UG规律曲线公式大全

合集下载

最全的UG方程曲线及详细表达式

最全的UG方程曲线及详细表达式

在UG中利用【规律曲线】|【根据方程】绘制各种方程曲线:1、极坐标(或柱坐标r,θ,z)与直角坐标系(x,y,z)的转换关系:x=r*cos(θ);y=r*sin(θ);z=z2、球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ;y=rsinθsinφ;z=rcosθ在UG表达式中输入的theta=θ;phi=φ;r=rho【注:所有UG表达式中,必须先在名称栏输入t,公式栏输入0,类型为恒定的,即无单位。

t是UG自带的系统变量,其取值为0~1之间的连续数】1.直线直线的数学方程为y-y0=tan(θ)*(x-x0),若直线经过点(10,20),倾角θ为30°,长度L为40,即UG表达式为:theta=30L=40xt=10+L*cos(theta)*tyt=20+L*sin(theta)*tzt=0效果如图1图1 图22.圆和圆弧圆的数学方程为(x-x0)^2+(y-y0)^2=r^2,若圆心坐标为(50,40),半径r为30,即UG表达式为:r=30theta=t*360xt=50+r*cos(theta)yt=40+r*sin(theta)zt=0效果如图23.椭圆和椭圆弧椭圆的数学方程为(x-x0)^2/a^2+(y-y0)^2/b^2=1,若椭圆中心坐标为(50,40),长半轴a为30(在X轴上),短半轴b为20,即UG表达式为:a=30b=20theta=t*360xt=50+a*cos(theta)yt=40+b*sin(theta)zt=0效果如图3图3 图44.双曲线双曲线的数学方程为x2/a2-y2/b2=1,若中心坐标为(0,0),实长半轴a为4(在x轴上),虚半轴b为3,y的取值范围为-5~+5内的一段,即UG表达式为:a=4b=3yt=10*t-5xt=a/b*sqrt(b^2+yt^2)或xt=-a/b*sqrt(b^2+yt^2)zt=0做出一半后进行镜像复制,效果如图45.抛物线抛物线I的数学方程为y2=2px,若抛物线的顶点为(30,20)焦点到准线的距离p=8,y的取值范围为-25~+25,即UG表达式为:p=8yt=50*t-25+20xt=(yt-20)^2/(2*p)+30zt=0效果如图5-1抛物线II数学参数方程:x=2pt2,y=2pt(其中t为参数)。

ug 规律曲线

ug 规律曲线

UG中的规律曲线1.圆t=1r=半径xt=r*sin(360*t)yt=r*cos(360*t)2、空间弹簧a=360*tn=20 圈数t=0R=40 中心圆的半径h=10 半径xt=(R+h*sin(a*n))*sin(a)yt=(R+h*sin(a*n))*cos(a) zt=h*cos(a*n)3、渐开线方程R=40 起点到原点的直线距离 a=720*tt=0xt=R*(cos(a)+a*sin(a))yt=R*(sin(a)-a*cos(a))4、椭圆t=0a=1 x方向椭圆半径b=1、5 y方向椭圆半径r=1 放大倍数xt=a*r*sin(360*t)yt=b*r*cos(360*t)5、若正弦曲线一个周期X方向长度为50,振幅为10,即UG 表达式为:theta=t*360xt=50*tyt=10*sin(theta)zt=06、余弦曲线若余弦曲线一个周期X方向长度为50,振幅为10,即UG表达式为:a=t*360xt=50*tyt=10*cos(a)zt=07、螺旋线若圆柱螺旋线半径r为20,螺距p为10,圈数n为5,即UG表达式为:r=20p=10n=5a=t*360xt=r*cos(a*n)yt=r*sin(a*n)zt=p*n*t8、星形线【四尖瓣线】星形线的数学方程:x=r*cos3θ;y=r*sin3θ。

【由n+1尖瓣线通式:x=r(n*cosθ+cos(n*θ));y=r(n*sinθ-sin(n*θ))当n=3时的情况。

三角函数公式:sin3θ=3sinθ-4sin3θ;cos3θ=4cos3θ-3cosθ】若r=20,即UG表达式为:r=20a=t*360xt=r*(cos(a))^3yt=r*(sin(a))^3zt=09、抛物线Xt=tYt=t^2Zt=010、双曲余弦曲线双曲余弦曲线方程:x=6*t-3,y=(exp(x)+exp(0-x))/2。

即UG 表达式为:xt=t*6-3yt=(exp(xt)+exp(-xt))/2zt=011、双曲正切曲线双曲正切曲线方程:x=6*t-3,y=(exp(x)-exp(0-x))/(exp(x)+exp(0-x))。

