2012年高考真题——数学文(湖北A卷)
2012年高考文科数学真题答案全国卷1
2012 年高考文科数学真题及答案全国卷1注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷 (非选择题 )两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动 .用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后 .将本试卷和答且卡一并交回。
第1 卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合 A={ x|x2- x- 2<0} , B={ x|- 1<x<1} ,则(A)A B(B)BA(C)A=B(D)A∩B=【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题.【解析】 A= (- 1,2),故 B A ,故选 B.( 2)复数 z=3i的共轭复数是2 i( A )2 i( B )2 i(C)1 i( D)1 i【命题意图】本题主要考查复数的除法运算与共轭复数的概念,是简单题.【解析】∵ z =3 ii ,∴ z 的共轭复数为 1 i ,故选D.= 12i(3)在一组样本数据( x1, y1),( x2, y2),⋯,( x n, y n)(n≥ 2, x1,x2, ⋯ ,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2, ⋯, n) 都在直线y 1x 1 y=1x+1上,则这组样本22数据的样本相关系数为(A)- 1(B)0(C)1(D)1 2【命题意图】本题主要考查样本的相关系数,是简单题.【解析】有题设知,这组样本数据完全正相关,故其相关系数为1,故选 D.12x2y2=1(a> b >0)的左、右焦点,P 为直线 x3a(4)设F,F是椭圆E:a2b2上一2点,△ F2PF1是底角为300的等腰三角形,则 E 的离心率为A .1B .2C .3D .4 2345【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】∵△F2 PF1是底角为300的等腰三角形,∴ PF 2A600, | PF 2 | | F 1F 2 | 2c ,∴ | AF 2 | = c ,∴2c3a ,∴e =3,故选 C.24( 5)已知正三角形 ABC 的顶点 A(1,1) ,B(1,3) ,顶点 C 在第一象限,若点(x ,y )在△ ABC内部,则 zxy 的取值范围是(A )(1- 3,2)( B ) (0, 2)( C )( 3- 1,2)( D ) (0, 1+ 3)【命题意图】本题主要考查简单线性规划解法,是简单题.【解析】有题设知C(1+ 3 ,2),作出直线l 0:xy 0 ,平移直线l 0,有图像知,直线 l : zx y 过B点时, z max=2,过 C 时,z min =1 3 ,∴ z x y 取值范围为(1-3,2),故选 A.( 6)如果执行右边的程序框图,输入正整数N ( N ≥2)和实数a 1,a 2,⋯,a N ,输出A ,B ,则A . A + B 为a 1,a 2,⋯,a N 的和ABB .为a 1,a 2,⋯,a N 的算术平均数C .A 和B 分别为a 1,a 2,⋯,a N 中的最大数和最小数D . A 和 B 分别为a 1,a 2,⋯,a N 中的最小数和最大数【命题意图】本题主要考查框图表示算法的意义,是 简单题 .【解析】由框图知其表示的算法是找大值和最小值,A 和B分别为 a 1, a 2,⋯, a N 中 的最大数和最小数,故选C.(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A .6B .9C .12D .18【命题意图】本题主要考查简单几何体的三视图及体积计算,是简单题 .【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为 6,这边上高为 3,棱锥的高为 3,故其体积为116 33 =9,32故选 B.(8) 平面α截球 O 的球面所得圆的半径为1,球心 O 到平面α的距离为 2,则此球的体积为( A ) 6π( B ) 4 3π(C ) 4 6π( D ) 6 3π【命题意图】【解析】N 个数中的最( 9)已知>0,0,直线x =和x =5是函数f ( x) sin( x ) 图像的两条44相邻的对称轴,则=( A )ππ π 3π4(B )3 (C )2 (D )4【命题意图】本题主要考查三角函数的图像与性质,是中档题.【解析】由题设知,5,∴ =1,∴= k( k Z ),=4442∴= k ( kZ ),∵0,∴ =,故选 A.44( 10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 216x 的准线交于 A 、B 两点,| AB |=4 3,则C 的实轴长为A .2B .2 2C .4D .8.【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题【解析】由题设知抛物线的准线为: x 4 ,设等轴双曲线方程为:x 2 y 2 a 2,将x 4代入等轴双曲线方程解得y =16 a 2 ,∵| AB|=43,∴2 16a 2 = 4 3 ,解得 a =2,∴ C 的实轴长为4,故选 C.(11)当 0< x ≤1时,4xlog a x ,则a 的取值范围是222(A )(0,2 ) (B )( 2 , 1) (C ) (1, 2) (D ) ( 2,2)【命题意图】本题主要考查指数函数与对数函数的图像与性质及数形结合思想, 是中档题 .0 a12 【解析】由指数函数与对数函数的图像知11,解得a2 ,故选 A.loga242( 12)数列 { a n } 满足a n 1( 1)n a n2n 1 ,则{ a n }的前60项和为( A )3690 (B ) 3660( C ) 1845 ( D ) 1830 【命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题 . 【解析】【法 1】有题设知a 2 a 1=1,① a 3a 2=3②a 4 a 3=5③a 5 a 4=7, a 6 a 5=9, a 7 a 6=11, a 8a 7=13, a 9 a 8=15, a 10 a 9=17, a 11a 10=19, a 12a1121 ,⋯⋯∴②-①得 a 1a 3=2,③+②得 a 4 a 2=8,同理可得 a 5 a 7=2, a 6 a 8=24, a 9a 11=2,a10a 12=40,⋯,∴ a 1 a 3,a 5 a 7,a 9 a 11,⋯,是各项均为 2 的常数列,a 2a 4,a 6a 8,a 10a 12,⋯是首项为8,公差为 16 的等差数列,∴ { a n } 的前 60 项和为 15 215 8116 15 14 =1830.2【法 2】可证明:bn 1a4 n 1a4n 2a4 n 3a4 n 4a4 n 3a4n 2a4 n 2a 4n 16b n16b 1a 1a 2 a 3 a 4 1 01 5 1 4 S 1510 1516 18302第Ⅱ卷二.填空题:本大题共 4 小题,每小题 5 分。
2012年湖北高考理科数学试题(解析版)
由折起前 知,折起后(如图2), , ,且 ,
所以 平面 .又 ,所以 .于是
,
当且仅当 ,即 时,等号成立,
故当 ,即 时,三棱锥 的体积最大.
解法2:
同解法1,得 .
令 ,由 ,且 ,解得 .
当 时, ;当 时, .
所以当 时, 取得最大值.
故当 时,三棱锥 的体积最大.
解析:令 ,扇形OAB为对称图形,ACBD围成面积为 ,围成OC为 ,作对称轴OD,则过C点。 即为以OA为直径的半圆面积减去三角形OAC的面积, 。在扇形OAD中 为扇形面积减去三角形OAC面积和 , , ,扇形OAB面积 ,选A.
9.函数 在区间 上的零点个数为
A.4B.5
C.6D.7
考点分析:本题考察三角函数的周期性以及零点的概念.
考点分析:本题考查排列、组合的应用.
难易度:★★
解析:(Ⅰ)4位回文数只用排列前面两位数字,后面数字就可以确定,但是第一位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4位回文数有 种。
答案:90
(Ⅱ)法一、由上面多组数据研究发现,2n+1位回文数和2n+2位回文数的个数相同,所以可以算出2n+2位回文数的个数。2n+2位回文数只用看前n+1位的排列情况,第一位不能为0有9种情况,后面n项每项有10种情况,所以个数为 .
(Ⅱ)由概率的加法公式,
又 .
由条件概率.
21.(本小题满分13分)
设 是单位圆 上的任意一点, 是过点 与 轴垂直的直线, 是直线 与 轴的交点,点 在直线 上,且满足 .当点 在圆上运动时,记点M的轨迹为曲线 .
2012年理数高考试题答案及解析-湖北-(7539)
2012 年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有一项是符合题目要求的 . 1.方程2 6 13 0x x 的一个根是 A . 3 2i B .3 2iC . 2 3iD .2 3i考点分析: 本题考察复数的一元二次方程求根 .难易度 :★解析: 根据复数求根公式:26 6 13 4 x 3 2i ,所以方程的一个根为3 2i2答案为 A.2.命题“ x 0 e R Q , 3x Q ”的否定是0 A . x 0 e R Q , 3x Q B . x 0 e R Q ,0 3xQ 0 C . x e R Q ,3x Q D . x e R Q , 3x Q考点分析: 本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别 . 难易度 :★ 解析: 根据对命题的否定知, 是把谓词取否定, 然后把结论否定。
因此选 D y1 1 3.已知二次函数 y f (x) 的图象如图所示,则它与 x 轴所围图形的面积为1 O x1A .2π 5 B . 4 3第3 题图 11 C .3 2D .π2考点分析: 本题考察利用定积分求面积 . 难易度 :★ 4解析: 根据图像可得:2 y f ( x) x1,再由定积分的几何意 24 义,可求得面积为114 23 1 S( x 1)dx ( x x). 11332 正视图2 侧视图4.已知某几何体的三视图如图所示,则该几何体的体积为A .8π3B.3π俯视图第 1 页共 15 页第 4 题图C .10π3D. 6π考点分析:本题考察空间几何体的三视图.难易度:★解析:显然有三视图我们易知原几何体为一个圆柱体的一部分,并且有正视图知是一个1/2 的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a Z ,且0 a 13,若2012 51 a 能被13 整除,则aA.0 B.1C.11 D.12考点分析:本题考察二项展开式的系数.难易度:★解析:由于2012 C0 2012 C1 2011 C2011 1 , 51=52-1,(52 1) 52 52 ... 52 12012 2012 2012 又由于13|52,所以只需13|1+a,0≤a<13, 所以a=12选D.6.设a,b, c, x, y, z是正数,且2 2 210a bc ,2 2 2 40x y z , ax by cz 20 ,则a b cx y zA.14 B.13C.12 D.34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于(22 )( 2 2 2 )( )22a b c x y z ax by cza b c等号成立当且仅当t,x y z2 x2 y2 z2则a=t x b=t y c=t z ,t ( ) 10a b c a b c a b c所以由题知t 1/ 2 , 又, 所以t 1/ 2,答案选C.x y z x y z x y z7.定义在(,0) (0, )上的函数 f (x) ,如果对于任意给定的等比数列{a } ,{ f (a )} 仍n n是等比数列,则称f ( x) 为“保等比数列函数”.现有定义在(,0) (0, ) 上的如下函数:① 2 xf (x) x ;②f (x) 2 ;③f (x) | x |;④f(x) ln | x|.第2页共15 页则其中是“保等比数列函数”的 f ( x) 的序号为A.①②B.③④C.①③D.②④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,22 2 2 2 2a n a a ,① f a n f a a a a f a1 ;n2 n 1 n 2 n n 2 n 1n②f a a a a 2a 2a n f a 2 2 2 2 2 f a nn n n1 ;③n n 2n 2 12 2f a n f a a a a f a ;n 2 n n 2 n 1n 1④ 2 2f n f a a a a f a .选Ca 2 ln n ln n ln n nn 2 1 18.如图,在圆心角为直角的扇形OAB 中,分别以OA,OB 为直径作两个半圆. 在扇形 OAB 内随机取一点,则此点取自阴影部分的概率是A. 1 2πB.1 12 πC.2πD.1π考点分析:本题考察几何概型及平面图形面积求法. 难易度:★解析:令OA 1,扇形 OAB 为对称图形, ACBD 围成面积为S ,围成 OC 为S2 ,1作对称轴OD,则过 C 点。
2012年湖北高考数学文科试卷带详解
