么an =(a1 )3 2 2 an 3an1 1 1 1 n 1 即an = 3 1 2 2 an 3(an 1 ) n 1 3 3 +1 也即an = 1 1 2 则 令 , 2 3 1 1 即an 3(an 1 ) 2 2 1 1 {an }是以a1 为首项, 2 2 3为公差的等比数列.
练1.an
1 4n 1
2
, 求S n .
1 1 练 2.an 2 , 证明Sn . 4n 4n 3 3
1 1 1 例2.求和: 2+ 3 3+ 4 4+ 5
1 99+ 100
1 1 1 练3.求和: + 1+ 3 2+ 4 3+ 5
1 n + n+2
2 an an1 an1
专题2:求通项公式 1.累加型 an an1 f ( n) 回顾:求等差数列的通 项公式:— —累加法
由递推公式 an an1 d (n 2)可知, a2 a1 d 当n 2时, a3 a2 d a4 a3 d n 1个 a n 1 a n 2 d a n a n 1 d

高中数学数列练习难题

高中数学数列练习难题

高中数学数列专题大题组卷一.选择题(共9小题)1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130B.170C.210D.2602.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1C.44D.44+14.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138B.135C.95D.237.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.9.设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0二.解答题(共14小题)10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.11.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.12.已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅰ)证明:++…+<.13.已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅰ)求a1+a4+a7+…+a3n﹣2.14.等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅰ)设b n=,求数列{b n}的前n项和S n.15.已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅰ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.16.已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.17.已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.18.已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1﹣1(n∈N*)(Ⅰ)求a n与b n;(Ⅰ)记数列{a n b n}的前n项和为T n,求T n.19.已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.20.设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅰ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.21.设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;≥a n,n∈N*,求a的取值范围.(Ⅰ)若a n+122.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.23.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅰ)设b n=3n•,求数列{b n}的前n项和S n.高中数学数列专题大题组卷参考答案与试题解析一.选择题(共9小题)1.(1996•全国)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130B.170C.210D.260【分析】利用等差数列的前n项和公式,结合已知条件列出关于a1,d的方程组,用m表示出a1、d,进而求出s3m;或利用等差数列的性质,s m,s2m﹣s m,s3m﹣s2m成等差数列进行求解.【解答】解:解法1:设等差数列{a n}的首项为a1,公差为d,由题意得方程组,解得d=,a1=,∴s3m=3ma1+d=3m+=210.故选C.解法2:∵设{a n}为等差数列,∴s m,s2m﹣s m,s3m﹣s2m成等差数列,即30,70,s3m﹣100成等差数列,∴30+s3m﹣100=70×2,解得s3m=210.故选C.【点评】解法1为基本量法,思路简单,但计算复杂;解法2使用了等差数列的一个重要性质,即等差数列的前n项和为s n,则s n,s2n﹣s n,s3n﹣s2n,…成等差数列.2.(2010•大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.3.(2011•四川)数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1C.44D.44+1【分析】根据已知的a n=3S n,当n大于等于2时得到a n=3S n﹣1,两者相减,根+1据S n﹣S n﹣1=a n,得到数列的第n+1项等于第n项的4倍(n大于等于2),所以得到此数列除去第1项,从第2项开始,为首项是第2项,公比为4的等比数列,由a1=1,a n+1=3S n,令n=1,即可求出第2项的值,写出2项以后各项的通项公式,把n=6代入通项公式即可求出第6项的值.=3S n,得到a n=3S n﹣1(n≥2),【解答】解:由a n+1﹣a n=3(S n﹣S n﹣1)=3a n,两式相减得:a n+1=4a n(n≥2),又a1=1,a2=3S1=3a1=3,则a n+1得到此数列除去第一项后,为首项是3,公比为4的等比数列,所以a n=a2q n﹣2=3×4n﹣2(n≥2)则a6=3×44.故选A【点评】此题考查学生掌握等比数列的确定方法,会根据首项和公比写出等比数列的通项公式,是一道基础题.4.(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求+a n=0【解答】解:∵3a n+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选C【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题5.(2013•新课标Ⅰ)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.【分析】设等比数列{a n}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.【点评】熟练掌握等比数列的通项公式是解题的关键.6.(2008•全国卷Ⅰ)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138B.135C.95D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.7.(2013•新课标Ⅰ)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,故选C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(2014•新课标Ⅰ)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.9.(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0【分析】对选项分别进行判断,即可得出结论.【解答】解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a3<0,则a1+a2=2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B 不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2≤0,即D不正确.故选:C.【点评】本题考查等差数列的通项,考查学生的计算能力,比较基础.二.解答题(共14小题)10.(2015•四川)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.【分析】(Ⅰ)由已知数列递推式得到a n=2a n﹣1(n≥2),再由已知a1,a2+1,a3成等差数列求出数列首项,可得数列{a n}是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅰ)由(Ⅰ)求出数列{}的通项公式,再由等比数列的前n项和求得T n,结合求解指数不等式得n的最小值.【解答】解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1,又∵a1,a2+1,a3成等差数列,∴a1+4a1=2(2a1+1),解得:a1=2.∴数列{a n}是首项为2,公比为2的等比数列.故;(Ⅰ)由(Ⅰ)得:,∴.由,得,即2n>1000.∵29=512<1000<1024=210,∴n≥10.于是,使|T n﹣1|成立的n的最小值为10.【点评】本题考查等差数列与等比数列的概念、等比数列的通项公式与前n项和公式等基础知识,考查运算求解能力,是中档题.11.(2015•湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.【分析】(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知c n=,写出T n、T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.12.(2014•新课标Ⅰ)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅰ)证明:++…+<.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅰ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅰ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.