Proe-Creo-UG曲线方程大全及关系式、函数的说明资料

Proe-Creo-UG曲线方程大全及关系式、函数的说明资料

Proe Creo UG曲线方程大全及关系式、函数的说明资料Pro/E 各种曲线方程集合1.碟形弹簧圓柱坐标方程:r = 5theta = t*3600z =(sin(3.5*theta-90))+24*t图12.葉形线.笛卡儿坐標标方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))图23.螺旋线(Helical curve)圆柱坐标(cylindrical)方程:r=ttheta=10+t*(20*360)z=t*3图34.蝴蝶曲线球坐标方程:rho = 8 * ttheta = 360 * t * 4phi = -360 * t * 8图45.渐开线采用笛卡尔坐标系方程:r=1ang=360*ts=2*pi*r*tx0=s*cos(ang)y0=s*sin(ang)x=x0+s*sin(ang)y=y0-s*cos(ang)z=0图56.螺旋线.笛卡儿坐标方程:x = 4 * cos ( t *(5*360))y = 4 * sin ( t *(5*360))z = 10*t图6 7.对数曲线笛卡尔坐标系方程:z=0x = 10*ty = log(10*t+0.0001)图78.球面螺旋线采用球坐标系方程:rho=4theta=t*180phi=t*360*20图8 9.双弧外摆线卡迪尔坐标方程:l=2.5b=2.5x=3*b*cos(t*360)+l*cos(3*t*360)Y=3*b*sin(t*360)+l*sin(3*t*360)图910.星行线卡迪尔坐标方程:a=5x=a*(cos(t*360))^3y=a*(sin(t*360))^3图10 11.心脏线圓柱坐标方程:a=10r=a*(1+cos(theta))theta=t*360Pro/E 各种曲线方程集合(二)22.外摆线迪卡尔坐标方程:theta=t*720*5b=8a=5x=(a+b)*cos(theta)-b*cos((a/b+1)*theta)y=(a+b)*sin(theta)-b*sin((a/b+1)*theta)z=0图22 23. Lissajous 曲线theta=t*360a=1b=1c=100n=3x=a*sin(n*theta+c)y=b*sin(theta)图23 24.长短幅圆内旋轮线卡笛尔坐标方程:a=5b=7c=2.2theta=360*t*10x=(a-b)*cos(theta)+c*cos((a/b-1)*theta)y=(a-b)*sin(theta)-c*sin((a/b-1)*theta)图24 25.长短幅圆外旋轮线卡笛尔坐标方程:theta=t*360*10a=5b=3c=5x=(a+b)*cos(theta)-c*cos((a/b+1)*theta)y=(a+b)*sin(theta)-c*sin((a/b+1)*theta)图25 26. 三尖瓣线a=10x = a*(2*cos(t*360)+cos(2*t*360))y = a*(2*sin(t*360)-sin(2*t*360))图26 27.概率曲线!方程:笛卡儿坐标x = t*10-5y = exp(0-x^2)图27 28.箕舌线笛卡儿坐标系a = 1x = -5 + t*10y = 8*a^3/(x^2+4*a^2)图28 29.阿基米德螺线柱坐标a=100theta = t*400r = a*theta图29 30.对数螺线柱坐标theta = t*360*2.2a = 0.005r = exp(a*theta)图30 31.蔓叶线笛卡儿坐标系a=10y=t*100-50solvex^3 = y^2*(2*a-x)for x图31 32.tan曲线笛卡儿坐标系x = t*8.5 -4.25y = tan(x*20)图32 33.双曲余弦x = 6*t-3y = (exp(x)+exp(0-x))/2图33 34.双曲正弦x = 6*t-3y = (exp(x)-exp(0-x))/2图34 35.双曲正切x = 6*t-3y = (exp(x)-exp(0-x))/(exp(x)+exp(0-x))图35 36.一峰三驻点曲线x = 3*t-1.5y=(x^2-1)^3+1图36 37.八字曲线x = 2 * cos ( t *(2*180))y = 2 * sin ( t *(5*360))z = 0图37 38.螺旋曲线r=t*(10*180)+1theta=10+t*(20*180)z=t图38 39.圆x = cos ( t *(5*180))y = sin ( t *(5*180))z = 0图39 40.封闭球形环绕曲线rho=2theta=360*tphi=t*360*10图40 41.柱坐标螺旋曲线x = 100*t * cos ( t *(5*180))y = 100*t * sin ( t *(5*180))z = 0Pro/E 各种曲线方程集合(三)42.蛇形曲线x = 2 * cos ( (t+1) *(2*180))y = 2 * sin ( t *(5*360))z = t*(t+1)图42 43.8字形曲线柱坐标theta = t*360r=10+(8*sin(theta))^2图43 44.椭圆曲线笛卡尔坐标系a = 10b = 20theta = t*360x = a*cos(theta)y = b*sin(theta)图44 45.梅花曲线柱坐标theta = t*360r=10+(3*sin(theta*2.5))^2图45 46.另一个花曲线theta = t*360r=10-(3*sin(theta*3))^2z=4*sin(theta*3)^2图46 47.改一下就成为空间感更强的花曲线了;)theta = t*360r=10-(3*sin(theta*3))^2z=(r*sin(theta*3))^2图4748.螺旋上升的椭圆线a = 10b = 20theta = t*360*3x = a*cos(theta)y = b*sin(theta)z=t*12图48 49.甚至这种螺旋花曲线theta = t*360*4r=10+(3*sin(theta*2.5))^2z = t*16图49 50 鼓形线笛卡尔方程r=5+3.3*sin(t*180)+ttheta=t*360*10z=t*10图50 51 长命锁曲线笛卡尔方程:a=1*t*359.5b=q2*t*360c=q3*t*360rr1=w1rr2=w2rr3=w3x=rr1*cos(a)+rr2*cos(b)+rr3*cos(c)y=rr1*sin(a)+rr2*sin(b)+rr3*sin(c)图51 52 簪形线球坐标方程:rho=200*ttheta=900*tphi=t*90*10图52 53.螺旋上升曲线r=t^10theta=t^3*360*6*3+t^3*360*3*3z=t^3*(t+1)图53 54.蘑菇曲线rho=t^3+t*(t+1)theta=t*360phi=t^2*360*20*20图54 55. 8字曲线a=1b=1x=3*b*cos(t*360)+a*cos(3*t*360)Y=b*sin(t*360)+a*sin(3*t*360)图55 56.梅花曲线theta=t*360r=100+50*cos(5*theta)z=2*cos(5*theta)图56 57.桃形曲线rho=t^3+t*(t+1)theta=t*360phi=t^2*360*10*10图57 58.名稱:碟形弹簧建立環境:pro/e圓柱坐r = 5theta = t*3600z =(sin(3.5*theta-90))+24图58 59.环形二次曲线笛卡儿方程:x=50*cos(t*360)y=50*sin(t*360)z=10*cos(t*360*8)图59 60 蝶线球坐标:rho=4*sin(t*360)+6*cos(t*360^2)theta=t*360phi=log(1+t*360)*t*360图60 61.正弦周弹簧笛卡尔:ang1=t*360ang2=t*360*20x=ang1*2*pi/360y=sin(ang1)*5+cos(ang2)z=sin(ang2)Pro/E 各种曲线方程集合(四)62.环形螺旋线x=(50+10*sin(t*360*15))*cos(t*360)y=(50+10*sin(t*360*15))*sin(t*360)z=10*cos(t*360*5)图62 63.内接弹簧x=2*cos(t*360*10)+cos(t*180*10)y=2*sin(t*360*10)+sin(t*180*10)z=t*6图63 64.多变内接式弹簧x=3*cos(t*360*8)-1.5*cos(t*480*8)y=3*sin(t*360*8)-1.5*sin(t*480*8)z=t*8图64 65.柱面正弦波线柱坐标:方程r=30theta=t*360z=5*sin(5*theta-90)图65 66. ufo (漩涡线)球坐标:rho=t*20^2theta=t*log(30)*60phi=t*7200图66 67. 手把曲线thta0=t*360thta1=t*360*6r0=400r1=40r=r0+r1*cos(thta1)x=r*cos(thta0)y=r1*sin(thta1)z=0图67 68.篮子圆柱坐标r=5+0.3*sin(t*180)+ttheta=t*360*30z=t*5图68 69. 圆柱齿轮齿廓的渐开线方程:afa=60*tx=10*cos(afa)+pi*10*afa/180*sin(afa)x=10*sin(afa)-pi*10*afa/180*cos(afa)z=0注:afa为压力角,取值范围是0到60,10为基圆半径。

最全的UG方程曲线及详细表达式

最全的UG方程曲线及详细表达式

23.三叶线
三叶线数学方程:r=a*cos3θ=a*cosθ*(4sin2θ-1),若 a=10,θ=180°,即 UG 表达式为: a=10 theta=t*180 r=a*cos(3*theta) xt=r*cos(theta) yt=r*sin(theta) zt=0 效果如图 23
第 10 页 共 49 页
13.渐开线
渐开线的数学方程:x=r(cosθ+θ*sinθ);y=r(sinθ-θ*cosθ)。假设渐开线的基圆半径 r 为 10,展开角度 θ 为 360*2,即 UG 表达式为: r=10 theta=360*2*t s=r*rad(theta)=r*(2*pi()/360)*theta=2*pi()*r*t*2 xt=r*cos(theta)+s*sin(theta) yt=r*sin(theta)-s*cos(theta) zt=0 效果如图 13
图1
图2
2.圆和圆弧
圆的数学方程为(x-x0)^2+(y-y0)^2=r^2,若圆心坐标为(50,40) ,半径 r 为 30,即 UG 表达式为: r=30 theta=t*360 xt=50+r*cos(theta) yt=40+r*sin(theta) zt=0 效果如图 2
第 1 页 共 49 页
图 19
图 20
20.肾脏线
数学方程:x=a(3cost-cos3t);y=a(3sint-sin3t) a=10 theta=360*t xt=a*(3*cos(theta)-cos(3*theta)) yt=a*(3*sin(theta)-sin(3*theta)) zt=0 效果如图 20
21.Talbot 曲线

最全的UG方程曲线及详细表达式

最全的UG方程曲线及详细表达式

在UG中利用【规律曲线】|【根据方程】绘制各种方程曲线:1、极坐标(或柱坐标r,θ,z)与直角坐标系(x,y,z)的转换关系:x=r*cos(θ);y=r*sin(θ);z=z2、球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ;y=rsinθsinφ;z=rcosθ在UG表达式中输入的theta=θ;phi=φ;r=rho【注:所有UG表达式中,必须先在名称栏输入t,公式栏输入0,类型为恒定的,即无单位。

t是UG自带的系统变量,其取值为0~1之间的连续数】1.直线直线的数学方程为y-y0=tan(θ)*(x-x0),若直线经过点(10,20),倾角θ为30°,长度L为40,即UG表达式为:theta=30L=40xt=10+L*cos(theta)*tyt=20+L*sin(theta)*tzt=0效果如图1图1 图22.圆和圆弧圆的数学方程为(x-x0)^2+(y-y0)^2=r^2,若圆心坐标为(50,40),半径r为30,即UG表达式为:r=30theta=t*360xt=50+r*cos(theta)yt=40+r*sin(theta)zt=0效果如图23.椭圆和椭圆弧椭圆的数学方程为(x-x0)^2/a^2+(y-y0)^2/b^2=1,若椭圆中心坐标为(50,40),长半轴a为30(在X轴上),短半轴b为20,即UG表达式为:a=30b=20theta=t*360xt=50+a*cos(theta)yt=40+b*sin(theta)zt=0效果如图3图3 图44.双曲线双曲线的数学方程为x2/a2-y2/b2=1,若中心坐标为(0,0),实长半轴a为4(在x轴上),虚半轴b为3,y的取值范围为-5~+5内的一段,即UG表达式为:a=4b=3yt=10*t-5xt=a/b*sqrt(b^2+yt^2)或xt=-a/b*sqrt(b^2+yt^2)zt=0做出一半后进行镜像复制,效果如图45.抛物线抛物线I的数学方程为y2=2px,若抛物线的顶点为(30,20)焦点到准线的距离p=8,y的取值范围为-25~+25,即UG表达式为:p=8yt=50*t-25+20xt=(yt-20)^2/(2*p)+30zt=0效果如图5-1抛物线II数学参数方程:x=2pt2,y=2pt(其中t为参数)。