2012年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,,A B C {}2320A x x x =-+=,{}05,B x x x =<<∈N ,则满足条件A B C ⊆⊆的集合C 的个数为 ( ) A .1 B .2 C .3D .4 【测量目标】集合的基本运算.【考查方式】子集的应用.【参考答案】D【试题解析】求{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.2.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为 ( )A .0.35B .0.45C .0.55D .0.65【测量目标】频数分布表的应用,频率的计算,对于頻数、频率等统计问题【考查方式】通过弄清楚样本总数与各区间上样本的个数,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.【参考答案】B【试题解析】由频数分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B.3.函数()cos 2f x x x =在区间上[]0,2π的零点的个数为 ( ) 分组[10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频数 2 3 4 5 4 2A .2B .3C .4 D.5【测量目标】函数零点求解与判断.【考查方式】通过函数的零点,要求学会分类讨论的数学思想.【参考答案】D【试题解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos20=x ,得()π22x k k π=+∈Z ,故()ππ24k x k =+∈Z .又因为[]0,2πx ∈,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D. 4.命题“存在一个无理数,它的平方是有理数”的否定是 ( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数【测量目标】命题的否定.【考查方式】求解特称命题或全称命题的否定,千万别忽视了改变量词;【参考答案】B【试题解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.5.过点(1,1)P 的直线,将圆形区域分为两部分,使22{(,)4)}x y x y +…得这两部分的面积之差最大,则该直线的方程为 ( )A .0x y += B. 10y -= C. 0x y -= D.340x y +-=【测量目标】考查直线、线性规划与圆的综合运,并学会用数形结合思想.【考查方式】通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.【参考答案】A【试题解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为1-.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.6.已知定义在区间(0,2)上的21π-函数的图象()y f x =如图所示,则(2)y f x =--的图象为 ( )【测量目标】函数的图象的识别.【考查方式】利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解【参考答案】B【试题解析】排除法:当1x =时,()()()21211y f x f f =--=--=-=-,故可排除A,C 项;当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;所以由排除法知选B.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则{()}n f a 称为“保等比数列函数”. 现有定义在上的如下(,0)(0,)-∞+∞函数: ( ) ①2()f x x =; ②()2x f x =; ③()f x x =; ④()ln f x x =.则其中是“保等比数列函数”的的()f x 序号为A .① ②B .③ ④C .① ③D .② ④ 【测量目标】等比数列的新应用,函数的概念. 【考查方式】读懂题意,然后再去利用定义求解,注意数列的通项.【参考答案】C【试题解析】设数列{}n a 的公比为q .对于①,22112()()n n n n f a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,11||()()||n n n n a f a f a a ++= 1n na q a +==,是常数,故③符合条件;对于④, 11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C8.设ABC △的内,,A B C 所对的边分别为,,a b c . 若三边的长为连续的三个正整数,且A B C >> ,320cos b a A =,则sin :sin :sin A B C 为 ( )A.4:3:2B.5:6:7 C .5:4:3 D.6:5:4【测量目标】正、余弦定理以及三角形中大角对大边的应用.【考查方式】本题需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长,注意正余弦定理与和差角公式的结合应用.【参考答案】D【试题解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20b A a=②.由余弦定理可得222cos 2+-=b c a A bc③,则由②③可得2223202b b c a a bc +-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.9.设,,R a b c ∈,“1abc =”是“111a b c a b c++++… ”的 ( ) A .充分条件但不是必要条件 B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件 【测量目标】充要条件的判断,不等式的证明.【考查方式】首先需判断条件能否推得结论,然后需判断结论能否推得条件.【参考答案】A【试题解析】1abc =时,111abc abc abc ab bc ca a b c a b c++=++=++, 而()()()()2222a b c a b b c c a ab bc ca ++=+++++++…(当且仅当a b c ==,且1abc =,即a b c ==时等号成立),故111ab bc ca a b c a b c++=++++…;但当取2a b c ===,显然有111a b c a b c++++…,但1abc ≠,即由111a b c a b c++++…不可以推得1abc =;综上,1abc =是111a b c a b c++++…的充分不必要条件,应选A. 10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是 ( )A .112π- B .1πC . 21π-D . 2π 【测量目标】古典概型的应用以及观察推理的能力.【考查方式】求解阴影部分的面积,将不规则图形的面积化为规则图形的面积来求解.【参考答案】C【试题解析】如下图所示,设OA 的中点为1O ,OB 的中点为2O ,半圆1O 与半圆2O 的交点分别为,O F ,则四边形12OO FO 是正方形.不妨设扇形的半径为2,记两块白色区域的面积分别为12,S S ,两块阴影部分的面积分别为34,S S .则212341π2π4OAB S S S S S +++==⨯=扇形, ① 而22132311111π,π1π2222S S S S π+=⨯=+=⨯=,即1232πS S S ++=, ② 由①-②,得34S S =.又由图象观察可知,12214OO FO OAB O FB O AF S S S S S =---正方形扇形扇形扇形 2222221111π1π1π11π11π14422=⨯-⨯-⨯-=⨯-=-. 故由几何概型概率公式可得,此点取自阴影部分的概率:3442π221ππOAB OAB S S S P S S +-====-扇形扇形.故选C.二、填空题:本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人. 现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有 人.【测量目标】分层抽样的应用.【考查方式】分层抽样在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比.【参考答案】6【试题解析】 设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人.12.若21k b -3i i 1ib a b +=+-(a ,b 为实数,i 为虚数单位),则a b += . 【测量目标】复数代数形式的四则运算.【考察方式】通过考查复数相等来判断学生对复数的掌握.【参考答案】3 【试题解析】因为3i i 1ib a b +=+-,所以()()()3i i 1i i b a b a b b a +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,a b b a b +=⎧⎨-=⎩解得0,3a b =⎧⎨=⎩所以3a b +=. 13已知向量(1,0)=a ,(1,1)=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为 ;(Ⅱ)向量与3-b a 向量a 夹角的余弦值为 .【测量目标】单位向量的概念,平面向量的坐标运算,向量的数量积运算等.【考查方式】给出两个向量,利用向量的坐标和向量的数量积来运算求值. 【参考答案】(Ⅰ)31010,1010⎛⎫ ⎪ ⎪⎝⎭;(Ⅱ)255- 【试题解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得310,1010.10x y ⎧=⎪⎪⎨⎪=⎪⎩故31010,1010⎛⎫ ⎪ ⎪⎝⎭c =.即与2+a b 同向的单位向量的坐标为31010,1010⎛⎫ ⎪ ⎪⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()()()32,11,025cos 3551θ--===--⨯b a a b a a .14.若变量,x y 满足约束条件1133x y x y x y --⎧⎪+⎨⎪-⎩………,则目标函数23z x y =+的最小值是 .【测量目标】二元线性规划求目标函数最小值.【考查方式】给出约束条件,判断可行域,利用可行域求解.【参考答案】2【试题解析】作出不等式组1133x y x y x y --⎧⎪+⎨⎪-⎩………所表示的可行域(如下图的ABM △及其内部),目标函数23z x y =+在ABM △的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.15.已知某几何体的三视图如图所示,则该几何体的体积为 .【测量目标】考查圆柱的三视图的识别,圆柱的体积.【考查方式】在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法.【参考答案】12π【试题解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是22π212π1412πV =⨯⨯⨯+⨯⨯=. 16.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .【测量目标】顺序结构框图和判断结构框图的执行求解.【考查方式】对于循环结构的输出问题,一步一步按规律写程序结果.【参考答案】9【试题解析】由程序框图可知:第一次:1,0,1,1,23a s n s s a a a ====+==+=,满足判断条件3?n <;第二次2,4,5n a a ===,满足判断条件3?n <第三次:3,9,7n s a ===,此时不满足判断条件3?n <,故终止运行,输出s 的值.综上,输出的s 值为9.17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b . 可以推测:(Ⅰ)2012b 是数列{}n a 中的第________项;(Ⅱ)21k b -________.(用k 表示)【测量目标】数学归纳法.【考查方式】本题考查归纳推理,猜想的能力.【参考答案】(Ⅰ)5030;(Ⅱ)()5512k k - 【试题解析】易知(1)2n n n a +=,写出数列{}n a 的若干项依次为:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,…,发现其中能被5整除的为10,15,45,55,105,120,190,210,故142510,15b a b a ====.同理,39410514615719820,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:()255512k k k k b a +==,()()()21515151155122k k k k k k b a ----+-===(k 为正整数).故201221006510065030b b a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.三、解答题:本大题共5小题,共65分. 解答应写出文字说明、证明过程或演算步骤.18.(本小题满分12分)设函数22()sin 23sin cos cos ()f x x x x x x ωωωλ=+-+∈R ,的图象关于直线πx =对称,其中,πω为常数,且1(,1)2ω∈ (Ⅰ)求函数()f x 的最小正周期;第17题图10 6 3 1 ···(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 的值域.【测量目标】三角函数的图象的周期性,值域,诱导公式的应用.【考查方式】给出函数,利用三角函数的性质求最小值和周期. 【试题解析】解:(Ⅰ)因为22()sin cos 23sin cos f x x x x x ωωωωλ=-++ π=2sin(2)+6x ωλ-. 由直线πx =是()y f x =图象的一条对称轴,可得πsin(2)16x ω-=±, 所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=. 所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =, 即5πππ2sin()2sin 26264λ=-⨯-=-=-,即2λ=-. 故5π()2sin()236f x x =--,函数()f x 的值域为[22,22]---.19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -11B D ⊥,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.2222ABCD A B C D -(Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理. 已知10AB =,2220,A B = 230AA =,113AA =(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?【测量目标】线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.【考查方式】通过线线垂直证明面面垂直,并用公式求体积【试题解析】解:(Ⅰ)因为四棱柱2222ABCD A B C D -的侧面是全等的矩形,所以2AA AB ⊥,2AA AD ⊥. 又因为AB AD A =,所以2AA 平面ABCD .连接BD ,因为BD ⊂平面ABCD ,所以2AA BD ⊥. A 2 B 2C 2D 2 C B A D A 1 B 1 C 1 D 1 第19题图因为底面ABCD 是正方形,所以AC BD ⊥ 根据棱台的定义可知,BD 与B 1 D 1共面.又已知平面ABCD ∥平面1111A B C D ,且平面11BB D D 平面ABCD BD =,平面11BB D D平面111111A B C D B D =,所以B 1 D 1∥BD . 于是由2AA BD ⊥,AC BD ⊥,B 1 D 1∥BD ,可得211AA B D ⊥,.11AC B D ⊥ 又因为2AA AC A =,所以11B D ⊥平面22ACC A .(Ⅱ)因为四棱柱2222ABCD A B C D -的底面是正方形,侧面是全等的矩形,所以2221222()410410301300(cm )S S S A B AB AA =+=+⋅=+⨯⨯=四棱柱上底面四棱柱侧面.又因为四棱台1111A B C D ABCD -的上、下底面均是正方形,侧面是全等的等腰梯形,所以2211111()42S S S A B AB A B h =+=+⨯+四棱台下底面四棱台侧面等腰梯形的高()222211204(1020)13[(2010)]1120(cm )22=+⨯+--=.