∴对n∈N时,++…+<.+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.13.(2013•新课标Ⅰ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅰ)求a1+a4+a7+…+a3n﹣2.【分析】(I)设等差数列{a n}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d (2a1+25d)=0,解出d即可得到通项公式a n;=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,(II)由(I)可得a3n﹣2﹣6为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n.﹣2【解答】解:(I)设等差数列{a n}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴a n=25+(n﹣1)×(﹣2)=﹣2n+27.(II)由(I)可得a3n=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣2﹣6为公差的等差数列.∴S n=a1+a4+a7+…+a3n﹣2===﹣3n2+28n.【点评】熟练掌握等差数列与等比数列的通项公式及其前n项和公式是解题的关键.14.(2013•大纲版)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅰ)设b n=,求数列{b n}的前n项和S n.【分析】(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求a n(II)由==,利用裂项求和即可求解【解答】解:(I)设等差数列{a n}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=(II)∵==∴s n===【点评】本题主要考查了等差数列的通项公式及裂项求和方法的应用,试题比较容易15.(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅰ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.16.(2015•天津)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.【分析】(1)通过a n=qa n、a1、a2,可得a3、a5、a4,利用a2+a3,a3+a4,a4+a5+2成等差数列,计算即可;(2)通过(1)知b n=,n∈N*,写出数列{b n}的前n项和T n、2T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,【解答】解:(1)∵a n+2∴a3=q,a5=q2,a4=2q,又∵a2+a3,a3+a4,a4+a5成等差数列,∴2×3q=2+3q+q2,即q2﹣3q+2=0,解得q=2或q=1(舍),∴a n=;(2)由(1)知b n===,n∈N*,记数列{b n}的前n项和为T n,则T n=1+2•+3•+4•+…+(n﹣1)•+n•,∴2T n=2+2+3•+4•+5•+…+(n﹣1)•+n•,两式相减,得T n=3++++…+﹣n•=3+﹣n•=3+1﹣﹣n•=4﹣.【点评】本题考查求数列的通项与前n项和,考查分类讨论的思想,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.17.(2015•山东)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.【分析】(1)通过对c n=分离分母,并项相加并利用数列{}的前n项和为即得首项和公差,进而可得结论;(2)通过b n=n•4n,写出T n、4T n的表达式,两式相减后利用等比数列的求和公式即得结论.【解答】解:(1)设等差数列{a n}的首项为a1、公差为d,则a1>0,∴a n=a1+(n﹣1)d,a n+1=a1+nd,令c n=,则c n==[﹣],∴c1+c2+…+c n﹣1+c n=[﹣+﹣+…+﹣]=[﹣]==,又∵数列{}的前n项和为,∴,∴a1=1或﹣1(舍),d=2,∴a n=1+2(n﹣1)=2n﹣1;(2)由(1)知b n=(a n+1)•2=(2n﹣1+1)•22n﹣1=n•4n,∴T n=b1+b2+…+b n=1•41+2•42+…+n•4n,∴4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,两式相减,得﹣3T n=41+42+…+4n﹣n•4n+1=•4n+1﹣,∴T n=.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.18.(2015•浙江)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1﹣1(n∈N*)(Ⅰ)求a n与b n;(Ⅰ)记数列{a n b n}的前n项和为T n,求T n.【分析】(Ⅰ)直接由a1=2,a n+1=2a n,可得数列{a n}为等比数列,由等比数列的通项公式求得数列{a n}的通项公式;再由b1=1,b1+b2+b3+…+b n=b n+1﹣1,取n=1求得b2=2,当n≥2时,得另一递推式,作差得到,整理得数列{}为常数列,由此可得{b n}的通项公式;(Ⅰ)求出,然后利用错位相减法求数列{a n b n}的前n项和为T n.【解答】解:(Ⅰ)由a1=2,a n+1=2a n,得.由题意知,当n=1时,b1=b2﹣1,故b2=2,当n≥2时,b1+b2+b3+…+=b n﹣1,和原递推式作差得,,整理得:,∴;(Ⅰ)由(Ⅰ)知,,因此,两式作差得:,(n∈N*).【点评】本题主要考查等差数列的通项公式、等差数列和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力,是中档题.19.(2015•安徽)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.【分析】(1)根据等比数列的通项公式求出首项和公比即可,求数列{a n}的通项公式;(2)求出b n=,利用裂项法即可求数列{b n}的前n项和T n.【解答】解:(1)∵数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=a2a3=8.解得a1=1,a4=8或a1=8,a4=1(舍),解得q=2,即数列{a n}的通项公式a n=2n﹣1;(2)S n==2n﹣1,∴b n===﹣,∴数列{b n}的前n项和T n=+…+﹣=﹣=1﹣.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.20.(2015•山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅰ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅰ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,当n>1时,2S n=3n﹣1+3,﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅰ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.21.(2008•全国卷Ⅰ)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;≥a n,n∈N*,求a的取值范围.(Ⅰ)若a n+1=2S n+3n,由此可知S n+1﹣3n+1=2(S n﹣3n).所以b n=S n 【分析】(Ⅰ)依题意得S n+1﹣3n=(a﹣3)2n﹣1,n∈N*.(Ⅰ)由题设条件知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,a n=S n﹣S n﹣1=,由此可以求得a的取值范围是[﹣9,+∞).﹣S n=a n+1=S n+3n,即S n+1=2S n+3n,【解答】解:(Ⅰ)依题意,S n+1﹣3n+1=2S n+3n﹣3n+1=2(S n﹣3n).(4分)由此得S n+1因此,所求通项公式为b n=S n﹣3n=(a﹣3)2n﹣1,n∈N*.①(6分)(Ⅰ)由①知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,当n≥2时,a n=S n﹣S n﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,a n+1﹣a n=4×3n﹣1+(a﹣3)2n﹣2=,当n≥2时,⇔a≥﹣9.又a2=a1+3>a1.综上,所求的a的取值范围是[﹣9,+∞).(12分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.22.(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅰ)由(Ⅰ)可得b n=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{a n}的公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅰ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+ =1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.23.(2014•安徽)数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅰ)设b n=3n•,求数列{b n}的前n项和S n.【分析】(Ⅰ)将na n=(n+1)a n+n(n+1)的两边同除以n(n+1)得,+1由等差数列的定义得证.(Ⅰ)由(Ⅰ)求出b n=3n•=n•3n,利用错位相减求出数列{b n}的前n项和S n.=(n+1)a n+n(n+1),【解答】证明(Ⅰ)∵na n+1∴,∴,∴数列{}是以1为首项,以1为公差的等差数列;(Ⅰ)由(Ⅰ)知,,∴,b n=3n•=n•3n,∴•3n﹣1+n•3n①•3n+n•3n+1②①﹣②得3n﹣n•3n+1==∴【点评】本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法.。

高中数学《数列求和与综合问题》专项练习题(含答案解析)

高中数学《数列求和与综合问题》专项练习题(含答案解析)