最全的UG方程曲线及详细表达式

最全的UG方程曲线及详细表达式

在UG中利用【规律曲线】|【根据方程】绘制各种方程曲线:1、极坐标(或柱坐标r,θ,z)与直角坐标系(x,y,z)的转换关系:x=r*cos(θ);y=r*sin(θ);z=z2、球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ;y=rsinθsinφ;z=rcosθ在UG表达式中输入的theta=θ;phi=φ;r=rho【注:所有UG表达式中,必须先在名称栏输入t,公式栏输入0,类型为恒定的,即无单位。

t是UG自带的系统变量,其取值为0~1之间的连续数】1.直线直线的数学方程为y-y0=tan(θ)*(x-x0),若直线经过点(10,20),倾角θ为30°,长度L为40,即UG表达式为:theta=30L=40xt=10+L*cos(theta)*tyt=20+L*sin(theta)*tzt=0效果如图1图1 图22.圆和圆弧圆的数学方程为(x-x0)^2+(y-y0)^2=r^2,若圆心坐标为(50,40),半径r为30,即UG表达式为:r=30theta=t*360xt=50+r*cos(theta)yt=40+r*sin(theta)zt=0效果如图23.椭圆和椭圆弧椭圆的数学方程为(x-x0)^2/a^2+(y-y0)^2/b^2=1,若椭圆中心坐标为(50,40),长半轴a为30(在X轴上),短半轴b为20,即UG表达式为:a=30b=20theta=t*360xt=50+a*cos(theta)yt=40+b*sin(theta)zt=0效果如图3图3 图44.双曲线双曲线的数学方程为x2/a2-y2/b2=1,若中心坐标为(0,0),实长半轴a为4(在x轴上),虚半轴b为3,y的取值X围为-5~+5内的一段,即UG表达式为:a=4b=3yt=10*t-5xt=a/b*sqrt(b^2+yt^2)或xt=-a/b*sqrt(b^2+yt^2)zt=0做出一半后进行镜像复制,效果如图45.抛物线抛物线I的数学方程为y2=2px,若抛物线的顶点为(30,20)焦点到准线的距离p=8,y的取值X围为-25~+25,即UG表达式为:p=8yt=50*t-25+20xt=(yt-20)^2/(2*p)+30zt=0效果如图5-1抛物线II数学参数方程:x=2pt2,y=2pt(其中t为参数)。

最全的UG方程曲线及详细表达式

最全的UG方程曲线及详细表达式

在UG中利用【规律曲线】|【根据方程】绘制各种方程曲线:1、极坐标(或柱坐标r,θ,z)与直角坐标系(x,y,z)的转换关系:x=r*cos(θ);y=r*sin(θ);z=z2、球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ;y=rsinθsinφ;z=rcosθ在UG表达式中输入的theta=θ;phi=φ;r=rho【注:所有UG表达式中,必须先在名称栏输入t,公式栏输入0,类型为恒定的,即无单位。

t是UG自带的系统变量,其取值为0~1之间的连续数】1.直线直线的数学方程为y-y0=tan(θ)*(x-x0),若直线经过点(10,20),倾角θ为30°,长度L为40,即UG表达式为:theta=30L=40xt=10+L*cos(theta)*tyt=20+L*sin(theta)*tzt=0效果如图1图1 图22.圆和圆弧圆的数学方程为(x-x0)^2+(y-y0)^2=r^2,若圆心坐标为(50,40),半径r为30,即UG 表达式为:r=30theta=t*360xt=50+r*cos(theta)yt=40+r*sin(theta)zt=0效果如图23.椭圆和椭圆弧椭圆的数学方程为(x-x0)^2/a^2+(y-y0)^2/b^2=1,若椭圆中心坐标为(50,40),长半轴a 为30(在X轴上),短半轴b为20,即UG表达式为:a=30b=20theta=t*360xt=50+a*cos(theta)yt=40+b*sin(theta)zt=0效果如图3图3 图44.双曲线双曲线的数学方程为x2/a2-y2/b2=1,若中心坐标为(0,0),实长半轴a为4(在x轴上),虚半轴b为3,y的取值范围为-5~+5内的一段,即UG表达式为:a=4b=3yt=10*t-5xt=a/b*sqrt(b^2+yt^2)或xt=-a/b*sqrt(b^2+yt^2)zt=0做出一半后进行镜像复制,效果如图45.抛物线抛物线I的数学方程为y2=2px,若抛物线的顶点为(30,20)焦点到准线的距离p=8,y的取值范围为-25~+25,即UG表达式为:p=8yt=50*t-25+20xt=(yt-20)^2/(2*p)+30zt=0效果如图5-1抛物线II数学参数方程:x=2pt2,y=2pt(其中t为参数)。

ug规律曲线

ug规律曲线

UG 中的规律曲线1. 圆t=1r= 半径xt=r*sin(360*t)yt=r*cos(360*t)2. 空间弹簧a=360*tn=20 圈数t=0R=40 中心圆的半径h=10 半径xt=(R+h*sin(a*n))*sin(a)yt=(R+h*sin(a*n))*cos(a)zt=h*cos(a*n)3. 渐开线方程R=40 起点到原点的直线距离a=720*tt=0xt=R*(cos(a)+a*sin(a))yt=R*(sin(a)-a*cos(a))4. 椭圆t=0a=1 x 方向椭圆半径b=1.5 y 方向椭圆半径r=1 放大倍数xt=a*r*sin(360*t)yt=b*r*cos(360*t)5. 若正弦曲线一个周期X 方向长度为50,振幅为10,即UG 表达式为:theta=t*360xt=50*tyt=10*sin(theta)zt=06. 余弦曲线若余弦曲线一个周期X 方向长度为50,振幅为10,即UG 表达式为:a=t*360xt=50*tyt=10*cos(a)zt=07. 螺旋线若圆柱螺旋线半径r 为20,螺距p 为10,圈数n 为5,即UG 表达式为:r=20p=10n=5a=t*360xt=r*cos(a*n)yt=r*sin(a*n)zt=p*n*t8. 星形线【四尖瓣线】星形线的数学方程:x=r*cos 3θ;y=r*sin 3θ。

【由n+1 尖瓣线通式:x=r(n*cos θ+cos(n* θ));y=r(n*sin θ-sin(n*θ))当n=3 时的情况。

三角函数公式:sin3θ=3sinθ-4sin3θ;cos3θ=4cos3θ-3cosθ】若r=20 ,即UG 表达式为:r=20a=t*360xt=r*(cos(a))^3yt=r*(sin(a))^3zt=09. 抛物线Xt=t Yt=t^2Zt=010. 双曲余弦曲线双曲余弦曲线方程:x=6*t-3 ,y=(exp(x)+exp(0-x))/2 。

最全的UG方程曲线及详细表达式

最全的UG方程曲线及详细表达式

在UG中利用【规律曲线】|【根据方程】绘制各种方程曲线:1、极坐标(或柱坐标r,θ,z)与直角坐标系(x,y,z)的转换关系:x=r*cos(θ);y=r*sin(θ);z=z2、球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ;y=rsinθsinφ;z=rcosθ在UG表达式中输入的theta=θ;phi=φ;r=rho【注:所有UG表达式中,必须先在名称栏输入t,公式栏输入0,类型为恒定的,即无单位。

t是UG自带的系统变量,其取值为0~1之间的连续数】1.直线直线的数学方程为y-y0=tan(θ)*(x-x0),若直线经过点(10,20),倾角θ为30°,长度L为40,即UG表达式为:theta=30L=40xt=10+L*cos(theta)*tyt=20+L*sin(theta)*tzt=0效果如图1图1 图22.圆和圆弧圆的数学方程为(x-x0)^2+(y-y0)^2=r^2,若圆心坐标为(50,40),半径r为30,即UG 表达式为:r=30theta=t*360xt=50+r*cos(theta)yt=40+r*sin(theta)zt=0效果如图23.椭圆和椭圆弧椭圆的数学方程为(x-x0)^2/a^2+(y-y0)^2/b^2=1,若椭圆中心坐标为(50,40),长半轴a为30(在X轴上),短半轴b为20,即UG表达式为:a=30b=20theta=t*360xt=50+a*cos(theta)yt=40+b*sin(theta)zt=0效果如图3图3 图44.双曲线双曲线的数学方程为x2/a2-y2/b2=1,若中心坐标为(0,0),实长半轴a为4(在x轴上),虚半轴b为3,y的取值范围为-5~+5内的一段,即UG表达式为:a=4b=3yt=10*t-5xt=a/b*sqrt(b^2+yt^2)或xt=-a/b*sqrt(b^2+yt^2)zt=0做出一半后进行镜像复制,效果如图45.抛物线抛物线I的数学方程为y2=2px,若抛物线的顶点为(30,20)焦点到准线的距离p=8,y的取值范围为-25~+25,即UG表达式为:p=8yt=50*t-25+20xt=(yt-20)^2/(2*p)+30zt=0效果如图5-1抛物线II数学参数方程:x=2pt2,y=2pt(其中t为参数)。