于是该实心零部件的表面积为212130*********(cm )S S S =+=+=, 故所需加工处理费为0.20.22420484S =⨯=(元).20.(本小题满分13分)已知等差数列{}n a 前三项的和为3-,前三项的积为8. (Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{}n a 的前n 项和. 【测量目标】本题考查等差数列的通项,求和等.【考查方式】考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.【试题解析】解:(Ⅰ)设等差数列{}n a 的公差为d ,则21a a d =+,312a a d =+,由题意得1111333,()(2)8.a d a a d a d +=-⎧⎨++=⎩ 解得12,3,a d =⎧⎨=-⎩或14,3.a d =-⎧⎨=⎩所以由等差数列通项公式可得23(1)35n a n n =--=-+,或43(1)37n a n n =-+-=-.故35n a n =-+,或37n a n =-. (Ⅱ)当35n a n =-+时,2a ,3a ,1a 分别为1-,4-,2,不成等比数列;当37n a n =-时,2a ,3a ,1a 分别为1-,2,4-,成等比数列,满足条件. 故37,1,2,|||37|37, 3.n n n a n n n -+=⎧=-=⎨-≥⎩记数列{||}n a 的前n 项和为n S .当1n =时,11||4S a ==;当2n =时,212||||5S a a =+=; 当3n ≥时, 234||||||n n S S a a a =++++5(337)(347)(37)n =+⨯-+⨯-++-2(2)[2(37)]311510222n n n n -+-=+=-+. 当2n =时,满足此式.综上,24,1,31110, 1.22n n S n n n =⎧⎪=⎨-+>⎪⎩.21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (M>0,M 1)=≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的,K>0都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.【测量目标】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系.【考查方式】考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论. 【试题解析】解:(Ⅰ)如图1,设(,)Mxy ,00(,)A x y ,则由DM m DA (m>0,1)=≠且m ,可得0x x =,0y m y =,所以0x x =,. 01y y m=① 因为A 点在单位圆上运动,所以2221(0,1)y x m m m+=>≠且 ②将①式代入②式即得所求曲线C 的方程为.2221(0,1)y x m m m+=>≠且因为(0,1)(1,)m ∈+∞,所以当01m <<时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为2(1,0)m --,2(1,0)m -; 当1m >时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为2(0,1)m --,2(0,1)m -.(Ⅱ)1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --, 1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠. 于是由③式可得212121212()()()()y y y y m x x x x -+=--+. ④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+. 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PHk k ⋅=-,即212m -=-,又0m >,得2m =,故存在2m =,使得在其对应的椭圆2212y x +=上,对任意的0k >,都有PQ PH ⊥.22.(本小题满分14分)设函数()(1)nf x ax x b =-+,1+1()ex y f x n =<,,n 为正整数,a ,b 为常数. 曲线()y f x =在(1,(1))f 处的切线方程为.+1x y =(Ⅰ)求a ,b 的值;(Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <. 【测量目标】函数导数的几何意义以及单调性的应用,还考查不等式的证明.【考查方式】通过转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等.【试题解析】解:(Ⅰ)因为(1)f b =,由点(1,)b 在=1x y +上,可得11b +=,即0b =.因为1'()(1)n n f x anxa n x -=-+,所以'(1)f a =-.又因为切线1x y +=的斜率为1-,所以1a -=-,即1a =. 故1a =,0b =. (Ⅱ)由(Ⅰ)知,1()(1)nnn f x x x x x+=-=-,1()(1)()1n nf x n xx n -'=+-+. 令()0f x '=,解得1n x n =+,即'()f x 在(0,)+1n n +(0,)+∞上有唯一零点.在(0,)+1nn +上,()0f x '>,故()f x 单调递增; 而在(+)+1n n ∞,上,()0f x '<,()f x 单调递减. 故()f x 在(0,)+∞上的最大值为1()1(1)nn n n f n n +=++. (Ⅲ)令1()ln 1(0)t t t t ϕ'=-+>,则22111()(0)t t t t t tϕ-'=-=>. 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减; 而在(1,)+∞上()0t ϕ'>,()t ϕ单调递增.故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=. 所以()0(1)t t ϕ>>,即1ln 1(1)t t t>->.令11+t n =,得11ln 1n n n +>+,即11ln()ln e n n n++>, 所以11()1n n n++>,即11(1)e n n n n n +<+. 由(Ⅱ)知,1nx n =+,故所证不等式成立.。
2012年高考数学湖北理解析版
2012年湖北卷(理数)详细解析1.A 【解析】因为判别式26413160∆=-⨯=-<,所以方程26130x x ++=无实数根,只有复数根,且复数根6643222i x i -±-±===-±.【点评】本题考查一元二次方程跟的求解以及复数的有关运算.对于一元二次方程20a x b x c ++=,若240b ac ∆=-<,则方程没有实数根,只有复数根22x aa==.来年需注意复数的概念,如共轭复数,复数的运算,复数的几何意义等,都是复数中的热门考点.2.D 【解析】本命题为特称命题,写其否定的方法是:先改变量词,再否定结论,故D 符合. 【点评】本题考查含有量词的命题的否定.对于特称命题的否定,一般是先改变量词,再否定结论;对于全称命题的否定,也是类似的.千万不要忽略改变量词这一点,否则就是错误的.来年需注意充要条件的判断,这也是逻辑中的一大热门考点.3.B 【解析】根据图象可知,二次函数图象的顶点为()0,1,且开口向下,故可设二次函数的解析式为()()210f x ax a =+<.因为函数()f x 的图象过点()1,0,所以()2111f a =⨯+0=,解得1a =-.所以()21f x x =-+,所以()31211141|33x S x dx x --⎛⎫=-+=-+= ⎪⎝⎭⎰.【点评】本题考查二次函数的图象,定积分的应用以及数形结合的数学思想方法.本题容易直接把所围成的图形当成半圆去求解面积了.来年需注意直接给出定积分解析式,却要用定积分的几何意义来数形结合去解题的一类型题.4. B 【解析】由三视图可知,该几何体的下方是一个圆柱,上方是圆柱的一半,两圆柱的底面圆半径都为1,高都为2,所以该几何体的体积221121232V πππ=⨯⨯+⨯⨯⨯=.【点评】本题考查三视图的识别,圆柱的体积求解.对常见几何体:如圆柱,圆锥,正四棱锥,长方体,正方体及它们的组合体等的三视图要了如指掌.来年需注意圆锥与长方体等的三视图考查及体积,表面积的求解. 5.D 【解析】由题意,()20122012122201220125111341C 134C (134)a a a +=-⨯+=+-⨯+⨯++()2012134⨯,显然当()113a k k +=∈Z 时,201251a +的各项都是13的倍数,故能被13整除.故此时()131a k k =-∈Z .又013a <<,所以当1k =时,12a =.【点评】本题考查二项式定理的应用.运用二项式定理判断数a 能被数b 整除,关键是要能将数a 转化分解为含有数b 的因式的乘积.来年需注意利用二项式定理求解常数项,系数等题型.6.C 【解析】已知22222210,40,20a b c x y z ax by cz ++=++=++=, 则()()()2222222a b c x y z ax by cz ++++=++.由柯西不等式得()()()2222222a b c x y z ax by cz ++++≥++, 所以上述不等式取等号,一定有,,,a kx b ky c kz === 此时()2222222a b c k x y z ++=++,即21040k =,解得12k =(舍去负值).所以由等比性质得+1.2a b c a k x y zx +===++【点评】本题考查柯西不等式的应用.柯西不等式是考纲中的了解内容,考查一般难度并不大,但如果不了解柯西不等式的结构,求解也有一定的困难.来年需注意绝对值不等式的求解与应用7. C 【解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a++==,是常数,故①符合条件;对于②,111()22()2n n nna a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===;对于④,11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C.【点评】本题考查等比数列的新应用,函数的概念.对于创新性问题,首先要读懂题意,然后再去利用定义求解,抓住实质是关键.来年需要注意数列的通项,等比中项的性质等. 8.A 【解析】如下图所示,设O A 的中点为1O ,O B 的中点为2O ,半圆1O 与半圆2O 的交点分别为,O F ,则四边形12O O FO 是正方形.不妨设扇形O A B 的半径为2,记两块白色区域的面积分别为12,S S ,两块阴影部分的面积分别为34,S S .则21234124O A B S S S S S ππ+++==⨯=扇形, ①而22132311111,12222S S S S ππππ+=⨯=+=⨯=,即1232S S S π++=, ②由①-②,得34S S =.又由图象观察可知,12214OO FO OAB OFBO AF S S S S S =---正方形扇形扇形扇形222222111111111114422πππππ=⨯-⨯-⨯-⨯=⨯-=-.故由几何概型概率公式可得,此点取自阴影部分的概率 3442221O ABO ABS S S P S S πππ+-====-扇形扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.9.C 【解析】由()2cos 0f x x x ==,得0x =或2cos 0x =.又[]0,4x ∈,所以[]20,16x ∈.由于()c o s 02k k ππ⎛⎫+=∈ ⎪⎝⎭Z ,而在()2k k ππ+∈Z 的所有取值中,只有3579,,,,22222πππππ满足在[]0,16内.故零点个数为156+=.【点评】本题考查函数的零点个数的求解.求解函数的零点个数通常有两种方法:一、直接法,即求解出所有的零点;二、数形结合法,即转化为原函数的图象与x 轴的交点个数或分解为两个函数相等,进而判断两个函数图象的交点个数,此法往往更实用.本题是直接求解零点法,来年需注意数形结合法.10.D 【解析】设球的直径为d ,则球的体积为3344332d V r ππ⎛⎫== ⎪⎝⎭(,r d 分别为圆的半径、直径),所以d =≈,对于A 项,d ≈≈;对于C 项,d ≈≈对于D 项,d ≈≈;比较各选项的被开方数大小可知,选项D 中的d 与d =≈D.【点评】本题考查球的直径与体积的关系,估算法.根据球的直径与体积的关系,即可用体积来表示直径;然后比较各选项中的表示直径的式子,看哪个最接近求出的式子即可.11年考查的是以放射性元素为背景,考查了导数的运算,难度不算大,主要是要读懂题意,本题承接了11年的思想,难度不大,重在考查数学知识在实际生活中的应用.来年需注意一些常见知识的实际应用,比如线性规划,函数的应用,数列的应用等. 11.23π【解析】因为已知()()a b c a b c a b +-++=,所以()22a b c a b +-=,即222a b c a b+-=-,故2221a b cab+-=-,即222122a b cab+-=-,故1c o s 2C =-.所以23C π=.【点评】本题考查余弦定理的应用.正余弦定理是解三角形的有力武器,本题只考查到余弦定理,来年需注意它们的结合考查.12. 9【解析】由程序框图可知:第一次:a=1,s=0,n=1,s=s+a=1,a=a+2=3,满足判断条件3?n <;第二次:n=2,s=4,a=5,满足判断条件3?n <;第三次:n=3,s=9,a=7,此时不满足判断条件3?n <,故终止运行,输出s 的值. 综上,输出的s 值为9.【点评】本题考查程序框图及递推数列等知识.对于循环结构的输出问题,一步一步按规律写程序结果,仔细计算,一般不会出错,属于送分题.来年需注意判断条件的填充型问题.13.(1)90; (2)910n ⨯.【解析】按照回文数的定义,1位回文数有1,2,3,…9等9个,又已知2位回文数有9个,3位回文数有90910=⨯个,4位回文数有1001,1111,……,1991,2002,…,9999,共90910=⨯个,5位回文数有2910⨯个,6位回文数有2910⨯个,…以此类推,故猜想()21n n ++∈N 位回文数与()22n n ++∈N 位回文数个数相等,均为910n ⨯个. 【点评】本题考查归纳推理的应用.对于归纳推理问题,关键是要归纳前几项所共有的性质,这就需要学生有一定的归纳与猜想能力.来年需注意类比推理的创新性问题.14.(1)12;(2)22【解析】(1)由图象可知,O B 即为点O 到直线12F B 的距离,且OB a =,又易知直线12F B 的方程为0bx cy bc -+=, 所以a =,整理得()22222c aa c -=,得22c a ac -=.所以210e e --=,解得12e =(负值舍去)(2)连结O B ,设B C 与x 轴的交点为G,则1BF =.在直角三角形1OBF 中,有11,O B BF BG O F ⊥⊥, 所以1111122O B F S O B B F F O B G ∆==,得11BF O B ab BG F Oc==.所以2aOG c==.