高中数学《数列求和与综合问题》专项练习题(含答案解析)一、选择题1.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .44D .44+1A [因为a n +1=3S n ,所以a n =3S n -1(n ≥2), 两式相减得,a n +1-a n =3a n ,即a n +1a n=4(n ≥2),所以数列a 2,a 3,a 4,…构成以a 2=3S 1=3a 1=3为首项,公比为4的等比数列,所以a 6=a 2·44=3×44.]2.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2等于( ) A .2B .12C .3D .13C [∵在等差数列中,S 2n -1=(2n -1)a n ,∴S 1=a 1,S 3=3a 2,S 5=5a 3,∴35=1a 1a 2+1a 2a 3+1a 1a 3,∵a 1a 2a 3=15,∴35=a 315+a 115+a 215=a 25,即a 2=3.]3.已知数列{b n }满足b 1=1,b 2=4,b n +2=⎝ ⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2,则该数列的前23项的和为( )A .4 194B .4 195C .2 046D .2 047A [当n 为偶数时,b n +2=⎝⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2=b n +1,有b n +2-b n =1,即偶数项成等差数列,所以b 2+b 4+…+b 22=11b 2+11×102×1=99.当n 为奇数时,b n +2=2b n ,即奇数项成等比数列,所以b 1+b 3+…+b 23=b 11-2121-2=212-1=4 095.所以该数列的前23项的和为99+4 095=4 194,故选A .]4.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 2 0192 019=( )A .1 010B .1 009C .2 020D .2 019A [S 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019), =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2 018+1), =1+2×2 018+11 0102=2 019×1 010,∴S 2 0192 019=1 010,故选A .]5.已知数列{a n }的前n 项和S n =2+λa n ,且a 1=1,则S 5=( ) A .27 B .5327C .3116D .31C [∵S n =2+λa n ,且a 1=1,∴S 1=2+λa 1, 即λ=-1,∴S n =2-a n ,当n ≥2时,S n =2-(S n -S n -1),∴2S n =2+S n -1,即S n =12S n -1+1,∴S n -2=12(S n -1-2),∴S n -2=(-1)×⎝ ⎛⎭⎪⎫12n -1.当n =1时也满足.∴S 5=2-⎝ ⎛⎭⎪⎫124=3116.故选C .]6.设曲线y =2 018x n +1(n ∈N *)在点(1,2 018)处的切线与x 轴的交点的横坐标为x n ,令a n =log 2 018x n ,则a 1+a 2+…+a 2 017的值为( )A .2 018B .2 017C .1D .-1D [因为y ′=2 018(n +1)x n ,所以切线方程是y -2 018=2 018(n +1)(x -1),所以x n =nn +1,所以a 1+a 2+…+a 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 018⎝ ⎛⎭⎪⎫12×23×…×2 0172 018=log 2 01812 018=-1.]7.在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87等于( )A .1403B .60C .80D .160C [法一:a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a1q 2×1q 3291-q 3=q 21+q +q 2×a 11-q 871-q =47×140=80.故选C . 法二:设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87,因为b 1q =b 2,b 2q =b 3,且b 1+b 2+b 3=140,所以b 1(1+q +q 2)=140,而1+q +q 2=7,所以b 1=20,b 3=q 2b 1=4×20=80.故选C .]8.设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和的最大值为( )A .49B .1C .4181D .151315A [a 1=9,a 2为整数,可知:等差数列{a n }的公差d 为整数,由S n ≤S 5,∴a 5≥0,a 6≤0,则9+4d ≥0,9+5d ≤0,解得-94≤d ≤-95,d 为整数,d =-2.∴a n =9-2(n -1)=11-2n . 1a n ·a n +1=111-2n9-2n =12⎝⎛⎭⎪⎫19-2n -111-2n , 数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和为 12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫19-2n -111-2n =12⎝⎛⎭⎪⎫19-2n -19, 令b n =19-2n ,由于函数f (x )=19-2x 的图象关于点⎝ ⎛⎭⎪⎫92,0对称及其单调性,可知:0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴最大值为49.故选A .]二、填空题 9.已知a n =2n ,b n =3n -1,c n =b n a n,则数列{c n }的前n 项和S n 为________.5-3n +52n [由题设知,c n =3n -12n ,所以S n =221+522+823+…+3n -12n , ①2S n =2+521+822+…+3n -12n -1,②由②-①得,S n =2+321+322+…+32n -1-3n -12n .故所求S n =2+32⎝ ⎛⎭⎪⎫1-12n -11-12-3n -12n =5-3n +52n .]10.已知数列{a n }和{b n }满足a 1=1,a n +1a n=n +1n,b n a n=sin 2n π3-cos 2n π3,n ∈N *,则数列{b n }的前47项和等于________.1 120 [依题意得a n +1n +1=a nn ,故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是常数列,于是有a n n =1,a n =n 2,b n =-n 2cos 2n π3,b 3k -2+b 3k -1+b 3k =3k -223k -122-(3k )2=-9k +52(k ∈N *),因此数列{b n }的前47项和为S 47=S 48-b 48=-9×161+162+52×16+482=1 120.]11.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.2 [由S nS 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n 2n -1d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d 4k -10,2k -12-d0,得⎩⎪⎨⎪⎧d =2,k =14.∴数列{a n }的公差为2.]12.记S n 为正项等比数列{a n }的前n 项和,若S 4-2S 2=3,则S 6-S 4的最小值为________.12 [由题可知数列{a n }的公比q >0,a n >0,则3=(a 4-a 2)+(a 3-a 1)=a 1(q +1)·(q 2-1),则有q >1,所以3S 6-S 4=3a 6+a 5=3a 1q +1q 4=a 1q +1q 2-1a 1q +1q 4=1q 2-⎝ ⎛⎭⎪⎫1q 22=14-⎝ ⎛⎭⎪⎫1q 2-122≤14(当且仅当q =2时,取等号),所以S 6-S 4≥12,即S 6-S 4的最小值为12.]三、解答题13.(2018·黔东南州二模)已知数列{a n }的前n 项和为S n ,且满足S n =43(a n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =log 2a n ,记数列⎩⎨⎧⎭⎬⎫1b n -1b n +1的前n 项和为T n ,证明:T n <12.[解] (1)当n =1时,有a 1=S 1=43(a 1-1),解得a 1=4.当n ≥2时,有S n -1=43(a n -1-1),则a n =S n -S n -1=43(a n -1)-43(a n -1-1),整理得:a na n -1=4,∴数列{a n }是以q =4为公比,以a 1=4为首项的等比数列.∴a n =4×4n -1=4n (n ∈N *)即数列{a n }的通项公式为:a n =4n (n ∈N *). (2)由(1)有b n =log 2a n =log 2 4n =2n ,则1b n +1b n -1=12n +12n -1=12⎝⎛⎭⎪⎫12n -1-12n +1. ∴T n =12⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1. 易知数列{T n }为递增数列, ∴T 1≤T n <12,即13≤T n <12.14.(2018·邯郸市一模)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2.(1)求T n -S n ; (2)求数列⎩⎨⎧⎭⎬⎫b n 2n 的前n 项和R n .[解] (1)依题意可得b 1-a 1=3,b 2-a 2=5,…,b n -a n =2n +1, ∴T n -S n =(b 1+b 2+…+b n )-(a 1+a 2+…+a n ) =n +(2+22+…+2n )=2n +1+n -2. (2)∵2S n =S n +T n -(T n -S n )=n 2-n , ∴S n =n 2-n2,∴a n =n -1. 又b n -a n =2n +1, ∴b n =2n +n .∴b n2n =1+n2n , ∴R n =n +⎝ ⎛⎭⎪⎫12+222+…+n 2n ,则12R n =12n +⎝ ⎛⎭⎪⎫122+223+…+n 2n +1,∴12R n =12n +⎝ ⎛⎭⎪⎫12+122+…+12n -n2n +1, 故R n =n +2×12-12n +11-12-n 2n =n +2-n +22n .。