UG规律曲线公式大全

UG规律曲线公式大全

U G中的规律曲线在ug里我们必须把方程都转换为参数方程,参数方程大家在高中的时候都学过,圆的参数方程不是难事,即;x=rsint,y=rcost,因为ug里的t是永远只从0递增到1,而我们实际要求的t要从0到360,所以把方程变一下,即;xt=rsin360t,yt=rcos360t,因为ug默认x,y变量为xt,yt所以一般把x,y写成xt,yt,当然你写成x,y也行只要在形成规律曲线时改过来就行了,好,这样就可以用规律曲线形成圆了,如果再稍微复杂一点呢现在再来讲一个如下图的弹簧的方程;我的方法是先分析曲线在x,y平面投影的曲线方程,显然该投影曲线是一个半径不断变化的圆,而半径的变化规律为常数加上一个正弦曲线,即;r=a+bsint.如是把圆的参数方程里的r替换一下,即xt=a+bsintsintyt=a+bsintcost这里面的t只是代表其为一个变量,真正出表达式的时候要赋予变量范围的x,y平面投影的曲线写好之后再来看z方向上的曲线方程,显然是一个正弦或余弦曲线,但是该曲线必须与x,y平面的正弦曲线错开一个90度的相位,为什么留给大家去分析,不难想的即;zt=bcost好,方程都已经分析完了,现在就要赋予变量不同的变化范围,例如,螺旋圈数啊,螺旋半径啊等等,这也不难,这儿就不讲了;下面是图示弹簧的方程a=360tn=20t=0R=40r=10xt=R+rsinansinayt=R+rsinancosazt=rcosan下面再给几个其他常用的曲线方程;渐开线方程用于齿轮R=40a=720tt=0xt=Rcosa+asinayt=Rsina-acosa阿基米德螺线等进螺线用于凸轮a=360tt=0xt=asinayt=acosaUF_MODL_dissect_exp_string功能:将表达式的名称与数值分离,并得到表达式的标识;UF_MODL_ask_exp功能:根据表达式的名称查找表达式是否存在,并取的表达式的全名;UF_MODL_delete_exp功能:删除表达式;UF_MODL_eval_exp功能:计算表达式的数值;.UF_MODL_edit_exp功能:更新表达式的数值,需与UF_MODL_update合用;UF_MODL_rename_exp功能:重命名表达式;UF_MODL_ask_exps_of_feature功能:获取特征的所有表达式标识;UF_MODL_ask_exps_of_part功能:获取part的所有表达式标识;UF_MODL_ask_exp_tag_string功能:根据表达式的标识获取表达式的字符串;UG曲线方程大全--------------------------------------------------------------------------------该文章讲述了UG曲线方程大全.2表示有N种方法;ˉ表示用UG3.0可以实现;ˉ双外摆线b=2.5l=2.5t=1xt=3bcost360+lcos3t360yt=3bsint360+lsin3t360ˉ星形线a=5t=1xt=acos360t^3yt=asin360t^3叶形线a=10t=1xt=3at/1+t^3yt=3at^2/1+t^3ˉ螺纹线t=1xt=4cost5360yt=4sint5360zt=6t蛇形线2t=1xt=2cost3603tyt=2sint3603tzt=sqrtsqrtsqrtt^35theta=t3603zt=sqrtt72t=1rho=360sqrtt2theta=t25phi=360t4ˉ双余弦线t=1xt=-9.56.5+t9.56.52yt=cost3606.56.35/2-6.35/2 zt=cost36085ˉ对数线t=1xt=10tyt=log10t+0.0001抛物线t=1xt=4tyt=3t+5t^2ˉ勾形线t=1xt=5cost360^3tyt=5sint360^3tˉ次声波t=1xt=t5yt=cost3608t正弦波t=1yt=sint83600.5渐开线pitch_diameter=10pressure_angle=20r=pitch_diameter/2cospressure_angle t=1xt=rcos90tt+r90ttpi/180sin90ttyt=rsin90tt-r90ttpi/180cos90tt普通外摆线r=10t=1xt=t2pir-sint360ryt=r-cost360rˉ小飞机t=1xt=cost360+cos3t360yt=sint360+sin5t360ˉ弯月t=1xt=cost360+cos2t360yt=sint3602+sint3602ˉ五角形线t=1xt=2+10-6cos3604t+10cos10/6-13604t yt=2+10-6sin3604t-6sin10/6-13604t ˉt=1xt=2+10-6cos3604t+10cos10/6-13604t yt=2+10-6sin3604t-10sin10/6-13604t ˉt=1xt=2+10-2cos3604t+10cos10/6-13604tyt=2+10-2sin3604t-10sin10/6-13604tˉt=1xt=0.5+10-6cos3605t+10cos6/10-13605tyt=0.5+10-6sin3605t-10sin6/10-13605t热带鱼a=5t=1xt=acost3603^4tyt=asint3603^4t双蝴蝶线t=1theta=t360+90r=cos360t53+0.5zt=cos360t33t=1theta=t360+18r=cos360t50.75+3.5UG曲线方程大全2文章来源:不详作者:佚名--------------------------------------------------------------------------------该文章讲述了UG曲线方程大全2.zt=cost36050.4t=1theta=t360-54r=cos360t50.5+2.5zt=cost3605+900.5心电图t=1theta=10+t6360zt=t3ˉ燕尾剪t=1xt=3cost3604yt=3sint3603zt=tt=1r=t2theta=10+t12360zt=t3碟形线t=1r=10+10sin6t360zt=2sin6360t花篮t=1r=5zt=sin3.5t720-90+2小兔兔t=1theta=t360-90r=cos360t/1+t^6.5t6t3.5+5红十字t=1r=cos360t40.5+1theta=t360+90心形线t=1t=1theta=t3604r=1+cost3605t=1theta=t3605r=8+5sint36055t太阳花t=1theta=-t360+180r=cos360t/1+t^873+6 t=1theta=t360r=cos360t200.5t+1 t=1theta=t3602r=cos360t300.5t+2t t=1theta=t3605r=cos360t200.5t+1手掌t=1theta=t360+180r=cos360t^362+5t=1theta=t3604r=cos360t160.5t+1t 天蚕丝t=1theta=t3600r=cos360t200.5t+1t 人民币t=1theta=-t360+180r=cos360t/1+t^663+5 t=1rho=360t10theta=360t20phi=360t5球面螺旋线t=1rho=4theta=t180phi=t36012蝴蝶线t=1rho=8ttheta=360t4phi=360t8t=1rho=3ttheta=360t5phi=360t2.5t=1rho=8ttheta=360t4phi=360t4。

最全的UG方程曲线及详细表达式

最全的UG方程曲线及详细表达式

在UG中利用【规律曲线】|【根据方程】绘制各种方程曲线:1、极坐标(或柱坐标r,θ,z)与直角坐标系(x,y,z)的转换关系:x=r*cos(θ);y=r*sin(θ);z=z2、球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ;y=rsinθsinφ;z=rcosθ在UG表达式中输入的theta=θ;phi=φ;r=rho【注:所有UG表达式中,必须先在名称栏输入t,公式栏输入0,类型为恒定的,即无单位。

t是UG自带的系统变量,其取值为0~1之间的连续数】1.直线直线的数学方程为y-y0=tan(θ)*(x-x0),若直线经过点(10,20),倾角θ为30°,长度L为40,即UG表达式为:theta=30L=40xt=10+L*cos(theta)*tyt=20+L*sin(theta)*tzt=0效果如图1图1 图22.圆和圆弧圆的数学方程为(x-x0)^2+(y-y0)^2=r^2,若圆心坐标为(50,40),半径r为30,即UG 表达式为:r=30theta=t*360xt=50+r*cos(theta)yt=40+r*sin(theta)zt=0效果如图23.椭圆和椭圆弧椭圆的数学方程为(x-x0)^2/a^2+(y-y0)^2/b^2=1,若椭圆中心坐标为(50,40),长半轴a为30(在X轴上),短半轴b为20,即UG表达式为:a=30b=20theta=t*360xt=50+a*cos(theta)yt=40+b*sin(theta)zt=0效果如图3图3 图44.双曲线双曲线的数学方程为x2/a2-y2/b2=1,若中心坐标为(0,0),实长半轴a为4(在x轴上),虚半轴b为3,y的取值范围为-5~+5内的一段,即UG表达式为:a=4b=3yt=10*t-5xt=a/b*sqrt(b^2+yt^2)或xt=-a/b*sqrt(b^2+yt^2)zt=0做出一半后进行镜像复制,效果如图45.抛物线抛物线I的数学方程为y2=2px,若抛物线的顶点为(30,20)焦点到准线的距离p=8,y的取值范围为-25~+25,即UG表达式为:p=8yt=50*t-25+20xt=(yt-20)^2/(2*p)+30zt=0效果如图5-1抛物线II数学参数方程:x=2pt2,y=2pt(其中t为参数)。