所以32242||2||a b S OG GB c=⋅=.而112121||||22S F F B B bc ==,所以331321222S ce S a===【点评】本题考查双曲线的离心率,点到直线的距离,四边形的面积以及运算求解的能力.由直线与圆相切,得到圆心到该直线的距离等于半径,这是求解本题的突破口.来年需注意双曲线的标准方程,轨迹问题,特别是双曲线的定义的应用.15. 2【解析】由勾股定理,得CD ==r 为O 的半径,是定值),所以当O D 取最小值时,C D 取得最大值.显然当O D AB ⊥时,O D 取得最小值,故此时122C D A B ==,故所求的C D 的最大值2.【点评】本题考查直角三角形的性质以及转化与化归的能力.本题将求解C D 的最大值转化为求O D 的最小值,进而转化为点到直线的距离,体现了转化与化归的数学思想的作用之巨大.来年需注意弦切角,切线长定理,相似三角形的性质等题型.16.55,22⎛⎫⎪⎝⎭【解析】曲线()21,1x t y t =+⎧⎪⎨=-⎪⎩化为直角坐标方程是()22y x =-,射线4πθ=化为直角坐标方程是()0y x x =≥.联立()()22,0,y x y x x ⎧=-⎪⎨=≥⎪⎩消去y 得2540x x -+=,解得121,4x x ==.所以121,4y y ==.故线段A B 的中点的直角坐标为1122,22x y x y ++⎛⎫⎪⎝⎭,即55,22⎛⎫⎪⎝⎭. 【点评】本题考查极坐标方程,参数方程与直角坐标方程的互化,中点坐标公式的应用问题.()()1122,,,A x y B x y 两点的中点坐标公式为1122,22x y x y ++⎛⎫⎪⎝⎭.来年需注意极坐标方程,参数方程与直角坐标方程的互化,直线与圆锥曲线的位置关系,交点个数等题型.17. 【解析】【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查. 18. 【解析】【点评】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'n n a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质. 19. 【解析】【点评】本题考查三棱锥的体积,直线与平面所成的角以及线线垂直的探讨性问题;考查空间想象,逻辑推理,以及运算求解的能力.本题将三棱锥的体积与基本不等式结合考查,实为一种创新.求解最值时注意验证等号成立的条件,因为实际问题要求相关量都为正数;对于线面角的求解,可以用两种方法:向量法与直接法求解.来年需注意二面角的求解,这是高考的考查频度最高的几何考题.20.【解析】【点评】本题考查随机变量的期望,方差,古典概型.本题有两个随机变量,分别是 与Y,两个随机变量之间的关系要理清理顺,不要混淆,各自对应的概率要求解正确;来年需注意频率分布直方图的应用考查,概率与生活热点话题结合考查等题型.21.【解析】【点评】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.22.【解析】【点评】本题考查导数的综合应用,不等式的性质,数学归纳法等;考查分类讨论的数学思想,运算求解,逻辑推理的能力.本题利用导数求函数的最值,利用最值来证明不等式;层层递进,难度一步一步递增,学生若做不出前一问,就很难做出后一问,来年需注意导数判断函数的极值,含有对数函数或指数函数的导数综合应用,导数的实际应用等.。
2012年高考真题汇编——文科数学(解析版)10:概率
2012高考试题分类汇编:10:概率一、选择题1.【2012高考安徽文10】袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于(A)15(B)25(C)35(D )45【答案】B【解析】1个红球,2个白球和3个黑球记为112123,,,,,a b b c c c,从袋中任取两球共有111211121312111213212223121323,;,;,;,;,;,;,;,;,,;,;,;,;,;,a b a b a c a c a c b b b c b c b cb c b c b c c c c c c c15种;满足两球颜色为一白一黑有6种,概率等于62155=。
2.【2012高考辽宁文11】在长为12cm的线段AB上任取一点C. 现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为(A)16(B)13(C)23(D)45【答案】C【解析】设线段AC的长为x cm,则线段CB的长为(12x-)cm,那么矩形的面积为(12)x x-cm2,由(12)20x x->,解得210x<<。
又012x<<,所以该矩形面积小于32cm2的概率为23,故选C【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。
3.【2012高考湖北文10】如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆。
在扇形OAB内随机取一点,则此点取自阴影部分的概率是A. B. . C. D.10. 【答案】C【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①, 而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形. 【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.4.【2102高考北京文3】设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )4π (B )22π- (C )6π(D )44π-【答案】D 【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,故选D 。
2012年高考真题试卷数学文(湖北卷)详细答案解析
2012年普通高等学校招生全国统一考试(湖北卷)数学(供文科考生使用)解析1.D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.B 【解析】由频率分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B. 【点评】本题考查频率分布表的应用,频率的计算.对于頻数、频率等统计问题只需要弄清楚样本总数与各区间上样本的个数即可,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.来年需注意频率分布直方图与频率分布表的结合考查.3.D 【解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos 20=x ,得()22x k k ππ=+∈Z ,故()24k x k ππ=+∈Z .又因为[]0,2x ∈π,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D.【点评】本题考查函数的零点,分类讨论的数学思想.判断函数的零点一般有直接法与图象法两种方法.对于三角函数的零点问题,一般需要规定自变量的取值范围;否则,如果定义域是R ,则零点将会有无数个;来年需注意数形结合法求解函数的零点个数,所在的区间等问题.4.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.【点评】本题考查特称命题的否定.求解特称命题或全称命题的否定,千万别忽视了改变量词;另外,要注意一些量词的否定的书写方法,如:“都是”的否定为“不都是”,别弄成“都不是.5.A 【解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为-1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.【点评】本题考查直线、线性规划与圆的综合运用,数形结合思想.本题的解题关键是通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.来年需注意直线与圆相切的相关问题.6.B 【解析】特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.【点评】本题考查函数的图象的识别.有些函数图象题,从完整的性质并不好去判断,作为徐总你则提,可以利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解,既可以节约考试时间,又事半功倍.来年需注意含有xe 的指数型函数或含有ln x 的对数型函数的图象的识别. 7.C 同理7【解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===;对于④, 11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C.【点评】本题考查等比数列的新应用,函数的概念.对于创新性问题,首先要读懂题意,然后再去利用定义求解,抓住实质是关键.来年需要注意数列的通项,等比中项的性质等. 8.D 【解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20bA a=②.由余弦定理可得222cos 2+-=b c a A bc ③,则由②③可得2223202b b c a a bc +-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.【点评】本题考查正、余弦定理以及三角形中大角对大边的应用.本题最终需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长.来年需注意正余弦定理与和差角公式的结合应用.9.A 【解析】当1abc ==+=,而()()()()2a b c a b b c c a ++=+++++≥a b c ==,且1abc =,即a b c ==时等号成立),a b c+=≤++;但当取2a b c ===,显然有a b c≤++,但1abc ≠,即由a b c≤++不可以推得1abc =;综上,1abc =是a b c≤++的充分不必要条件.应选A. 【点评】本题考查充要条件的判断,不等式的证明.判断充要条件,其常规方法是首先需判断条件能否推得结论,然后需判断结论能否推得条件;来年需注意充要条件与其他知识(如向量,函数)等的结合考查. 10.C 同理8【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①, 而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.11. 6【解析】设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人. 【点评】本题考查分层抽样的应用.本题实际是承接2012奥运会为题材,充分展示数学知识在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比. 来年需注意系统抽样的考查或分层抽样在解答题中作为渗透考查. 12. 3【解析】因为31bia bi i+=+-,所以()()()31bi a bi i a b b a i +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,,a b b a b +=⎧⎨-=⎩解得0,3,a b =⎧⎨=⎩所以3a b +=.【点评】本题考查复数的相等即相关运算.本题若首先对左边的分母进行复数有理化,也可以求解,但较繁琐一些.来年需注意复数的几何意义,基本概念(共轭复数),基本运算等的考查.13.(Ⅰ)1010⎛ ⎝⎭;(Ⅱ)5- 【解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得,1010x y ⎧=⎪⎪⎨⎪=⎪⎩故⎝⎭c =.即与2+a b同向的单位向量的坐标为⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,0cos 35θ--===-- b a a b a a.【点评】本题考查单位向量的概念,平面向量的坐标运算,向量的数量积等.与某向量同向的单位向量一般只有1个,但与某向量共线的单位向量一般有2个,它包含同向与反向两种.不要把两个概念弄混淆了. 来年需注意平面向量基本定理,基本概念以及创新性问题的考查.14.2 【解析】(解法一)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).可知当直线23z x y =+经过1,33x y x y +=⎧⎨-=⎩的交点()1,0M 时,23z x y =+取得最小值,且min 2z =.(解法二)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).目标函数23z x y =+在ABM ∆的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.【点评】本题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值.来年需注意线性规划在生活中的实际应用.15.12π【解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是222121412Vπππ=⨯⨯⨯+⨯⨯=.【点评】本题考查圆柱的三视图的识别,圆柱的体积.学生们平常在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法. 来年需注意以三视图为背景,考查常见组合体的表面积.16. 同理12【解析】由程序框图可知:第一次:a=1,s=0,n=1,s=s+a=1,a=a+2=3,n=1<3满足判断条件,继续循环;第二次:n=n+1=2,s=s+a=1+3=4,a=a+2=5,n=2<3满足判断条件,继续循环;第三次:n=n+1=3,s=s+a=4+5=9,a=a+2=11,n=3<3不满足判断条件,跳出循环,输出s的值.综上,输出的s值为9.【点评】本题考查程序框图及递推数列等知识.对于循环结构的输出问题,一步一步按规律写程序结果,仔细计算,一般不会出错,属于送分题.来年需注意判断条件的填充型问题.17.(Ⅰ)5030;(Ⅱ)()5512k k-【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为(1)2nn na+=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故142539*********,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:255(51)2k k k k b a +==(k 为正整数), 2151(51)(511)5(51)22k k k k k k b a ----+-===, 故201221006510065030b a a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.18.【解析】【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查.19.【解析】【点评】本题考查线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.线线垂直⇔线面垂直⇔面面垂直是有关垂直的几何问题的常用转化方法;四棱柱与四棱台的表面积都是由简单的四边形的面积而构成,只需求解四边形的各边长即可.来年需注意线线平行,面面平行特别是线面平行,以及体积等的考查.20.同理18【解析】【点评】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质.21. 同理21 【解析】【点评】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.22.【解析】七彩教育网 免费提供W ord 版教学资源七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等;另外,要注意含有,ln xe x 等的函数求导的运算及其应用考查.。