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间120分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。

高中数学:数列经典题目集锦及答案经典及题型精选

高中数学:数列经典题目集锦及答案经典及题型精选

数列经典题目集锦一一、构造法证明等差、等比 类型一:按已有目标构造1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N *.(1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列,求证:数列{a n }从第二项起为等差数列;(3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论.类型二: 整体构造2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N *都成立.(1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列.二、两次作差法证明等差数列3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a ,且*1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数).(1)求A 与B 的值;(2)求数列{}n a 为通项公式;三、数列的单调性4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,()11131n n n n n na S S a a λ+++=+⋅+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式;(2)若112n n a a +<对一切*n ∈N 恒成立,求实数λ的取值范围.5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式;(2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++13246n n +=⋅--,且集合*|,nn b M n n N a λ⎧⎫=≥∈⎨⎬⎩⎭中有且仅有3个元素,求λ的取值范围.四、隔项(分段)数列问题6. 已知数列{a n }中,a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n (n 为奇数),a n -3n (n 为偶数).(1) 是否存在实数λ,使数列{a 2n -λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由;(2) 若S n 是数列{a n }的前n 项的和,求满足S n >0的所有正整数n .7.若{}n b 满足:对于N n *∈,都有2n n b b d +-=(d 为常数),则称数列{}n b 是公差为d 的“隔项等差”数列. (Ⅰ)若17,321==c c ,{}n c 是公差为8的“隔项等差”数列,求{}n c 的前15项之和; (Ⅱ)设数列{}n a 满足:1a a =,对于N n *∈,都有12n n a a n ++=. ①求证:数列{}n a 为“隔项等差”数列,并求其通项公式;②设数列{}n a 的前n 项和为n S ,试研究:是否存在实数a ,使得22122++k k k S S S 、、成等比数列(*N k ∈)?若存在,请求出a 的值;若不存在,请说明理由.五、数阵问题8.已知等差数列{a n }、等比数列{b n }满足a 1+a 2=a 3,b 1b 2=b 3,且a 3,a 2+b 1,a 1+b 2成等差数列,a 1,a 2,b 2成等比数列.(1) 求数列{a n }和数列{b n }的通项公式;(2) 按如下方法从数列{a n }和数列{b n }中取项: 第1次从数列{a n }中取a 1, 第2次从数列{b n }中取b 1,b 2, 第3次从数列{a n }中取a 2,a 3,a 4, 第4次从数列{b n }中取b 3,b 4,b 5,b 6, ……第2n -1次从数列{a n }中继续依次取2n -1个项, 第2n 次从数列{b n }中继续依次取2n 个项, ……由此构造数列{c n }:a 1,b 1,b 2,a 2,a 3,a 4,b 3,b 4,b 5,b 6,a 5,a 6,a 7,a 8,a 9,b 7,b 8,b 9,b 10, b 11,b 12,…,记数列{c n }的前n 项和为S n .求满足S n <22 014的最大正整数n .数列经典题目集锦答案1.证明:(1) 设数列{a n }的公差为d ,∵ b n =a n -2a n +1,∴ b n +1-b n =(a n +1-2a n +2)-(a n -2a n +1)=(a n +1-a n )-2(a n +2-a n +1)=d -2d =-d , ∴ 数列{b n }是公差为-d 的等差数列. (4分) (2) 当n ≥2时,c n -1=a n +2a n +1-2,∵ b n =a n -2a n +1,∴ a n =b n +c n -12+1,∴ a n +1=b n +1+c n2+1,∴ a n +1-a n =b n +1+c n 2-b n +c n -12=b n +1-b n 2+c n -c n -12.∵ 数列{b n },{c n }都是等差数列,∴b n +1-b n 2+c n -c n -12为常数, ∴ 数列{a n }从第二项起为等差数列. (10分)(3) 结论:数列{a n }成等差数列.证明如下: (证法1)设数列{b n }的公差为d ′, ∵ b n =a n -2a n +1,∴ 2n b n =2n a n -2n +1a n +1,∴ 2n -1b n -1=2n -1a n -1-2n a n ,…,2b 1=2a 1-22a 2,∴ 2n b n +2n -1b n -1+…+2b 1=2a 1-2n +1a n +1,设T n =2b 1+22b 2+…+2n -1b n -1+2n b n ,∴ 2T n =22b 1+…+2n b n -1+2n +1b n ,两式相减得:-T n =2b 1+(22+…+2n -1+2n )d ′-2n +1b n ,即T n =-2b 1-4(2n -1-1)d ′+2n +1b n , ∴ -2b 1-4(2n -1-1)d ′+2n +1b n =2a 1-2n +1a n +1,∴ 2n +1a n +1=2a 1+2b 1+4(2n -1-1)d ′-2n +1b n =2a 1+2b 1-4d ′-2n +1(b n -d ′), ∴ a n +1=2a 1+2b 1-4d′2n +1-(b n -d ′). (12分) 令n =2,得a 3=2a 1+2b 1-4d′23-(b 2-d ′)=2a 1+2b 1-4d′23-b 1, ∵ b 1+a 3=0,∴2a 1+2b 1-4d′23=b 1+a 3=0,∴ 2a 1+2b 1-4d ′=0,∴ a n +1=-(b n -d ′),∴ a n +2-a n +1=-(b n +1-d ′)+(b n -d ′)=-d ′,∴ 数列{a n }(n ≥2)是公差为-d ′的等差数列. (14分) ∵ b n =a n -2a n +1,令n =1,a 1-2a 2=-a 3,即a 1-2a 2+a 3=0,∴ 数列{a n }是公差为-d ′的等差数列. (16分)(证法2)∵ b n =a n -2a n +1,b 1+a 3=0,令n =1,a 1-2a 2=-a 3,即a 1-2a 2+a 3=0,(12分) ∴ b n +1=a n +1-2a n +2,b n +2=a n +2-2a n +3,∴ 2b n +1-b n -b n +2=(2a n +1-a n -a n +2)-2(2a n +2-a n +1-a n +3). ∵ 数列{b n }是等差数列,∴ 2b n +1-b n -b n +2=0, ∴ 2a n +1-a n -a n +2=2(2a n +2-a n +1-a n +3).(14分) ∵ a 1-2a 2+a 3=0,∴ 2a n +1-a n -a n +2=0, ∴ 数列{a n }是等差数列.(16分)2.解析:(1) 若λ=1,则(S n +1+1)a n =(S n +1)a n +1,a 1=S 1=1.∵ a n >0,S n >0,∴ S n +1+1S n +1=a n +1a n ,(2分) ∴S 2+1S 1+1·S 3+1S 2+1·…·S n +1+1S n +1=a 2a 1·a 3a 2·…·a n +1a n ,化简,得S n +1+1=2a n +1. ①(4分) ∴ 当n ≥2时,S n +1=2a n . ② ①-②,得a n +1=2a n ,∴a n +1a n=2(n ≥2).(6分) ∵ 当n =1时,a 2=2,∴ n =1时上式也成立,∴ 数列{a n }是首项为1,公比为2的等比数列,a n =2n -1(n ∈N *).(8分) (2) 令n =1,得a 2=λ+1.令n =2,得a 3=(λ+1)2.(10分) 要使数列{a n }是等差数列,必须有2a 2=a 1+a 3,解得λ=0.(11分) 当λ=0时,S n +1a n =(S n +1)a n +1,且a 2=a 1=1. 当n ≥2时,S n +1(S n -S n -1)=(S n +1)(S n +1-S n ),整理,得S 2n +S n =S n +1S n -1+S n +1,S n +1S n -1+1=S n +1S n ,(13分) 从而S 2+1S 1+1·S 3+1S 2+1·…·S n +1S n -1+1=S 3S 2·S 4S 3·…·S n +1S n ,化简,得S n +1=S n +1,∴ a n +1=1.(15分) 综上所述,a n =1(n ∈N *),∴ λ=0时,数列{a n }是等差数列.(16分)3.解析:(1)由11,6,1321===a a a ,得18,7,1321===S S S .把2,1=n 分别代入*1,)25()85(N n B An S n S n n n ∈+=+--+,得⎩⎨⎧-=+-=+48228B A B A , 解得,8,20-=-=B A .(2)由(1)知,82028)(511--=---++n S S S S n n n n n ,即82028511--=--++n S S na n n n ,① 又8)1(2028)1(5122-+-=--++++n S S a n n n n . ②②-①得,20285)1(51212-=---+++++n n n n a a na a n ,即20)25()35(12-=+--++n n a n a n . ③ 又20)75()25(23-=+-+++n n a n a n .