最全的UG方程曲线及详细表达式

最全的UG方程曲线及详细表达式
=2px,若抛物线的顶点为(30,20)焦点到准线的距离 p=8, y 的取值范围为-25~+25,即 UG 表达式为: p=8 yt=50*t-25+20 xt=(yt-20)^2/(2*p)+30 zt=0 效果如图 5-1 抛物线 II 数学参数方程:x=2pt2,y=2pt(其中 t 为参数)。UG 表达式为: p=8
图 10-1
图 10-2
11.三尖瓣线
三尖瓣线数学方程:x=r(2cosθ+cos2θ);y=r(2sinθ-sin2θ)若将 2 变为 n 即扩展为 n+1 尖瓣线。若 r=20,即 UG 表达式为: r=20 n=2 theta=t*360 xt=r*(n*cos(theta)+cos(n*theta)) yt=r*(n*sin(theta)-sin(n*theta)) zt=0 效果如图 11
第 5 页 共 49 页
图 11
图 12
12.星形线【四尖瓣线】
星形线的数学方程:x=r*cos3θ;y=r*sin3θ。【由 n+1 尖瓣线通式:x=r(n*cosθ+cos(n*θ)); y=r(n*sinθ-sin(n*θ))当 n=3 时的情况。三角函数公式: sin3θ=3sinθ-4sin3θ;cos3θ=4cos3θ-3cosθ】若 r=20,即 UG 表达式为: r=20 theta=t*360 xt=r*(cos(theta))^3 yt=r*(sin(theta))^3 zt=0 效果如图 12
13.渐开线
渐开线的数学方程:x=r(cosθ+θ*sinθ);y=r(sinθ-θ*cosθ)。假设渐开线的基圆半径 r 为 10,展开角度 θ 为 360*2,即 UG 表达式为: r=10 theta=360*2*t s=r*rad(theta)=r*(2*pi()/360)*theta=2*pi()*r*t*2 xt=r*cos(theta)+s*sin(theta) yt=r*sin(theta)-s*cos(theta) zt=0 效果如图 13

UG曲线方程大全-工程

UG曲线方程大全-工程

UG曲线方程大全-工程²表示有N种方法;¯表示用UG3.0可以实现,。

¯双外摆线b=2.5l=2.5t=1xt=3*b*cos(t*360)+l*cos(3*t*360)yt=3*b*sin(t*360)+l*sin(3*t*360)¯星形线a=5t=1xt=a*(cos(360*t))^3yt=a*(sin(360*t))^3叶形线a=10t=1xt=3*a*t/(1+(t^3))yt=3*a*(t^2)/(1+(t^3))¯螺纹线²表示有N种方法;¯表示用UG3.0可以实现。

¯双外摆线b=2.5l=2.5t=1xt=3*b*cos(t*360)+l*cos(3*t*360)yt=3*b*sin(t*360)+l*sin(3*t*360)¯星形线a=5t=1xt=a*(cos(360*t))^3yt=a*(sin(360*t))^3叶形线a=10t=1xt=3*a*t/(1+(t^3))yt=3*a*(t^2)/(1+(t^3))¯螺纹线t=1xt=4*cos(t*(5*360))yt=4*sin(t*(5*360))zt=6*t蛇形线²t=1xt=2*cos(t*360*3)*tyt=2*sin(t*360*3)*tzt=(sqrt(sqrt(sqrt(t))))^3*5²t=1theta=t*360*3zt=sqrt(t)*7²t=1rho=360*sqrt(t)*2theta=t*25phi=360*t*4¯双余弦线t=1xt=-(9.5*6.5)+t*(9.5*6.5*2)yt=cos(t*360*6.5)*(6.35/2)-(6.35/2) zt=cos(t*360*8)*5¯对数线t=1xt=10*tyt=log(10*t+0.0001)抛物线t=1xt=(4*t)yt=(3*t)+(5*t^2)¯勾形线t=1xt=(5*(cos(t*360))^3)*tyt=(5*(sin(t*360))^3)*t¯次声波t=1xt=t*5yt=cos(t*360*8)*t正弦波t=1xt=5*t*tyt=sin(t*8*360)*0.5渐开线pitch_diameter=10pressure_angle=20r=(pitch_diameter/2)*cos(pressure_angle)t=1xt=r*cos(90*t*t)+r*(90*t*t)*(pi/180)*sin(90*t*t) yt=r*sin(90*t*t)-r*(90*t*t)*(pi/180)*cos(90*t*t) 普通外摆线r=10t=1xt=t*(2*pi*r)-sin(t*360)*ryt=r-cos(t*360)*r¯小飞机t=1xt=cos(t*360)+cos(3*t*360)yt=sin(t*360)+sin(5*t*360)¯弯月t=1xt=cos(t*360)+cos(2*t*360)yt=sin(t*360)*2+sin(t*360)*2¯五角形线t=1xt=2+(10-6)*cos(360*4*t)+10*cos((10/6-1)*(360*4*t)) yt=2+(10-6)*sin(360*4*t)-6*sin((10/6-1)*(360*4*t))¯t=1xt=2+(10-6)*cos(360*4*t)+10*cos((10/6-1)*(360*4*t)) yt=2+(10-6)*sin(360*4*t)-10*sin((10/6-1)*(360*4*t))¯t=1xt=2+(10-2)*cos(360*4*t)+10*cos((10/6-1)*(360*4*t)) yt=2+(10-2)*sin(360*4*t)-10*sin((10/6-1)*(360*4*t))¯t=1xt=0.5+(10-6)*cos(360*5*t)+10*cos((6/10-1)*(360*5*t)) yt=0.5+(10-6)*sin(360*5*t)-10*sin((6/10-1)*(360*5*t)) 热带鱼a=5t=1xt=(a*(cos(t*360*3))^4)*tyt=(a*(sin(t*360*3))^4)*t双蝴蝶线t=1theta=t*360+90r=cos(360*t*5)*3+0.5zt=cos(360*t*3)*3t=1theta=t*360+18r=cos(360*t*5)*0.75+3.5 zt=cos(t*360*5)*0.4t=1theta=t*360-54r=cos(360*t*5)*0.5+2.5 zt=cos(t*360*5+90)*0.5 心电图t=1r=sin(t*360*2)+0.2 theta=10+t*(6*360)zt=t*3¯燕尾剪t=1xt=3*cos(t*360*4)yt=3*sin(t*360*3)zt=tt=1r=t*2theta=10+t*(12*360)zt=t*3碟形线t=1r=10+10*sin(6*t*360) zt=2*sin(6*360*t)花篮t=1r=5zt=(sin(3.5*(t*720)-90))+2小兔兔t=1theta=t*360-90r=cos(360*(t/(1+t^(6.5*t)))*6*t)*3.5+5 红十字t=1r=cos(360*t*4)*0.5+1theta=t*360+90心形线t=1r=10*(1+cos(t*360))t=1theta=t*360*4r=1+cos(t*360*5)t=1theta=t*360*5r=8+5*sin(t*360*5*5)*t太阳花t=1theta=-t*360+180r=cos(360*t/(1+t^8)*7)*3+6t=1theta=t*360r=cos(360*t*20)*0.5*t+1t=1theta=t*360*2r=cos(360*t*30)*0.5*t+2*tt=1r=cos(360*t*20)*0.5*t+1手掌t=1theta=t*360+180r=cos(360*t^3*6)*2+5t=1theta=t*360*4r=(cos(360*t*16)*0.5*t+1)*t 天蚕丝t=1theta=t*3600r=(cos(360*t*20)*0.5*t+1)*t 人民币t=1theta=-t*360+180r=cos(360*(t/(1+t^6))*6)*3+5 t=1rho=360*t*10theta=360*t*20phi=360*t*5球面螺旋线t=1rho=4theta=t*180phi=t*360*12蝴蝶线t=1rho=8*ttheta=360*t*4t=1rho=3*t theta=360*t*5 phi=360*t*2.5 t=1rho=8*t theta=360*t*4 phi=360*t*4。