2012年理数高考试题答案及解析-湖北
2012年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程26130x x ++=的一个根是A .32i -+B .32i +C .23i -+D .23i + 考点分析:本题考察复数的一元二次方程求根. 难易度:★解析:根据复数求根公式:6x 322i -==-±,所以方程的一个根为32i -+ 答案为A.2.命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别. 难易度:★解析:根据对命题的否定知,是把谓词取否定,然后把结论否定。
3.已知二次函数()y f x =的图象如图所示,则它与xA .2π5B .43C .32D .π2考点分析:本题考察利用定积分求面积. 难易度:★解析:根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为12311114(1)()33S x dx x x --=-+=-+=⎰.4.已知某几何体的三视图如图所示,则该几何体的体积为 A .8π3B .3π俯视图侧视图正视图C .10π3D .6π考点分析:本题考察空间几何体的三视图. 难易度:★解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a = A .0B .1C .11D .12考点分析:本题考察二项展开式的系数. 难易度:★ 解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D.6.设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++A .14B .13C .12D .34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于222222)())((2cz by ax z y x c b a ++≥++++等号成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x cb a z y xc b a z c y b x a 所以,答案选C.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()f x =; ④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序号为 A .① ② B .③ ④ C .① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,212++=n n n a a a ,①()()()()122212222++++===n n n n n n a f a a a a f a f ;②()()()12221222222+++=≠==+++n a a a a an n a f a f a f n n n n n ;③()()()122122++++===n n n n n n a f a a a a f a f ;④()()()()122122ln ln ln ++++=≠=n n n n n n a f a a a a f a f .选C8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。
2012年理数高考试题答案及解析-湖北
2012年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程26130x x ++=的一个根是A .32i -+B .32i +C .23i -+D .23i + 考点分析:本题考察复数的一元二次方程求根. 难易度:★解析:根据复数求根公式:6x 322i -==-±,所以方程的一个根为32i -+ 答案为A.2.命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别. 难易度:★解析:根据对命题的否定知,是把谓词取否定,然后把结论否定。
3.已知二次函数()y f x =的图象如图所示,则它与xA .2π5B .43C .32D .π2考点分析:本题考察利用定积分求面积. 难易度:★解析:根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为12311114(1)()33S x dx x x --=-+=-+=⎰.4.已知某几何体的三视图如图所示,则该几何体的体积为 A .8π3B .3π俯视图侧视图正视图第4题图C .10π3D .6π考点分析:本题考察空间几何体的三视图. 难易度:★解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a = A .0B .1C .11D .12考点分析:本题考察二项展开式的系数. 难易度:★ 解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D.6.设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++A .14B .13C .12D .34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于222222)())((2cz by ax z y x c b a ++≥++++等成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x cb a z y xc b a z c y b x a 所以,答案选C.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()f x =; ④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序为 A .① ② B .③ ④ C .① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,212++=n n n a a a ,①()()()()122212222++++===n n n n n n a f a a a a f a f ;②()()()12221222222+++=≠==+++n a a a a an n a f a f a f n n n n n ;③()()()122122++++===n n n n n n a f a a a a f a f ;④()()()()122122ln ln ln ++++=≠=n n n n n n a f a a a a f a f .选C8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。
2012年湖北省高考数学试卷(文科)答案与解析
A.1B.2C.3D.4考点:集合的包含关系判断及应用.合.专题:集合.分析:先求出集合A,B由A⊆C⊆B 可得满足条件的集合C有{1,2,},{1,2,3},{1,2,4},{1,2,3,4},可求,可求解答:解:由题意可得,A={1,2},B={1,2,3,4},∵A⊆C⊆B,个, ∴满足条件的集合C有{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个,故选D.点评:本题主要考查了集合的包含关系的应用,解题的关键是由A⊆C⊆B 找出符合条件的集合.集合.分组 [10,20)[20,30)[30,40)[40,50)[50,60)[60,70)分组频数 2 3 4 5 4 2 频数的频率为( )则样本数据落在区间[10,40]的频率为(A.0.35 B.0.45 C.0.55 D.0.65 考点:频率分布表.算题.专题:计算题.分析:先求出样本数据落在区间[10,40]频数,然后利用频率等于频数除以样本容量求出频率即可.率即可.:由频率分布表知:解答:解:由频率分布表知:样本在[10,40]上的频数为2+3+4=9,故样本在[10,40]上的频率为9÷20=0.45.故选:B.点评:本题主要考查了频率分布表,解题的关键是频率的计算公式是频率=,属于基础题.基础题.A.2B.3C.4D.5考点:根的存在性及根的个数判断.专题:计算题.算题.分析:考虑到函数y=cos2x的零点一定也是函数f(x)的零点,故在区间[0,2π]上y=cos2x的零点有4个.函数y=x 的零点有0,故在区间[0,2π]上y=xcos2x 的零点有5个.个. 解答:解:∵y=cos2x 在[0,2π]上有4个零点分别为,,,函数y=x 的零点有0 ∴函数f (x )=xcos2x 在区间[0,2π]上有5个零点.分别为0,,,,故选D 点评: 本题主要考查了函数零点的意义和判断方法,题主要考查了函数零点的意义和判断方法,三角函数的图象和性质,三角函数的图象和性质,三角函数的图象和性质,排除法解选择排除法解选择题,属基础题题,属基础题 4.(5分)(2012•湖北)命题“存在一个无理数,它的平方是有理数”的否定是(的否定是( ) A . 任意一个有理数,它的平方是有理数意一个有理数,它的平方是有理数 B . 任意一个无理数,它的平方不是有理数意一个无理数,它的平方不是有理数 C . 存在一个有理数,它的平方是有理数在一个有理数,它的平方是有理数 D . 存在一个无理数,它的平方不是有理数在一个无理数,它的平方不是有理数考点: 命题的否定. 专题: 应用题.用题. 分析: 根据特称命题“∃x ∈A ,p (A )”的否定是“∀x ∈A ,非p (A )”,结合已知中命题,即可得到答案.得到答案. 解答: 解:∵命题“存在一个无理数,它的平方是有理数”是特称命题是特称命题而特称命题的否定是全称命题,而特称命题的否定是全称命题,则命题“存在一个无理数,它的平方是有理数”的否定是任意一个无理数,它的平方不是有理数是有理数 故选B 点评: 本题考查的知识点是命题的否定,其中熟练掌握特称命题的否定方法“∃x ∈A ,p (A )”的否定是“∀x ∈A ,非p (A )”,是解答本题的关键.,是解答本题的关键.5.(5分)(2012•湖北)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为(使得这两部分的面积之差最大,则该直线的方程为( ) A . x +y ﹣2=0 B . y ﹣1=0 C . x ﹣y=0 D . x +3y ﹣4=0 考点: 直线与圆相交的性质. 专题: 计算题.算题. 分析:法一:由扇形的面积公式可知,劣弧所的扇形的面积=2α,要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP ⊥AB 时,α最小,可求.最小,可求.法二:要使直线将圆形区域分成两部分的面积之差最大,要使直线将圆形区域分成两部分的面积之差最大,必须使过点必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.由此能求出直线的方程.垂直即可.由此能求出直线的方程. 解答: 解法一:设过点P (1,1)的直线与圆分别交于点A ,B ,且圆被AB 所分的两部分的面积分别为S 1,S 2且S 1≤S 2劣弧所对的圆心角∠AOB=α,则﹣S △AOB =2α﹣S △AOB ,S 2=4π﹣2α+S △AOB (0<α≤π)∴要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP ⊥AB 时,α最小最小此时K AB =﹣1,直线AB 的方程为y ﹣1=﹣(x ﹣1)即x+y ﹣2=0 故选A 解法二:要使直线将圆形区域分成两部分的面积之差最大,要使直线将圆形区域分成两部分的面积之差最大,必须使过点必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.垂直即可. 又已知点P (1,1),则K OP =1,故所求直线的斜率为﹣1.又所求直线过点P (1,1), 由点斜式得,所求直线的方程为y ﹣1=﹣(x ﹣1),即.x+y ﹣2=0 故选A 点评: 本题主要考查了直线与圆相交性质的应用,解题的关键是根据扇形的面积公式把所要求解的两面积表示出来求解的两面积表示出来 6.(5分)(2012•湖北)已知定义在区间(0,2)上的函数y=f (x )的图象如图所示,则y=﹣f (2﹣x )的图象为()的图象为( )A .B .C .D .考点: 函数的图象与图象变化. 专题: 作图题.图题.分析: 由(0,2)上的函数y=f (x )的图象可求f (x ),进而可求y=﹣f (2﹣x ),根据一次函数的性质,结合选项可可判断函数的性质,结合选项可可判断解答:解:由(0,2)上的函数y=f (x )的图象可知f (x )=当0<2﹣x <1即1<x <2时,f (2﹣x )=2﹣x 当1≤2﹣x <2即0<x ≤1时,f (2﹣x )=1 ∴y=﹣f (2﹣x )=,根据一次函数的性质,结合选项可知,选项B正确正确 故选:B 点评: 本题主要考查了一次函数的性质在函数图象中的应用,属于基础试题题主要考查了一次函数的性质在函数图象中的应用,属于基础试题 7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=;④f (x )=ln|x|.则其中是“保等比数列函数”的f (x )的序号为()的序号为( )A . ①②B . ③④C . ①③D . ②④考点: 等比关系的确定. 专题: 综合题;压轴题.合题;压轴题. 分析: 根据新定义,结合等比数列性质,一一加以判断,即可得到结论.,一一加以判断,即可得到结论.解答: 解:由等比数列性质知,①=f 22(a n+1),故正确;,故正确; ②≠=f 2(a n+1),故不正确;,故不正确; ③==f 2(a n+1),故正确;,故正确; ④f (a n )f (a n+2)=ln|a n |ln|a n+2|≠=f 2(a n+1),故不正确;,故不正确; 故选C 点评: 本题考查等比数列性质及函数计算,正确运算,理解新定义是解题的关键.题考查等比数列性质及函数计算,正确运算,理解新定义是解题的关键. 8.(5分)(2012•湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA :sinB :sinC 为(为( ) A . 4:3:2 B . 5:6:7 C . 5:4:3 D . 6:5:4 考点: 正弦定理的应用. 专题: 解三角形.三角形.分析:由题意可得三边即由题意可得三边即 a 、a ﹣1、a ﹣2,由余弦定理可得,由余弦定理可得 cosA=,再由3b=20acosA ,可得,可得 cosA=,从而可得,从而可得=,由此解得a=6,可得三边长,根据sinA :sinB :sinC=a :b :c ,求得结果.,求得结果.