④④-③得,0)2)(25(123=+-++++n n n a a a n ,520n +≠,∴02123=+-+++n n n a a a ,又32215a a a a -=-=,所以32120a a a -+=, 因此,数列{}n a 是首项为1,公差为5的等差数列. 故45)1(51-=-+=n n a n .4.解析:(1) 0λ=时,111n n n n naS S a a +++=+∴1n n n na S S a +=∵0n a >,∴0n S > ∴ 1n n a a +=,∵11a =,∴1n a =(2) ∵()11131n n n n n n a S S a a λ+++=+⋅+ 0n a > ,∴1131nn n n nS S a a λ++-=⋅+ 则212131S S a a λ-=⋅+,2323231S S a a λ-=⋅+, ,11131n n n n n S S a a λ----=⋅+()2n ≥ 相加,得()2113331n nnS n a λ--=+++-则()3322n n n S n a n λ⎛⎫-=+⋅≥ ⎪⎝⎭,该式对1n =也成立, ∴()*332n n n S n a n N λ⎛⎫-=+⋅≥ ⎪⎝⎭. ③ ∴()1*13312n n n S n a n N λ++⎛⎫-=++⋅≥ ⎪⎝⎭. ④ ④-③,得1113333122n n n n n a n a n a λλ+++⎛⎫⎛⎫--=++⋅-+⋅ ⎪ ⎪⎝⎭⎝⎭ 即11333322n n n n n a n a λλ++⎛⎫⎛⎫--+⋅=+⋅ ⎪ ⎪⎝⎭⎝⎭∵0λ≥,∴133330,022n n n n λλ+--+>+> . ∵112n n a a +<对一切*n ∈N 恒成立, ∴332nn λ-+1133()22n n λ+-<+对一切*n ∈N 恒成立. 即233nnλ>+对一切*n ∈N 恒成立. 记233n n nb =+,则()()()111423622233333333n n n n n n n n n n b b +++-⋅-+-=-=++++ 当1n =时,10n n b b +-=; 当2n ≥时,10n n b b +->∴ 1213b b ==是{}n b 中的最大项.综上所述,λ的取值范围是13λ>. 5. 解析:(1)数列{}n a 是各项均为正数的等比数列,∴215364a a a ==,38a ∴=,又5348S S -=,2458848a a q q ∴+=+=,2q ∴=,3822n n n a -∴=⋅=; ……4分(2)(ⅰ)必要性:设5,,k m l a a a 这三项经适当排序后能构成等差数列,①若25k m l a a a ⋅=+,则10222k m l ⋅=+,1022m k l k --∴=+,11522m k l k ----∴=+,1121,24m k l k ----⎧=⎪∴⎨=⎪⎩ 13m k l k =+⎧∴⎨=+⎩. ………… 6分②若25m k l a a a =+,则22522m k l ⋅=⋅+,1225m k l k +--∴-=,左边为偶数,等式不成立, ③若25l k m a a a =+,同理也不成立,综合①②③,得1,3m k l k =+=+,所以必要性成立. …………8分 (ⅱ)充分性:设1m k =+,3l k =+,则5,,k m l a a a 这三项为135,,k k k a a a ++,即5,2,8k k k a a a ,调整顺序后易知2,5,8k k k a a a 成等差数列,所以充分性也成立. 综合(ⅰ)(ⅱ),原命题成立. …………10分(3)因为11213213246n n n n n a b a b a b a b n +--++++=⋅--, 即123112122223246n n n n n b b b b n +--++++=⋅--,(*)∴当2n ≥时,1231123122223242n n n n n b b b b n ----++++=⋅--,(**)则(**)式两边同乘以2,得2341123122223284n n n n n b b b b n +---++++=⋅--,(***)∴(*)-(***),得242n b n =-,即21(2)n b n n =-≥,又当1n =时,21232102b =⋅-=,即11b =,适合21(2)n b n n =-≥,21n b n ∴=-.………14分 212n n n b n a -∴=,111212352222n n n n nn n b b n n n a a ------∴-=-=, 2n ∴=时,110n n n n b b a a --->,即2121b b a a >;3n ∴≥时,110n n n n b b a a ---<,此时n n b a ⎧⎫⎨⎬⎩⎭单调递减, 又1112b a =,2234b a =,3358b a =,44716b a =, 71162λ∴<≤. ……………16分 6. 解析:(1) 设b n =a 2n -λ,因为b n +1b n =a 2n +2-λa 2n -λ=13a 2n +1+(2n +1)-λa 2n -λ=13(a 2n -6n )+(2n +1)-λa 2n -λ=13a 2n +1-λa 2n -λ.(2分)若数列{a 2n -λ}是等比数列,则必须有13a 2n+1-λa 2n -λ=q (常数),即⎝⎛⎭⎫13-q a 2n +(q -1)λ+1=0,即⎩⎪⎨⎪⎧13-q =0(q -1)λ+1=0⎩⎨⎧q =13,λ=32,(5分) 此时b 1=a 2-32=13a 1+1-32=-16≠0,所以存在实数λ=32,使数列{a 2n -λ}是等比数列.(6分)(注:利用前几项,求出λ的值,并证明不扣分) (2) 由(1)得{b n }是以-16为首项,13为公比的等比数列,故b n =a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·⎝⎛⎭⎫13n ,即a 2n =-12·⎝⎛⎭⎫13n +32.(8分)由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=-12·⎝⎛⎭⎫13n -1-6n +152,(10分)所以a 2n -1+a 2n =-12·⎣⎡⎦⎤⎝⎛⎭⎫13n -1+⎝⎛⎭⎫13n -6n +9=-2·⎝⎛⎭⎫13n -6n +9, S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-2[13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n ]-6(1+2+…+n )+9n=-2·13[1-⎝⎛⎭⎫13n ]1-13-6·n (n +1)2+9n =⎝⎛⎭⎫13n -1-3n 2+6n =⎝⎛⎭⎫13n-3(n -1)2+2,(12分)显然当n ∈N *时,{S 2n }单调递减.又当n =1时,S 2=73>0,当n =2时,S 4=-89<0,所以当n ≥2时,S 2n <0;S 2n -1=S 2n -a 2n =32·⎝⎛⎭⎫13n -52-3n 2+6n , 同理,当且仅当n =1时,S 2n -1>0.综上,满足S n >0的所有正整数n 为1和2.(16分) 7.解析:(Ⅰ)易得数列⎩⎨⎧+-=.9414为偶数时,当为奇数时;,当n n n n c n前15项之和53527)6517(28)593(=⨯++⨯+=……………………………4分 (Ⅱ)①n a a n n 21=++ (*∈N n )(1) , )1(221+=+++n a a n n (2)(1)-(2)得22=-+n n a a (*∈N n ).所以,{}n a 为公差为2的“隔项等差”数列. ……………………………6分当n 为偶数时,a n n a a n -=⨯⎪⎭⎫⎝⎛-+-=2122, 当n 为奇数时,()[]11)1(2)1(21-+=----=--=-a n a n n a n a n n ; …8分②当n 为偶数时,()2212212222221222n n n n a n n n a S n =⨯⎪⎭⎫ ⎝⎛-+⋅-+⨯⎪⎭⎫ ⎝⎛-+⋅=;当n 为奇数时,()2212121212221212121⨯⎪⎭⎫⎝⎛---+-⋅-+⨯⎪⎭⎫ ⎝⎛-++++⋅=n n n a n n n a S n 21212-+=a n . ……………………………12分 故当k n 2=时,222k S k =,a k k S k ++=+22212,222)1(2+=+k S k ,由()222212++⋅=k k k S S S ,则2222)1(22)22(+⋅=++k k a k k ,解得0=a .所以存在实数0a =,使得22122++k k k S S S 、、成等比数列(*N k ∈)……………………………16分8. 解析:(1) 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,依题意,得⎩⎪⎨⎪⎧a 1+(a 1+d )=a 1+2d ,b 1(b 1q )=b 1q 2,(a 1+2d )+(a 1+b 1q )=2[(a 1+d )+b 1],(a 1+d )2=a 1(b 1q ),解得a 1=d =1,b 1=q =2.故a n =n ,b n =2n .(6分)(2) 将a 1,b 1,b 2记为第1组,a 2,a 3,a 4,b 3,b 4,b 5,b 6记为第2组,a 5,a 6,a 7,a 8,a 9,b 7,b 8,b 9,b 10,b 11,b 12记为第3组,……以此类推,则第n 组中,有2n -1项选取于数列{a n },有2n 项选取于数列{b n },前n 组共有n 2项选取于数列{a n },有n 2+n 项选取于数列{b n },记它们的总和为P n ,并且有()22211222nn n n n P +++=+-.(11分)P 45-22 014=452(452+1)2+22 071-22 014-2>0,P 44-22 014=442(442+1)2-21 981(233-1)-2<0.当S n =452(452+1)2+(2+22+…+22 012)时,S n -22 014=-22 013-2+452(452+1)2<0.(13分)当S n =452(452+1)2+(2+22+…+22 013)时,S n -22 014=-2+452(452+1)2>0.可得到符合S n <22 014的最大的n =452+2 012=4 037.(16分)。