Proe-Creo-UG曲线方程大全及关系式、函数的说明资料

Proe-Creo-UG曲线方程大全及关系式、函数的说明资料

Proe Creo UG曲线方程大全与关系式、函数的说明资料Pro/E 各种曲线方程集合1.碟形弹簧圓柱坐标方程:r = 5theta = t*3600z =<sin<3.5*theta-90>>+24*t图12.葉形线.笛卡儿坐標标方程:a=10x=3*a*t/<1+<t^3>>y=3*a*<t^2>/<1+<t^3>>图23.螺旋线<Helical curve>圆柱坐标〔cylindrical〕方程:r=ttheta=10+t*<20*360>z=t*3图34.蝴蝶曲线球坐标方程:rho = 8 * ttheta = 360 * t * 4phi = -360 * t * 8图45.渐开线采用笛卡尔坐标系方程:r=1ang=360*ts=2*pi*r*tx0=s*cos<ang>y0=s*sin<ang>x=x0+s*sin<ang>y=y0-s*cos<ang>z=0图56.螺旋线.笛卡儿坐标方程:x = 4 * cos < t *<5*360>>y = 4 * sin < t *<5*360>>z = 10*t图6 7.对数曲线笛卡尔坐标系方程:z=0x = 10*ty = log<10*t+0.0001>图78.球面螺旋线采用球坐标系方程:rho=4theta=t*180phi=t*360*20图8 9.双弧外摆线卡迪尔坐标方程:l=2.5b=2.5x=3*b*cos<t*360>+l*cos<3*t*360>Y=3*b*sin<t*360>+l*sin<3*t*360>图910.星行线卡迪尔坐标方程:a=5x=a*<cos<t*360>>^3y=a*<sin<t*360>>^3图10 11.心脏线圓柱坐标方程:a=10r=a*<1+cos<theta>>theta=t*360Pro/E 各种曲线方程集合〔二〕22.外摆线迪卡尔坐标方程:theta=t*720*5b=8a=5x=<a+b>*cos<theta>-b*cos<<a/b+1>*theta>y=<a+b>*sin<theta>-b*sin<<a/b+1>*theta>z=0图22 23. Lissajous 曲线theta=t*360a=1b=1c=100n=3x=a*sin<n*theta+c>y=b*sin<theta>图23 24.长短幅圆内旋轮线卡笛尔坐标方程:a=5b=7c=2.2theta=360*t*10x=<a-b>*cos<theta>+c*cos<<a/b-1>*theta>y=<a-b>*sin<theta>-c*sin<<a/b-1>*theta>图24 25.长短幅圆外旋轮线卡笛尔坐标方程:theta=t*360*10a=5b=3c=5x=<a+b>*cos<theta>-c*cos<<a/b+1>*theta>y=<a+b>*sin<theta>-c*sin<<a/b+1>*theta>图25 26. 三尖瓣线a=10x = a*<2*cos<t*360>+cos<2*t*360>>y = a*<2*sin<t*360>-sin<2*t*360>>图26 27.概率曲线!方程:笛卡儿坐标x = t*10-5y = exp<0-x^2>图27 28.箕舌线笛卡儿坐标系a = 1x = -5 + t*10y = 8*a^3/<x^2+4*a^2>图28 29.阿基米德螺线柱坐标a=100theta = t*400r = a*theta图29 30.对数螺线柱坐标theta = t*360*2.2a = 0.005r = exp<a*theta>图30 31.蔓叶线笛卡儿坐标系a=10y=t*100-50solvex^3 = y^2*<2*a-x>for x图31 32.tan曲线笛卡儿坐标系x = t*8.5 -4.25y = tan<x*20>图32 33.双曲余弦x = 6*t-3y = <exp<x>+exp<0-x>>/2图33 34.双曲正弦x = 6*t-3y = <exp<x>-exp<0-x>>/2图34 35.双曲正切x = 6*t-3y = <exp<x>-exp<0-x>>/<exp<x>+exp<0-x>>图35 36.一峰三驻点曲线x = 3*t-1.5y=<x^2-1>^3+1图36 37.八字曲线x = 2 * cos < t *<2*180>>y = 2 * sin < t *<5*360>>z = 0图37 38.螺旋曲线r=t*<10*180>+1theta=10+t*<20*180>z=t图38 39.圆x = cos < t *<5*180>>y = sin < t *<5*180>>z = 0图39 40.封闭球形环绕曲线rho=2theta=360*tphi=t*360*10图40 41.柱坐标螺旋曲线x = 100*t * cos < t *<5*180>>y = 100*t * sin < t *<5*180>>z = 0Pro/E 各种曲线方程集合〔三〕42.蛇形曲线x = 2 * cos < <t+1> *<2*180>>y = 2 * sin < t *<5*360>>z = t*<t+1>图42 43.8字形曲线柱坐标theta = t*360r=10+<8*sin<theta>>^2图43 44.椭圆曲线笛卡尔坐标系a = 10b = 20theta = t*360x = a*cos<theta>y = b*sin<theta>图44 45.梅花曲线柱坐标theta = t*360r=10+<3*sin<theta*2.5>>^2图45 46.另一个花曲线theta = t*360r=10-<3*sin<theta*3>>^2z=4*sin<theta*3>^2图46 47.改一下就成为空间感更强的花曲线了;>theta = t*360r=10-<3*sin<theta*3>>^2z=<r*sin<theta*3>>^2图4748.螺旋上升的椭圆线a = 10b = 20theta = t*360*3x = a*cos<theta>y = b*sin<theta>z=t*12图48 49.甚至这种螺旋花曲线theta = t*360*4r=10+<3*sin<theta*2.5>>^2z = t*16图49 50 鼓形线笛卡尔方程r=5+3.3*sin<t*180>+ttheta=t*360*10z=t*10图50 51 长命锁曲线笛卡尔方程:a=1*t*359.5b=q2*t*360c=q3*t*360rr1=w1rr2=w2rr3=w3x=rr1*cos<a>+rr2*cos<b>+rr3*cos<c>y=rr1*sin<a>+rr2*sin<b>+rr3*sin<c>图51 52 簪形线球坐标方程:rho=200*ttheta=900*tphi=t*90*10图52 53.螺旋上升曲线r=t^10theta=t^3*360*6*3+t^3*360*3*3z=t^3*<t+1>图53 54.蘑菇曲线rho=t^3+t*<t+1>theta=t*360phi=t^2*360*20*20图54 55. 8字曲线a=1b=1x=3*b*cos<t*360>+a*cos<3*t*360>Y=b*sin<t*360>+a*sin<3*t*360>图55 56.梅花曲线theta=t*360r=100+50*cos<5*theta>z=2*cos<5*theta>图56 57.桃形曲线rho=t^3+t*<t+1>theta=t*360phi=t^2*360*10*10图57 58.名稱:碟形弹簧建立環境:pro/e圓柱坐r = 5theta = t*3600z =<sin<3.5*theta-90>>+24图58 59.环形二次曲线笛卡儿方程:x=50*cos<t*360>y=50*sin<t*360>z=10*cos<t*360*8>图59 60 蝶线球坐标:rho=4*sin<t*360>+6*cos<t*360^2>theta=t*360phi=log<1+t*360>*t*360图60 61.正弦周弹簧笛卡尔:ang1=t*360ang2=t*360*20x=ang1*2*pi/360y=sin<ang1>*5+cos<ang2>z=sin<ang2>Pro/E 各种曲线方程集合〔四〕62.环形螺旋线x=〔50+10*sin<t*360*15>>*cos<t*360>y=<50+10*sin<t*360*15>>*sin<t*360>z=10*cos<t*360*5>图62 63.内接弹簧x=2*cos<t*360*10>+cos<t*180*10>y=2*sin<t*360*10>+sin<t*180*10>z=t*6图63 64.多变内接式弹簧x=3*cos<t*360*8>-1.5*cos<t*480*8>y=3*sin<t*360*8>-1.5*sin<t*480*8>z=t*8图64 65.柱面正弦波线柱坐标:方程r=30theta=t*360z=5*sin<5*theta-90>图65 66. ufo 〔漩涡线〕球坐标:rho=t*20^2theta=t*log<30>*60phi=t*7200图66 67. 