解答: 解:由于a ,b ,c 三边的长为连续的三个正整数,且A >B >C ,可设三边长分别为可设三边长分别为 a 、a ﹣1、a ﹣2. 由余弦定理可得由余弦定理可得cosA===,又3b=20acosA ,可得,可得 cosA==.故有故有=,解得a=6,故三边分别为6,5,4.由正弦定理可得由正弦定理可得 sinA :sinB :sinC=a :b :c=a :(a ﹣1):( a ﹣2)=6:5:4, 故选D . 点评: 本题主要考查正弦定理、余弦定理的应用,求出a=6是解题的关键,属于中档题.是解题的关键,属于中档题.9.(5分)(2012•湖北)设a ,b ,c ,∈R +,则“abc=1”是“”的(的( )A . 充分条件但不是必要条件分条件但不是必要条件B . 必要条件但不是充分条件要条件但不是充分条件C . 充分必要条件分必要条件D . 既不充分也不必要的条件不充分也不必要的条件考点: 必要条件、充分条件与充要条件的判断. 专题: 计算题;压轴题.算题;压轴题. 分析: 由abc=1,推出,代入不等式的左边,证明不等式成立.利用特殊值判断不等式成立,推不出abc=1,得到结果.,得到结果. 解答: 解:因为abc=1,所以,则==≤a+b+c .当a=3,b=2,c=1时,显然成立,但是abc=6≠1,所以设a ,b ,c ,∈R +,则“abc=1”是“”的充分条件但不是必要条件.条件. 故选A . 点评: 本题考查充要条件的应用,不等式的证明,特殊值法的应用,考查逻辑推理能力,计算能力.算能力. 10.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是(内随机取一点,则此点取自阴影部分的概率是( )A .B .C .D .考点: 几何概型. 专题: 概率与统计.率与统计. 分析: 求出阴影部分的面积即可,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,用位移割补的方法,分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的面积﹣直角三角形AOB 的面积.的面积. 解答:解:设扇形的半径为r ,则扇形OAB 的面积为,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选C .点评: 本题考查几何概型,题考查几何概型,解题的关键是利用位移割补的方法求组合图形面积,此类不规则解题的关键是利用位移割补的方法求组合图形面积,此类不规则图形的面积可以转化为几个规则的图形的面积的和或差的计算.图形的面积可以转化为几个规则的图形的面积的和或差的计算.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上答错位置,书写不清,模棱两可均不得分. 11.(5分)(2012•湖北)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有人,则抽取的女运动员有 6 人.人.考点: 分层抽样方法. 专题: 计算题.算题. 分析: 设出抽到女运动员的人数,根据分层抽样的特征列出方程可求出抽到女运动员的人数.数. 解答: 解:设抽到女运动员的人数为n 则=解得n=6 故答案为:6 一般利用各层抽到的个体数与该层题主要考查了分层抽样,解决分层抽样的问题,一般利用各层抽到的个体数与该层点评:本题主要考查了分层抽样,解决分层抽样的问题,的个体数的比等于样本容量与总体容量的比,属于基础题.的个体数的比等于样本容量与总体容量的比,属于基础题.12.(5分)(2012•湖北)若=a+bi(a,b为实数,i为虚数单位),则a+b=3.考点:复数代数形式的乘除运算;复数相等的充要条件.算题.专题:计算题.分析:由==,知=a+bi,故,所以,由此能求出a+b.解答:解:===,∵=a+bi,∴,∴,解得a=0,b=3,∴a+b=3.故答案为:3.题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答. 点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.13.(5分)(2012•湖北)已知向量=(1,0),=(1,1),则,则同向的单位向量的坐标表示为 ();(Ⅰ)与2+同向的单位向量的坐标表示为夹角的余弦值为 .(Ⅱ)向量﹣3与向量夹角的余弦值为考点:数量积表示两个向量的夹角;向量的模;单位向量;平面向量的坐标运算.算题.专题:计算题.分析:(I)由已知可求2+,进而可求|2+|,而与2+同向的单位向量,再利用坐标表示即可用坐标表示即可(II)设﹣3与向量夹角θ,由已知可求,|,,||,代入可求向量的夹角公式cosθ=可求解答:解:(I)∵=(1,0),=(1,1)∴2+=(2,0)+(1,1)=(3,1),|2+|=∴与2+同向的单位向量的坐标表示=(II)设﹣3与向量夹角θ∵=(1,0),=(1,1),∴,∴=﹣2,||=,||=1 则cosθ===故答案为:;点评:本题主要考查了向量运算的坐标表示,向量的数量积的坐标表示、夹角公式的应用,的应用注意结论:与向量共线且同向的单位向量的应用14.(5分)(2012•湖北)若变量x,y满足约束条件则目标函数z=2x+3y 的最小值是 2.的最小值是考点:简单线性规划.专题:计算题.算题.分析:先作出不等式组表示的平面区域,由于z=2x+3y,则可得y=,则表示直线2x+3y﹣z=0在y轴上的截距,当z最小时,截距最小,结合图形可求z的最小值的最小值 :作出不等式组表示的平面区域,如图所示解答:解:作出不等式组表示的平面区域,如图所示作直线L:2x+3y=0,由于z=2x+3y,则可得y=,则表示直线2x+3y﹣z=0在y轴上的截距,当z最小时,截距最小最小时,截距最小最小结合图形可知,当直线2x+3y﹣z=0平移到点B时,z最小由可得B(1,0),此时Z=2 故答案为:2 点评:借助于平面区域,利用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.性规划中的最优解,通常是利用平移直线法确定.15.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为湖北)已知某几何体的三视图如图所示,则该几何体的体积为 12π.考点:由三视图求面积、体积.算题.专题:计算题.分析:由题意三视图可知,几何体是有3个圆柱体组成的几何体,利用三视图的数据,求出几何体的体积即可.几何体的体积即可.解答:解:由题意可知几何体是有两个底面半径为2,高为1的圆柱与一个底面半径为1,高为4的圆柱组成的几何体,的圆柱组成的几何体,所以几何体的条件为V=2×22π×1+12π×4=12π.故答案为:12π.点评:本题考查三视图与几何体的关系,考查空间想象能力与计算能力.题考查三视图与几何体的关系,考查空间想象能力与计算能力.16.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.考点:循环结构.法和程序框图.专题:算法和程序框图.时退出循环,即可.分析:用列举法,通过循环过程直接得出S与n的值,得到n=3时退出循环,即可.解答:解:循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5,次判断退出循环,第2次判断并循环n=3,s=9,a=7,第3次判断退出循环,输出S=9.故答案为:9.退出循环是解题的关键,考查计算能力.点评:本题考查循环结构,判断框中n=3退出循环是解题的关键,考查计算能力.17.(5分)(2012•湖北)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:,可以推测:(Ⅰ)b2012是数列{a n}中的第项;中的第 5030项;(Ⅱ)b2k﹣1=.(用k表示)表示)考点:数列递推式;数列的概念及简单表示法;归纳推理.轴题;探究型.专题:压轴题;探究型.分析:(Ⅰ)由题设条件及图可得出a n+1=a n+(n+1),由此递推式可以得出数列{a n}的通项为,a n=n(n+1),由此可列举出三角形数1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…,从而可归纳出可被5整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的后两个数可被5整除,由此规律即可求出b2012在数列{a n}中的位置;中的位置;(II)由(I)中的结论即可得出b2k﹣1═(5k﹣1)(5k﹣1+1)=.解答:解:(I)由题设条件可以归纳出a n+1=a n+(n+1),故a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+…+2+1=n(n+1)由此知,三角数依次为1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…则该组的由此知可被5整除的三角形数每五个数中出现两个,即每五个数分为一组,整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的整除,后两个数可被5整除,由于b2012是第2012个可被5整除的数,故它出现在数列{a n}按五个一段分组的第1006组的最后一个数,由此知,b2012是数列{a n}中的第1006×5=5030个数个数 故答案为5030 (II)由于2k﹣1是奇数,由(I)知,第2k﹣1个被5整除的数出现在第k组倒数第二个,故它是数列{a n}中的第k×5﹣1=5k﹣1项,所以b2k﹣1═(5k﹣1)(5k﹣1+1)=故答案为点评:本题考查数列的递推关系,数列的表示及归纳推理,解题的关键是由题设得出相邻两个三角形数的递推关系,由此列举出三角形数,得出结论“被5整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的后两个数可被5整除”,本题综合性强,有一定的探究性,是高考的重点题型,解答时要注意总结其中的规律.性强,有一定的探究性,是高考的重点题型,解答时要注意总结其中的规律.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(12分)(2012•湖北)设函数f(x)=sin2ωx+2sinωx•cosωx﹣cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).(1)求函数f(x)的最小正周期;)的最小正周期;)的值域.(2)若y=f(x)的图象经过点,求函数f(x)的值域.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数中的恒等变换应用;正弦函数的定义域和值域.算题.专题:计算题.分析:(1)先利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k 型函数,再利用函数的对称性和ω的范围,计算ω的值,最后利用周期计算公式得函数的最小正周期;函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再利用正弦函数的图象和性质即可求得函数f(x)的值域.)的值域.解答:解:f(x)=sin2ωx+2sinωx•cosωx﹣cos2ωx+λ=sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣)+λ∵图象关于直线x=π对称,∴2πω﹣=+kπ,k∈z ∴ω=+,又ω∈(,1)符合要求令k=1时,ω=符合要求∴函数f(x)的最小正周期为=(2)∵f()=0 ∴2sin(2××﹣)+λ=0 ∴λ=﹣∴f(x)=2sin(x﹣)﹣故函数f(x)的取值范围为[﹣2﹣,2﹣]点评:本题主要考查了y=Asin(ωx+φ)+k型函数的图象和性质,复合函数值域的求法,正弦函数的图象和性质,属基础题弦函数的图象和性质,属基础题19.(12分)(2012•湖北)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1﹣ABCD,其上是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD﹣A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单元,需加工处理费多少元?位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考点:直线与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.算题;证明题.专题:计算题;证明题.分析:(1)依题意易证AC⊥B1D1,AA2⊥B1D1,由线面垂直的判定定理可证直线B1D1⊥平面ACC2A2;(2)需计算上面四棱柱ABCD﹣A2B2C2D2的表面积(除去下底面的面积)S1,四棱即可.台A1B1C1D1﹣ABCD的表面积(除去下底面的面积)S2即可.解答:解:(1)∵四棱柱ABCD﹣A2B2C2D2的侧面是全等的矩形,的侧面是全等的矩形,∴AA2⊥AB,AA2⊥AD,又AB∩AD=A,∴AA2⊥平面ABCD.连接BD,∵BD⊂平面ABCD,是正方形,∴AA2⊥BD,又底面ABCD是正方形,∴AC⊥BD,根据棱台的定义可知,BD与B1D1共面,共面,又平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,平面BB1D1D∩平面A1B1C1D1=B1D1,∴B1D1∥BD,于是由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1,又AA2∩AC=A,∴B1D1⊥平面ACC2A2;的底面是正方形,侧面是全等的矩形, (2)∵四棱柱ABCD﹣A2B2C2D2的底面是正方形,侧面是全等的矩形,=S四棱柱下底面+S四棱柱侧面∴S1=+4AB•AA2=102+4×10×30 =1300(cm2)上下底面均是正方形,侧面是全等的等腰梯形, 又∵四棱台A1B1C1D1﹣ABCD上下底面均是正方形,侧面是全等的等腰梯形,∴S2=S四棱柱下底面+S四棱台侧面=+4×(AB+A1B1)•h等腰梯形的高=202+4×(10+20)•=1120(cm2),于是该实心零部件的表面积S=S1+S2=1300+1120=2420(cm2),故所需加工处理费0.2S=0.2×2420=484元.元.点评:本题考查直线与平面垂直的判定,考查棱柱、棱台的侧面积和表面积,着重考查分析转化与运算能力,属于中档题.转化与运算能力,属于中档题.20.(13分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.项和.考点:数列的求和;等差数列的通项公式;等比数列的性质.算题.专题:计算题.