2024年高考数学专项突破数列大题基础练(解析版)

2024年高考数学专项突破数列大题基础练(解析版)

数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nnb a=,求{}n b 的前n 项和n T .2024年高考数学专项突破数列大题基础练(解析版)7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,12n n a n S n+=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}nc 的前n 项和为n T ,求12111n T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪⎝⎭,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n a S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足1121,1nn S a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a+=+,设11nnb a =-.(1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n nb a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,1154,115n n a n a a n+-==+.(1)求{}n a 的通项公式;(2)若()()1,414n n n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设2211log log n n n b a a +=⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n ∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n S n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n nn nn a b a a +-+=,求数列{}nb 的前2n 项和2nT .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n na nb a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设3132312log log log n n nb b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .【答案】(1)21n a =-;(2)11a =.【分析】(1)利用累加法求2n a 即可;(2)根据()121nn n a a +=+⋅-得到212a a =-,322a a =+,联立得到1q =-,然后代入求1a 即可.【详解】(1)由题意得()121nn n a a +-=⋅-,所以()()()22212122211n n n n n a a a a a a a a ---=-+-++-+ ()()()212212121211n n --=⋅-+⋅-++⨯-+ 211=-+=-.(2)设数列{}n a 的公比为q ,因为()121nn n a a +=+⋅-,所以212a a =-,322a a =+,两式相加得2311a a q a =⋅=,所以1q =±,当1q =时,2112a a a ==-不成立,所以1q =-,2112a a a =-=-,解得11a =.2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .【答案】(1)21n a n =-;3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设3n b a a =,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .【答案】(1)13n n b -=6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nb a =,求{}n b 的前n 项和n T .7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,2n n S n=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}n c 的前n 项和为n T ,求111T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为333log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设1n b a a =,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.【答案】(1)n a n =(2)n nP Q <13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足111,1nn a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项15a =,且满足13n n n a a +=+,设1n nb a =-.(1)求证:数列{}n b 为等比数列;(2)若1111140a a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n n b a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).()()1061022166490300022-==--+23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,11,115n n a a n+==+.(1)求{}n a 的通项公式;(2)若()()1,414n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设1log log n b a a =⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n n n n n a b a a +-+=,求数列{}n b 的前2n 项和2n T .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设31323log log log n n b b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.。