手把曲线thta0=t*360thta1=t*360*6r0=400r1=40r=r0+r1*cos<thta1>x=r*cos<thta0>y=r1*sin<thta1>z=0图67 68.篮子圆柱坐标r=5+0.3*sin<t*180>+ttheta=t*360*30z=t*5图68 69. 圆柱齿轮齿廓的渐开线方程:afa=60*tx=10*cos<afa>+pi*10*afa/180*sin<afa>x=10*sin<afa>-pi*10*afa/180*cos<afa>z=0注:afa为压力角,取值范围是0到60,10为基圆半径.图69 70.对数螺旋曲线柱坐标:r=sqrt<theta>theta=t*360*30z=0图70 71. 罩形线球坐标:rho=4theta=t*60phi=t*360*10图7172. 向日葵线theta=t*360r=30+10*sin<theta*30>z=0图72 73. 太阳线r=1.5*cos<50*theta>+1theta=t*360z=0图73 74 塔形螺旋线r=t*80+50theta=t*360*10z=t*80图74 75 花瓣线球坐标:rho=t*20theta=t*360*90phi=t*360*10图75 76 双元宝线r=sin<t*360*10>+30theta=sin<t*360*15>z=sin<t*3>图76 77 阿基米德螺线的变形〔自己想得〕不知前面有没有??:what柱坐标下:theta=360*2*<t-0.5>r=10*thetaz=0图77 78 改过来的渐开线方程r=20ang = t*360x=r*cos<ang>+2*pi*r*t*sin<ang>y=r*sin<ang>-2*pi*r*t*cos<ang>z=0图78 79 双鱼曲线球坐标系rho=30+10*sin<t*360*10>theta=t*180*cos<t*360*10>phi=t*360*30图7980 蝴蝶结曲线x=200*t*sin<t*3600>y=250*t*cos<t*3600>z=300*t*sin<t*1800>图80 81 "两相望"曲线球坐标系rho=30theta=t*360*cos<t*360*20>phi=t*360*20图81 Pro/E 各种曲线方程集合〔五〕82 小蜜蜂笛卡尔坐标系:x=cos<t*360>+cos<3*t*360>Y=sin<t*360>+sin<5*t*360>图82 83 弯月x=cos<t*360>+cos<2*t*360>Y=sin<t*360>*2+sin<t*360>*2图83 84 热带鱼a=5x=<a*<cos<t*360*3>>^4>*ty=<a*<sin<t*360*3>>^4>*t图84 85 燕尾剪x=3*cos<t*360*4>y=3*sin<t*360*3>z=t图85 86 天蚕丝theta=t*3600r=<cos<360*t*20>*.5*t+1>*t图8687 心电图圆柱坐标系:r=sin<t*360*2>+.2theta=10+t*<6*360>z=t*388 变化后的星形线迪卡尔坐标系theta=t*360x=10*cos<theta>^3y=10*sin<theta>^3z=cos<theta>89 小白兔theta=t*360-90r=cos<360*<t/<1+t^<6.5>>>*6*t>*3.5+5图89 90 大家好theta=t*360+180r=cos<360*t^3*6>*2+5图90 91 蛇形线笛卡尔坐标系:x=2*cos<t*360*3>*ty=2*sin<t*360*3>*tz=<sqrt<sqrt<sqrt<t>>>>^3*5图91 92 五环柱坐标:theta=t*360*4r=cos<t*360*5>+1图92 93 蜘蛛网柱坐标:theta=t*360*5r=t*sin<t*360*25>*5+8图93 94 次声波笛卡尔:x=t*5y=t*cos<t*360*8>图94 95 十字渐开线柱坐标:theta=t*360*4r=<cos<t*360*16>*0.5*t+1>*t图95 96 内五环笛卡尔theta=t*360*4x=2+<10-5>*cos<theta>+6*cos<<10/6-1>*theta> y=2+<10-5>*sin<theta>-6*sin<<10/6-1>*theta>图96 97 蜗轨线柱坐标;theta=t*360*2r=cos<t*360*30>*t*0.5+t*2图97钣金件展开长度计算的推导在Pro/E钣金模块中,计算折弯部分的展开长度公式是:DL=<pi/2*Ri+y_factor*t>*a/90式中:DL板材的中性层长度Ri 折弯内径y_factor Y轴比例因子T板材厚度a 折弯部分相对的圆心角以下是推导过程:其中,k为中性层系数〔即内壁到中性层距离与板厚的比值〕DL=2*pi〔Ri+k*T>*a/360=<pi*Ri+pi*k*T>*a/180=<pi/2*Ri+pi/2*k*T>*a/90令pi/2*k=y_factor则DL=<pi/2*Ri+y_factor*T>*a/90我个人认为,其中的k因子对我们计算展开长度有直接意义,所以在设定折弯许可的时候,设定k因子就可以了.k值针对不同的材料有不同的值.普通钢板k值为0.45,实际取0.5,误差极小.关系中使用的函数数学函数下列运算符可用于关系〔包括等式和条件语句〕中.关系中也可以包括下列数学函数:cos <> 余弦tan <> 正切sin <> 正弦sqrt <> 平方根asin <> 反正弦acos <> 反余弦atan <> 反正切sinh <> 双曲线正弦cosh <> 双曲线余弦tanh <> 双曲线正切注释:所有三角函数都使用单位度.log<> 以10为底的对数ln<> 自然对数exp<> e的幂abs<> 绝对值ceil<> 不小于其值的最小整数floor<> 不超过其值的最大整数可以给函数ceil和floor加一个可选的自变量,用它指定要圆整的小数字数.带有圆整参数的这些函数的语法是:ceil<parameter_name或number, number_of_dec_places>floor <parameter_name 或 number, number_of_dec_places>其中number_of_dec_places是可选值:·可以被表示为一个数或一个使用者自定义参数.如果该参数值是一个实数,则被截尾成为一个整数.·它的最大值是8.如果超过8,则不会舍入要舍入的数〔第一个自变量〕,并使用其初值.·如果不指定它,则功能同前期版本一样.使用不指定小数部分位数的ceil和floor函数,其举例如下:ceil <10.2> 值为11floor <10.2> 值为 11使用指定小数部分位数的ceil和floor函数,其举例如下:ceil <10.255, 2> 等于10.26ceil <10.255, 0> 等于11 [ 与ceil <10.255>相同 ]floor <10.255, 1> 等于10.2floor <10.255, 2> 等于10.26曲线表计算曲线表计算使使用者能用曲线表特征,通过关系来驱动尺寸.尺寸可以是草绘器、零件或组件尺寸.格式如下:evalgraph<"graph_name", x> ,其中graph_name是曲线表的名称,x是沿曲线表x-轴的值,返回y值.对于混合特征,可以指定轨线参数trajpar作为该函数的第二个自变量.注释:曲线表特征通常是用于计算x-轴上所定义范围内x值对应的y值.当超出范围时,y值是通过外推的方法来计算的.对于小于初始值的x值,系统通过从初始点延长切线的方法计算外推值.同样,对于大于终点值的x值,系统通过将切线从终点往外延伸计算外推值.复合曲线轨道函数在关系中可以使用复合曲线的轨道参数trajpar_of_pnt.下列函数返回一个0.0和1.0之间的值:trajpar_of_pnt<"trajname", "pointname">其中trajname是复合曲线名,pointname是基准点名.轨线是一个沿复合曲线的参数,在它上面垂直于曲线切线的平面通过基准点.因此,基准点不必位于曲线上;在曲线上距基准点最近的点上计算该参数值.如果复合曲线被用作多轨道扫瞄的骨架,则trajpar_of_pnt与trajpar或1.0 - trajpar一致〔取决于为混合特征选择的起点〕.关于关系关系〔也被称为参数关系〕是使用者自定义的符号尺寸和参数之间的等式.关系捕获特征之间、参数之间或组件组件之间的设计关系,因此,允许使用者来控制对模型修改的影响作用.关系是捕获设计知识和意图的一种方式.和参数一样,它们用于驱动模型-改变关系也就改变了模型.关系可用于控制模型修改的影响作用、定义零件和组件中的尺寸值、为设计条件担当约束〔例如,指定与零件的边相关的孔的位置〕.它们用在设计过程中来描述模型或组件的不同部分之间的关系.关系可以是简单值〔例如,d1=4〕或复杂的条件分支语句.关系类型有两种类型的关系:·等式 - 使等式左边的一个参数等于右边的表达式.这种关系用于给尺寸和参数赋值.例如:简单的赋值:d1 = 4.75复杂的赋值:d5 = d2*<SQRT<d7/3.0+d4>>·比较 - 比较左边的表达式和右边的表达式.这种关系通常用于作为一个约束或用于逻辑分支的条件语句中.