分析:(I)设等差数列的公差为d,由题意可得,,解方程,进而可求通项可求a1,d,进而可求通项(II)由(I)的通项可求满足条件a2,a3,a1成等比的通项为a n=3n﹣7,则|a n|=|3n,根据等差数列的求和公式可求﹣7|=,根据等差数列的求和公式可求解答:解:(I)设等差数列的公差为d,则a2=a1+d,a3=a1+2d 由题意可得,解得或由等差数列的通项公式可得,a n=2﹣3(n﹣1)=﹣3n+5或a n=﹣4+3(n﹣1)=3n﹣7 不成等比(II)当a n=﹣3n+5时,a2,a3,a1分别为﹣1,﹣4,2不成等比当a n=3n﹣7时,a2,a3,a1分别为﹣1,2,﹣4成等比数列,满足条件成等比数列,满足条件 故|a n|=|3n﹣7|=设数列{|a n|}的前n项和为S n当n=1时,S1=4,当n=2时,S2=5 当n≥3时,S n=|a1|+|a2|+…+|a n|=5+(3×3﹣7)+(3×4﹣7)+…+(3n﹣7)=5+=,当n=2时,满足此式时,满足此式综上可得点评:本题主要考查了利用等差数列的基本量表示等差数列的通项,等差数列与等比数列的通项公式的综合应用及等差数列的求和公式的应用,要注意分类讨论思想的应用通项公式的综合应用及等差数列的求和公式的应用,要注意分类讨论思想的应用21.(14分)(2012•湖北)设A 是单位圆x 2+y 2=1上的任意一点,i 是过点A 与x 轴垂直的直线,D 是直线i 与x 轴的交点,点M 在直线l 上,且满足丨DM 丨=m 丨DA 丨(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C . (I )求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求焦点坐标;为何种圆锥曲线,并求焦点坐标;(Ⅱ)(Ⅱ)过原点且斜率为过原点且斜率为k 的直线交曲线C 于P 、Q 两点,两点,其中其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H ,是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.的值;若不存在,请说明理由.考点: 直线与圆锥曲线的综合问题;轨迹方程;圆锥曲线的轨迹问题.专题: 综合题;压轴题.合题;压轴题. 分析: (I )设M (x ,y ),A (x 0,y 0),根据丨DM 丨=m 丨DA 丨,确定坐标之间的关系x 0=x ,|y 0|=|y|,利用点A 在圆上运动即得所求曲线C 的方程;根据m ∈(0,1)∪(1,+∞),分类讨论,可确定焦点坐标;,分类讨论,可确定焦点坐标;(Ⅱ)∀x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (﹣x 1,﹣y 1),N (0,y 1),利用P ,H 两点在椭圆C 上,可得,从而可得可得.利用Q ,N ,H 三点共线,及PQ ⊥PH ,即可求得结论.得结论.解答: 解:(I )如图1,设M (x ,y ),A (x 0,y 0)∵丨DM 丨=m 丨DA 丨,∴x=x 0,|y|=m|y 0| ∴x 0=x ,|y 0|=|y|①∵点A 在圆上运动,∴②①代入②即得所求曲线C 的方程为∵m ∈(0,1)∪(1,+∞), ∴0<m <1时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(),m >1时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(),(Ⅱ)如图2、3,∀x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (﹣x 1,﹣y 1),N (0,y 1),∵P,H两点在椭圆C上,∴①﹣②可得③∵Q,N,H三点共线,∴k QN=k QH,∴∴k PQ•k PH=∵PQ⊥PH,∴k PQ•k PH=﹣1 ∴∵m>0,∴故存在,使得在其对应的椭圆上,对任意k>0,都有PQ⊥PH 点评:本题考查轨迹方程,考查直线与椭圆的位置关系,考查代入法求轨迹方程,计算要小心.心.22.(14分)(2012•湖北)设函数f(x)=ax n(1﹣x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1 的值;(Ⅰ)求a,b的值;)的最大值;(Ⅱ)求函数f(x)的最大值;(Ⅲ)证明:f(x)<.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.合题;压轴题;函数思想;转化思想.专题:综合题;压轴题;函数思想;转化思想.分析:(Ⅰ)由题意曲线y=f(x)在(1,f(1))处的切线方程为x+y=1,故可根据导数的几何意义与切点处的函数值建立关于参数的方程求出两参数的值;几何意义与切点处的函数值建立关于参数的方程求出两参数的值;(Ⅱ)由于f(x)=x n n(1﹣x),可求fʹ(x)=(n+1)x n n﹣11(﹣x),利用导数研究函数的单调性,即可求出函数的最大值;函数的单调性,即可求出函数的最大值;(Ⅲ)结合(Ⅱ),欲证f (x )<.由于函数f (x )的最大值f ()=()n (1﹣)=,故此不等式证明问题可转化为证明<,对此不等式两边求以e 为底的对数发现,可构造函数φ(t )=lnt ﹣1+,借助函数的最值辅助证明不等式.最值辅助证明不等式.解答: 解:(Ⅰ)因为f (1)=b ,由点(1,b )在x+y=1上,可得1+b=1,即b=0. 因为f ʹ(x )=anx n ﹣1﹣a (n+1)x n ,所以f ʹ(1)=﹣a .又因为切线x+y=1的斜率为﹣1,所以﹣a=﹣1,即a=1,故a=1,b=0.(Ⅱ)由(Ⅰ)知,f (x )=x n (1﹣x ),则有f ʹ(x )=(n+1)xn ﹣1(﹣x ),令f ʹ(x )=0,解得x=在(0,)上,导数为正,故函数f (x )是增函数;在(,+∞)上导数为负,故函数f (x )是减函数;)是减函数;故函数f (x )在(0,+∞)上的最大值为f ()=()n(1﹣)=,(Ⅲ)令φ(t )=lnt ﹣1+,则φʹ(t )=﹣=(t >0)在(0,1)上,φʹ(t )<0,故φ(t )单调减;在(1,+∞),φʹ(t )>0,故φ(t )单调增;单调增;故φ(t )在(0,+∞)上的最小值为φ(1)=0,所以φ(t )>0(t >1)则lnt >1﹣,(t >1),令t=1+,得ln (1+)>,即ln (1+)n+1>lne 所以(1+)n+1>e ,即<由(Ⅱ)知,f (x )≤<,故所证不等式成立.故所证不等式成立.点评: 本题考查利用导数求函数最值及利用最值证明不等式,本题技巧性强,解题的关键是能根据题设及证明中的结论构造函数辅助证明,本题是能力型题,难度较大,是高考选拔优秀数学人才的首选题,做题后要注意总结本题的解题规律,选拔优秀数学人才的首选题,做题后要注意总结本题的解题规律,领会构造法证明不领会构造法证明不等式的要旨,本题考查了转化的思想及函数思想,等式的要旨,本题考查了转化的思想及函数思想,难度较大极易找不到思路或计算出难度较大极易找不到思路或计算出错,作为压轴题出现. 错,作为压轴题出现.。
2012年高考真题汇编——文科数学(解析版)4:三角函数
2012高考试题分类汇编:4:三角函数一、选择题1.【2012高考安徽文7】要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象 (A ) 向左平移1个单位 (B ) 向右平移1个单位 (C ) 向左平移 12个单位 (D ) 向右平移12个单位【答案】C【解析】 cos 2cos(21)y x y x =→=+左+1,平移12。
2.【2012高考新课标文9】已知ω>0,πϕ<<0,直线4π=x 和45π=x 是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4【答案】A 【解析】因为4π=x 和45π=x 是函数图象中相邻的对称轴,所以2445T =-ππ,即ππ2,2==T T .又πωπ22==T ,所以1=ω,所以)sin()(ϕ+=x x f ,因为4π=x 是函数的对称轴所以ππϕπk +=+24,所以ππϕk +=4,因为πϕ<<0,所以4πϕ=,检验知此时45π=x 也为对称轴,所以选A.3.【2012高考山东文8】函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2- (B)0 (C)-1 (D)1--【答案】A【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3sin(2-=-π,当236πππ=-x 时,最大值为22sin2=π,所以最大值与最小值之和为32-,选A.4.【2012高考全国文3】若函数()sin ([0,2])3x f x ϕϕπ+=∈是偶函数,则=ϕ(A )2π(B )32π (C )23π (D )35π【答案】C【解析】函数)33sin(3sin )(ϕϕ+=+=x x x f ,因为函数)33sin()(ϕ+=x x f 为偶函数,所以ππϕk +=23,所以Z k k ∈+=,323ππϕ,又]2,0[πϕ∈,所以当0=k 时,23πϕ=,选C.5.【2012高考全国文4】已知α为第二象限角,3sin 5α=,则sin 2α=(A )2524-(B )2512-(C )2512 (D )2524【答案】B【解析】因为α为第二象限,所以0cos <α,即54sin 1cos 2-=--=αα,所以25125354cos sin 22sin -=⨯-==ααα,选B.6.【2012高考重庆文5】sin 47sin 17cos 30cos17-(A )2-(B )12-(C )12(D )2【答案】C 【解析】sin 47sin 17cos 30sin(3017)sin 17cos 30cos17cos17-+-=sin 30cos17cos 30sin 17sin 17cos 30sin 30cos171sin 30cos17cos172+-====,选C.7.【2012高考浙江文6】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】由题意,y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为y=cosx+1,向左平移一个单位为y=cos (x-1)+1,向下平移一个单位为y=cos (x-1),利用特殊点,02π⎛⎫⎪⎝⎭变为1,02π⎛⎫- ⎪⎝⎭,选A. 8.【2012高考上海文17】在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定【答案】A【解析】根据正弦定理可知由C B A 222sinsinsin<+,可知222c b a <+,在三角形中02cos 222<-+=abcb a C ,所以C 为钝角,三角形为钝角三角形,选A.9.【2012高考四川文5】如图,正方形A B C D 的边长为1,延长B A 至E ,使1A E =,连接E C 、ED 则sin C ED ∠=( )(1)10B10C 10D15【答案】B【解析】 2EB EA AB =+=,EC ===3424E D C E D A A D C πππ∠=∠+∠=+=,由正弦定理得sin 1sin 5C ED D C ED CC E∠===∠,所以3sin sin sin55410C ED ED C π∠=∠==.10.【2012高考辽宁文6】已知sin cos αα-=,α∈(0,π),则sin 2α=(A)-1 (B) 2- (C) 2(D) 1【答案】A【解析】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=- 故选A【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题。
2012年全国高考文科数学试题及答案湖北卷
试卷类型A 2012年一般高等学校招生全国统一考试(湖北卷)数学(文史类)本试卷共4页,共22题,满分150分。
考试用时120分钟。
留意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一供应的2B铅笔将答题卡上试卷类型A后的方块涂黑。
2.选择题的作答:每小题选出答案后,用统一供应的2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一供应的签字笔将答案干脆答在答题卡上对应的答题区域内。
答在试卷、草稿纸上无效。
4.考生必需保持答题卡的整齐。
考试完毕后,请将本试卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合A{x| 2x-3x +2=0,x∈R } ,B={x|0<x<5,x∈N },则满意条件A ⊆C ⊆B 的集合C 的个数为A 1B 2C 3D 42 容量为20的样本数据,分组后的频数如下表则样本数据落在区间[10,40]的频率为A 0.35B 0.45C 0.55D 0.653 函数f(x)=xcos2x在区间[0,2π]上的零点个数为A 2B 3C 4D 54.命题“存在一个无理数,它的平方是有理数”的否认是A.随意一个有理数,它的平方是有理数B.随意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数5.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两局部,使得这两局部的面积之差最大,则该直线的方程为A.x+y-2=0B.y-1=0C.x-y=0D.x+3y-4=06.已知定义在区间(0.2)上的函数y=f(x)的图像如图所示,则y=-f(2-x)的图像为7.定义在(-∞,0)∪(0,+∞)上的函数f(x),假如对于随意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷类型A 2012年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试卷共4页,共22题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方块涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内。
答在试卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合A{x| 2x-3x +2=0,x∈R } ,B={x|0<x<5,x∈N },则满足条件A ⊆C ⊆B 的集合C的个数为A 1B 2C 3D 42 容量为20的样本数据,分组后的频数如下表则样本数据落在区间[10,40]的频率为A 0.35B 0.45C 0.55D 0.653 函数f(x)=xcos2x在区间[0,2π]上的零点个数为A 2B 3C 4D 54.命题“存在一个无理数,它的平方是有理数”的否定是A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数5.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为A.x+y-2=0B.y-1=0C.x-y=0D.x+3y-4=06.已知定义在区间(0.2)上的函数y=f(x)的图像如图所示,则y=-f(2-x)的图像为7.定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”。
现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x²;②f(x)=2x;③;④f(x)=ln|x |。