高中数学数列求和列项相消专题练习

高中数学数列求和列项相消专题练习

列项相消专题练习
1、已知数列是递增的等比数列,且,.
(1)求数列的通项公式;
(2)设为数列的前项和,,求数列的前项和.
2、已知数列的前项和为,且.
(1)求的通项公式;
(2)设,,数列的前项和为,证明:.
3、已知等差数列的前项和为,.
(1)求等差数列的通项公式;
(2)求.
4、若数列是递增的等差数列,它的前项和为,其中,且成等比数列.
(1)求的通项公式;
(2)设,数列的前项和为,若对任意,恒成立,求的取值范围.
5、已知数列满足,.
(1)证明:数列为等差数列,并求数列的通项公式;
(2)设,求数列的前项和.
6、已知等比数列中,公比,前项和为,且.
(1)求的通项公式;
(2)若,求数列的前项和.
列项相消专题练习答案
1、(1)由题设知,又,可解得或(舍去),
由得公比,故,.
(2),又,
所以
.
2、(1)有,得,因为,(),
所以,化简得,
即数列是以为首项,为公比的等比数列,所以.
(2)证明:因为,所以,则,
因为,所以当时,取得最小值,当接近无限大时,趋于,故.
3、(1)由题可知,从而有,.
(2)由(1)知,,从而
.
4、(1)∵,∴又∵成等比数列,∴,
∴`∴.
(2)∴,
∴,
对任意的,恒成立
只需的最大值小于或等于,而∴,∴或.
5、(1)因为,所以,所以是以为首项,为公差的等差数列,从而
,所以.
(2)由(1)得,∴
.
6.(1)∵,∴,∴.
(2)∵,∴,
∴,
∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学数列专题大题组卷一.选择题(共9小题)1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.2602.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1 C.44D.44+14.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.237.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.68.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.9.设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0二.解答题(共14小题)10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.11.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.12.已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.13.已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.14.等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.15.已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.16.已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.17.已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.18.已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1﹣1(n∈N*)(Ⅰ)求a n与b n;(Ⅱ)记数列{a n b n}的前n项和为T n,求T n.19.已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.20.设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.21.设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;≥a n,n∈N*,求a的取值范围.(Ⅱ)若a n+122.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.23.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.高中数学数列专题大题组卷参考答案与试题解析一.选择题(共9小题)1.(1996•全国)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260【分析】利用等差数列的前n项和公式,结合已知条件列出关于a1,d的方程组,用m表示出a1、d,进而求出s3m;或利用等差数列的性质,s m,s2m﹣s m,s3m﹣s2m成等差数列进行求解.【解答】解:解法1:设等差数列{a n}的首项为a1,公差为d,由题意得方程组,解得d=,a1=,∴s3m=3ma1+d=3m+=210.故选C.解法2:∵设{a n}为等差数列,∴s m,s2m﹣s m,s3m﹣s2m成等差数列,即30,70,s3m﹣100成等差数列,∴30+s3m﹣100=70×2,解得s3m=210.故选C.【点评】解法1为基本量法,思路简单,但计算复杂;解法2使用了等差数列的一个重要性质,即等差数列的前n项和为s n,则s n,s2n﹣s n,s3n﹣s2n,…成等差数列.2.(2010•大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.3.(2011•四川)数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1 C.44D.44+1【分析】根据已知的a n=3S n,当n大于等于2时得到a n=3S n﹣1,两者相减,根+1据S n﹣S n﹣1=a n,得到数列的第n+1项等于第n项的4倍(n大于等于2),所以得到此数列除去第1项,从第2项开始,为首项是第2项,公比为4的等比数列,由a1=1,a n+1=3S n,令n=1,即可求出第2项的值,写出2项以后各项的通项公式,把n=6代入通项公式即可求出第6项的值.=3S n,得到a n=3S n﹣1(n≥2),【解答】解:由a n+1﹣a n=3(S n﹣S n﹣1)=3a n,两式相减得:a n+1=4a n(n≥2),又a1=1,a2=3S1=3a1=3,则a n+1得到此数列除去第一项后,为首项是3,公比为4的等比数列,所以a n=a2q n﹣2=3×4n﹣2(n≥2)则a6=3×44.故选A【点评】此题考查学生掌握等比数列的确定方法,会根据首项和公比写出等比数列的通项公式,是一道基础题.4.(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求+a n=0【解答】解:∵3a n+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选C【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题5.(2013•新课标Ⅱ)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.【分析】设等比数列{a n}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.【点评】熟练掌握等比数列的通项公式是解题的关键.6.(2008•全国卷Ⅰ)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.7.(2013•新课标Ⅰ)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,故选C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(2014•新课标Ⅱ)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.9.(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0【分析】对选项分别进行判断,即可得出结论.【解答】解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a3<0,则a1+a2=2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B 不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2≤0,即D不正确.故选:C.【点评】本题考查等差数列的通项,考查学生的计算能力,比较基础.二.解答题(共14小题)10.(2015•四川)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.【分析】(Ⅰ)由已知数列递推式得到a n=2a n﹣1(n≥2),再由已知a1,a2+1,a3成等差数列求出数列首项,可得数列{a n}是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅱ)由(Ⅰ)求出数列{}的通项公式,再由等比数列的前n项和求得T n,结合求解指数不等式得n的最小值.【解答】解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1,又∵a1,a2+1,a3成等差数列,∴a1+4a1=2(2a1+1),解得:a1=2.∴数列{a n}是首项为2,公比为2的等比数列.故;(Ⅱ)由(Ⅰ)得:,∴.由,得,即2n>1000.∵29=512<1000<1024=210,∴n≥10.于是,使|T n﹣1|成立的n的最小值为10.【点评】本题考查等差数列与等比数列的概念、等比数列的通项公式与前n项和公式等基础知识,考查运算求解能力,是中档题.11.(2015•湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.