则其中是“保等比数列函数”的f(x)的序号为A.①②B.③④C.①③D.②④8.设△ABC的内角A,B,C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA,则sinA∶sinB∶sinC为A.4∶3∶2B.5∶6∶7C.5∶4∶3D.6∶5∶49.设a,b,c,∈R,,则“abc=1”是“111a b ca b c++≤+=”的A.充分条件但不是必要条件,B。
必要条件但不是充分条件C.充分必要条件D.既不充分也不必要的条件10.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆。
在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A. B. . D.二、填空题:本大题共7小题,每小题5分,共35分。
请将答案填在答题卡对应题号的位置上答错位置,书写不清,模棱两可均不得分。
11.一支田径运动队有男运动员56人,女运动员42人。
现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有______人。
12.若=a+bi(a,b为实数,i为虚数单位),则a+b=____________.13.已知向量a=(1,0),b=(1,1),则(Ⅰ)与2a+b同向的单位向量的坐标表示为____________;(Ⅱ)向量b-3a与向量a夹角的余弦值为____________。
14.若变量x,y满足约束条件则目标函数z=2x+3y的最小值是________.15.已知某几何体的三视图如图所示,则该几何体的体积为____________.16.阅读如图所示的程序框图,运行相应的程序,输出的结果s=_________。
17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。
他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:(Ⅰ)b2012是数列{an}中的第______项;(Ⅱ)b2k-1=______。
(用k表示)三、解答题:本大题共5小题,共65分。
解答应写出文字说明、证明过程或演算步骤。
18.(本小题满分12分)设函数f(x)=的图像关于直线x=π对称,其中为常数,且(1)求函数f(x)的最小正周期;(2)若y=f(x)的图像经过点,求函数f(x)的值域。
19. (本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上不是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2。
(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?20.(本小题满分13分)已知等差数列{a n}前三项的和为-3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{}na的前n项和。
21. (本小题满分14分)设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足当点A在圆上运动时,记点M的轨迹为曲线C。
(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标。
(2)过原点斜率为K的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的K>0,都有PQ⊥PH?若存在,请说明理由。
22.(本小题满分14分)设函数,n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.(1)求a,b的值;(2)求函数f(x)的最大值(3)证明:f(x)< 1n e.2012年普通高等学校招生全国统一考试(湖北卷)数学(供文科考生使用)解析1.D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.B 【解析】由频率分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B.【点评】本题考查频率分布表的应用,频率的计算.对于頻数、频率等统计问题只需要弄清楚样本总数与各区间上样本的个数即可,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.来年需注意频率分布直方图与频率分布表的结合考查.3.D 【解析】由()cos 20==f x x x ,得0=x 或cos 20=x ;其中,由c o s 20=x ,得()22x k k ππ=+∈Z ,故()24k x k ππ=+∈Z .又因为[]0,2x ∈π,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D.【点评】本题考查函数的零点,分类讨论的数学思想.判断函数的零点一般有直接法与图象法两种方法.对于三角函数的零点问题,一般需要规定自变量的取值范围;否则,如果定义域是R ,则零点将会有无数个;来年需注意数形结合法求解函数的零点个数,所在的区间等问题.4.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.【点评】本题考查特称命题的否定.求解特称命题或全称命题的否定,千万别忽视了改变量词;另外,要注意一些量词的否定的书写方法,如:“都是”的否定为“不都是”,别弄成“都不是.5.A 【解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线O P 垂直即可.又已知点(1,1)P ,则1O P k =,故所求直线的斜率为-1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.【点评】本题考查直线、线性规划与圆的综合运用,数形结合思想.本题的解题关键是通过观察图形发现当面积之差最大时,所求直线应与直线O P 垂直,利用这一条件求出斜率,进而求得该直线的方程.来年需注意直线与圆相切的相关问题.6.B 【解析】特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.【点评】本题考查函数的图象的识别.有些函数图象题,从完整的性质并不好去判断,作为徐总你则提,可以利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解,既可以节约考试时间,又事半功倍.来年需注意含有x e 的指数型函数或含有ln x 的对数型函数的图象的识别. 7.C 同理7【解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n nna a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,11||()()||n n n n a f a f a a ++=1n na q a +==,是常数,故③符合条件;对于④,11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C.【点评】本题考查等比数列的新应用,函数的概念.对于创新性问题,首先要读懂题意,然后再去利用定义求解,抓住实质是关键.来年需要注意数列的通项,等比中项的性质等. 8.D 【解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20b A a=②.由余弦定理可得222cos 2+-=b c aA bc③,则由②③可得2223202b b c aabc+-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.【点评】本题考查正、余弦定理以及三角形中大角对大边的应用.本题最终需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长.来年需注意正余弦定理与和差角公式的结合应用. 9.A 【解析】当1abc =时,111abc abc abc ab bc ca a b c abc++=++=++,而()()()()2222a b c a b b c c a ab bc ca ++=+++++≥++(当且仅当a b c ==,且1abc =,即a b c ==时等号成立),故111ab bc ca a b c ab c++=++≤++;但当取2a b c ===,显然有111a b c abc++≤++,但1abc ≠,即由111a b ca b c ++≤++不可以推得1abc =;综上,1abc =是111a b c abc++≤++的充分不必要条件.应选A.【点评】本题考查充要条件的判断,不等式的证明.判断充要条件,其常规方法是首先需判断条件能否推得结论,然后需判断结论能否推得条件;来年需注意充要条件与其他知识(如向量,函数)等的结合考查. 10.C 同理8【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①,而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2O E D C E O D S S S a aπ+-=-正方形扇形扇形COD ,所以.222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221O ABS a a S aπππ-==-阴影扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.11. 6【解析】设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人. 【点评】本题考查分层抽样的应用.本题实际是承接2012奥运会为题材,充分展示数学知识在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比. 来年需注意系统抽样的考查或分层抽样在解答题中作为渗透考查. 12. 3【解析】因为31bi a bi i+=+-,所以()()()31bi a bi i a b b a i +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,,a b b a b +=⎧⎨-=⎩解得0,3,a b =⎧⎨=⎩所以3a b +=.【点评】本题考查复数的相等即相关运算.本题若首先对左边的分母进行复数有理化,也可以求解,但较繁琐一些.来年需注意复数的几何意义,基本概念(共轭复数),基本运算等的考查.13.(Ⅰ)31010,1010⎛⎫⎪ ⎪⎝⎭;(Ⅱ)255- 【解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b=.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得310,1010.10x y ⎧=⎪⎪⎨⎪=⎪⎩故31010,1010⎛⎫ ⎪ ⎪⎝⎭c =.即与2+a b 同向的单位向量的坐标为31010,1010⎛⎫⎪ ⎪⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()()()32,11,025cos 3551θ--===--⨯ b a ab a a.【点评】本题考查单位向量的概念,平面向量的坐标运算,向量的数量积等.与某向量同向的单位向量一般只有1个,但与某向量共线的单位向量一般有2个,它包含同向与反向两种.不要把两个概念弄混淆了. 来年需注意平面向量基本定理,基本概念以及创新性问题的考查. 14.2 【解析】(解法一)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的A B M ∆及其内部).可知当直线23z x y =+经过1,33x y x y +=⎧⎨-=⎩的交点()1,0M 时,23z x y =+取得最小值,且min 2z =.(解法二)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的A B M ∆及其内部).目标函数23z x y =+在A B M ∆的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.【点评】本题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值.来年需注意线性规划在生活中的实际应用.15.12π【解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是222121412Vπππ=⨯⨯⨯+⨯⨯=.【点评】本题考查圆柱的三视图的识别,圆柱的体积.学生们平常在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法. 来年需注意以三视图为背景,考查常见组合体的表面积.16. 同理12【解析】由程序框图可知:第一次:a=1,s=0,n=1,s=s+a=1,a=a+2=3,n=1<3满足判断条件,继续循环;第二次:n=n+1=2,s=s+a=1+3=4,a=a+2=5,n=2<3满足判断条件,继续循环;第三次:n=n+1=3,s=s+a=4+5=9,a=a+2=11,n=3<3不满足判断条件,跳出循环,输出s的值.综上,输出的s值为9.【点评】本题考查程序框图及递推数列等知识.对于循环结构的输出问题,一步一步按规律写程序结果,仔细计算,一般不会出错,属于送分题.来年需注意判断条件的填充型问题.17.(Ⅰ)5030;(Ⅱ)()5512k k-【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为(1)2nn na+=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故142539*********,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:255(51)2k k k k b a +==(k 为正整数),2151(51)(511)5(51)22k k k k k k b a ----+-===,故201221006510065030b a a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.18.【解析】【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查. 19.【解析】【点评】本题考查线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.线线垂直⇔线面垂直⇔面面垂直是有关垂直的几何问题的常用转化方法;四棱柱与四棱台的表面积都是由简单的四边形的面积而构成,只需求解四边形的各边长即可.来年需注意线线平行,面面平行特别是线面平行,以及体积等的考查. 20. 同理18 【解析】【点评】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'n n a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质.21. 同理21 【解析】【点评】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.22.【解析】【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等;另外,要注意含有,ln x e x 等的函数求导的运算及其应用考查.。