【分析】(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知c n=,写出T n、T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.12.(2014•新课标Ⅱ)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.∴对n∈N时,++…+<.+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.13.(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.【分析】(I)设等差数列{a n}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d (2a1+25d)=0,解出d即可得到通项公式a n;=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,(II)由(I)可得a3n﹣2﹣6为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n.﹣2【解答】解:(I)设等差数列{a n}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴a n=25+(n﹣1)×(﹣2)=﹣2n+27.=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,(II)由(I)可得a3n﹣2﹣6为公差的等差数列.∴S n=a1+a4+a7+…+a3n﹣2===﹣3n2+28n.【点评】熟练掌握等差数列与等比数列的通项公式及其前n项和公式是解题的关键.14.(2013•大纲版)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.【分析】(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求a n(II)由==,利用裂项求和即可求解【解答】解:(I)设等差数列{a n}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=(II)∵==∴s n===【点评】本题主要考查了等差数列的通项公式及裂项求和方法的应用,试题比较容易15.(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.16.(2015•天津)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.【分析】(1)通过a n=qa n、a1、a2,可得a3、a5、a4,利用a2+a3,a3+a4,a4+a5+2成等差数列,计算即可;(2)通过(1)知b n=,n∈N*,写出数列{b n}的前n项和T n、2T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)∵a n=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,+2∴a3=q,a5=q2,a4=2q,又∵a2+a3,a3+a4,a4+a5成等差数列,∴2×3q=2+3q+q2,即q2﹣3q+2=0,解得q=2或q=1(舍),∴a n=;(2)由(1)知b n===,n∈N*,记数列{b n}的前n项和为T n,则T n=1+2•+3•+4•+…+(n﹣1)•+n•,∴2T n=2+2+3•+4•+5•+…+(n﹣1)•+n•,两式相减,得T n=3++++…+﹣n•=3+﹣n•=3+1﹣﹣n•=4﹣.【点评】本题考查求数列的通项与前n项和,考查分类讨论的思想,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.17.(2015•山东)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.【分析】(1)通过对c n=分离分母,并项相加并利用数列{}的前n项和为即得首项和公差,进而可得结论;(2)通过b n=n•4n,写出T n、4T n的表达式,两式相减后利用等比数列的求和公式即得结论.【解答】解:(1)设等差数列{a n}的首项为a1、公差为d,则a1>0,∴a n=a1+(n﹣1)d,a n+1=a1+nd,令c n=,则c n==[﹣],∴c1+c2+…+c n﹣1+c n=[﹣+﹣+…+﹣]=[﹣]==,又∵数列{}的前n项和为,∴,∴a1=1或﹣1(舍),d=2,∴a n=1+2(n﹣1)=2n﹣1;(2)由(1)知b n=(a n+1)•2=(2n﹣1+1)•22n﹣1=n•4n,∴T n=b1+b2+…+b n=1•41+2•42+…+n•4n,∴4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,两式相减,得﹣3T n=41+42+…+4n﹣n•4n+1=•4n+1﹣,∴T n=.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.18.(2015•浙江)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1﹣1(n∈N*)(Ⅰ)求a n与b n;(Ⅱ)记数列{a n b n}的前n项和为T n,求T n.【分析】(Ⅰ)直接由a1=2,a n+1=2a n,可得数列{a n}为等比数列,由等比数列的通项公式求得数列{a n}的通项公式;再由b1=1,b1+b2+b3+…+b n=b n+1﹣1,取n=1求得b2=2,当n≥2时,得另一递推式,作差得到,整理得数列{}为常数列,由此可得{b n}的通项公式;(Ⅱ)求出,然后利用错位相减法求数列{a n b n}的前n项和为T n.【解答】解:(Ⅰ)由a1=2,a n+1=2a n,得.由题意知,当n=1时,b1=b2﹣1,故b2=2,当n≥2时,b1+b2+b3+…+=b n﹣1,和原递推式作差得,,整理得:,∴;(Ⅱ)由(Ⅰ)知,,因此,两式作差得:,(n∈N*).【点评】本题主要考查等差数列的通项公式、等差数列和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力,是中档题.19.(2015•安徽)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.【分析】(1)根据等比数列的通项公式求出首项和公比即可,求数列{a n}的通项公式;(2)求出b n=,利用裂项法即可求数列{b n}的前n项和T n.【解答】解:(1)∵数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=a2a3=8.解得a1=1,a4=8或a1=8,a4=1(舍),解得q=2,即数列{a n}的通项公式a n=2n﹣1;(2)S n==2n﹣1,∴b n===﹣,∴数列{b n}的前n项和T n=+…+﹣=﹣=1﹣.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.20.(2015•山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.21.(2008•全国卷Ⅱ)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;≥a n,n∈N*,求a的取值范围.(Ⅱ)若a n+1【分析】(Ⅰ)依题意得S n=2S n+3n,由此可知S n+1﹣3n+1=2(S n﹣3n).所以b n=S n+1﹣3n=(a﹣3)2n﹣1,n∈N*.(Ⅱ)由题设条件知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,a n=S n﹣S n﹣1=,由此可以求得a的取值范围是[﹣9,+∞).【解答】解:(Ⅰ)依题意,S n﹣S n=a n+1=S n+3n,即S n+1=2S n+3n,+1﹣3n+1=2S n+3n﹣3n+1=2(S n﹣3n).(4分)由此得S n+1因此,所求通项公式为b n=S n﹣3n=(a﹣3)2n﹣1,n∈N*.①(6分)(Ⅱ)由①知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,当n≥2时,a n=S n﹣S n﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,a n+1﹣a n=4×3n﹣1+(a﹣3)2n﹣2=,当n≥2时,⇔a≥﹣9.又a2=a1+3>a1.综上,所求的a的取值范围是[﹣9,+∞).(12分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.22.(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得b n=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{a n}的公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.23.(2014•安徽)数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.【分析】(Ⅰ)将na n=(n+1)a n+n(n+1)的两边同除以n(n+1)得,+1由等差数列的定义得证.(Ⅱ)由(Ⅰ)求出b n=3n•=n•3n,利用错位相减求出数列{b n}的前n项和S n.=(n+1)a n+n(n+1),【解答】证明(Ⅰ)∵na n+1∴,∴,∴数列{}是以1为首项,以1为公差的等差数列;(Ⅱ)由(Ⅰ)知,,∴,b n=3n•=n•3n,∴•3n﹣1+n•3n①•3n+n•3n+1②①﹣②得3n﹣n•3n+1==∴【点评】本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法.。

相关文档
最新文档