例如:作为约束:<d1 + d2> > <d3 + 2.5>在条件语句中;IF <d1 + 2.5> >= d7增加关系可以把关系增加到:·特征的截面〔在草绘模式中,如果最初通过选择"草绘器">"关系">"增加"来创建截面〕.·特征〔在零件或组件模式下〕.·零件〔在零件或组件模式下〕.·组件〔在组件模式下〕.当第一次选择关系菜单时,预设为查看或改变当前模型〔例如,零件模式下的一个零件〕中的关系.要获得对关系的访问,从"部件"或"组件"菜单中选择"关系",然后从"模型关系"菜单中选择下列命令之一:·组件关系 - 使用组件中的关系.如果组件包含一个或多个子组件, "组件关系"菜单出现并带有下列命令:─当前 - 缺省时是顶层组件.─名称 - 键入组件名.·骨架关系 - 使用组件中骨架模型的关系〔只对组件适用〕.·零件关系 - 使用零件中的关系.·特征关系 - 使用特征特有的关系.如果特征有一个截面,那么使用者就可选择:获得对截面〔草绘器〕中截面〔草绘器〕中关系的访问,或者获得对作为一个整体的特征中的关系的访问.·数组关系 - 使用数组所特有的关系.注释:─如果试图将截面之外的关系指派给已经由截面关系驱动的参数,则系统再生模型时给出错误信息.试图将关系指派给已经由截面之外关系驱动的参数时也同样.删除关系之一并重新生成.─如果组件试图给已经由零件或子组件关系驱动的尺寸变量指派值时,出现两个错误信息.删除关系之一并重新生成.─修改模型的单位元可使关系无效,因为它们没有随该模型缩放.有关修改单位的详细信息,请参阅"关于公制和非公制度量单位"帮助主题.关系中使用参数符号在关系中使用四种类型的参数符号:·尺寸符号 - 支持下列尺寸符号类型:─d# - 零件或组件模式下的尺寸.─d#:# - 组件模式下的尺寸.组件或组件的进程标识添加为后缀.─rd# - 零件或顶层组件中的参考尺寸.─rd#:# - 组件模式中的参考尺寸〔组件或组件的进程标识添加为后缀〕.─rsd# - 草绘器中〔截面〕的参考尺寸.─kd# - 在草绘〔截面〕中的已知尺寸〔在父零件或组件中〕.·公差 - 这些是与公差格式相关连的参数.当尺寸由数字的转向符号的时侯出项这些符号.─tp m# - 加减对称格式中的公差;#是尺寸数.─tp# - 加减格式中的正公差;#是尺寸数.─tm# - 加减格式中的负公差;#是尺寸数.·实例数 - 这些是整数参数,是数组方向上的实例个数.─p# - 其中#是实例的个数.注释:如果将实例数改变为一个非整数值,Pro/ENGINEER将截去其小数部分.例如,2.90将变为2.·使用者参数 - 这些可以是由增加参数或关系所定义的参数.例如:V olume = d0*d1*d2Vendor = "Stockton Corp."注释:─使用者参数名必须以字母开头〔如果它们要用于关系的话〕.─不能使用d#、kd#、rd#、tm#、tp#、或tpm#作为使用者参数名,因为它们是由尺寸保留使用的.─使用者参数名不能包含非字母数字字符,诸如!、、#、$.网上收集的一些曲线参数方程,和大家共享飞碟球坐标 rho=20*t^2 theta=60*log<30>*t phi=7200*t "rho=200*t" "theta=900*t" "phi=t*90*10"篮子圆柱坐标 r=5+0.3*sin<t*180>+t theta=t*360*30 z=t*5正弦曲线笛卡尔坐标系 eyf4 x=50*t y=10*sin<t*360> z=0螺旋线<Helical curve> 圆柱坐标 r=t theta=10+t*<20*360> z=t*3蝴蝶曲线球坐标 rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8Rhodonea 曲线采用笛卡尔坐标系 theta=t*360*4 x=25+<10-6>*cos<theta>+10*cos<<10/6-1>*theta> y=25+<10-6> *sin<theta>-6*sin<<10/6-1>*theta>圆内螺旋线采用柱座标系 theta=t*360 r=10+10*sin<6*theta> z=2*sin<6*theta>渐开线的方程 r=1 ang=360*t s=2*pi*r*t x0=s*cos<ang> y0=s*sin<ang> x=x0+s*sin<ang> y=y0-s*cos<ang> z=0 对数曲线 z=0 x = 10*t y = log<10*t+0.0001>球面螺旋线采用球坐标系 rho=4 theta=t*180 phi=t*360*20双弧外摆线卡迪尔坐标 l=2.5 b=2.5 x=3*b*cos<t*360>+l*cos<3*t*360> Y=3*b*sin<t*360>+l*sin<3*t*360>星行线卡迪尔坐标 a=5 x=a*<cos<t*360>>^3 y=a*<sin<t*360>>^3心臟線圓柱坐標 a=10 r=a*<1+cos<theta>> theta=t*360葉形線笛卡儿坐標 a=10 x=3*a*t/<1+<t^3>> y=3*a*<t^2>/<1+<t^3>>笛卡儿坐标下的螺旋线 x = 4 * cos < t *<5*360>> y = 4 * sin < t *<5*360>> z = 10*t抛物线 eyf13 笛卡儿坐标 x =<4 * t> y =<3 * t> + <5 * t ^2> z =0碟形弹簧eyf12圓柱坐标r =5 theta = t*3600 z =<sin<3.5*theta-90>>+24*t如何制作螺旋线〔Helical Curve〕________________________________________制作螺旋线有下列二个方法:1、formed curve ;2、利用方程式〔from equation〕________________________________________一.Formed curve:1、首先建立缺省的datum plan;并建立一个参数p,用来控制螺旋圈数〔set up/parameters/create/real parameters ,初始值可以设为:1〕2、建立圆柱体〔或者圆柱曲面〕,3、建立form curve,选择tang plane 为sketching plane,选择圆柱体的顶面为top,然后绘制如图2直线:图2注意事项:a、对齐直线的两个端点〔右上端点对齐圆柱的top面,左下端点对齐圆柱轴线和tang plane的交点〕b、建立coordinate system,并对齐直线的左下端点>4、建立relation:sd#=L*P*PI*D[L为圆柱的长度;P 为参数〔第一步建立的参数〕;D 为圆柱的直径;PI 为π]5、regenerate后你可以看到生成的helical curve<图3>了.图3二、利用方程式:1、首先建立缺省的datum plan,coordinate system<系统坐标>2、建立datum curve ,选择from equation3、选择coordinate system, 圆柱坐标〔cylindrical〕卡笛尔坐标<Cartesian>球坐标<sphereical>此时出现下列信息:/* For cylindrical coordinate system, enter parametric equation/* in terms of t <which will vary from 0 to 1> for r, theta and z/* For example: for a circle in x-y plane, centered at origin/* and radius = 4, the parametric equations will be:/* r = 4/* theta = t * 360/* z = 0/*-------------------------------------------------------------------其中螺旋线的方程式为:r = 螺旋线的最小半径+ t * <螺旋线的主要半径-螺旋线的最小半径>theta = t * <螺旋线的螺距* 360 * 引导角的度数<if any>z = 要求高度+ t在弹出的信息文文件内输入下列数值:4、存档退出后按ok5、你所建立的螺旋线如下图:.。

最全的UG方程曲线详细表达式

最全的UG方程曲线详细表达式

在UG中利用【规律曲线】|【根据方程】绘制各种方程曲线:1、极坐标(或柱坐标r,θ,z)与直角坐标系(x,y,z)的转换关系:x=r*cos(θ);y=r*sin(θ);z=z2、球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ;y=rsinθsinφ;z=rcosθ在UG表达式中输入的theta=θ;phi=φ;r=rho【注:所有UG表达式中,必须先在名称栏输入t,公式栏输入0,类型为恒定的,即无单位。

t是UG自带的系统变量,其取值为0~1之间的连续数】1.直线直线的数学方程为y-y0=tan(θ)*(x-x0),若直线经过点(10,20),倾角θ为30°,长度L为40,即UG表达式为:theta=30L=40xt=10+L*cos(theta)*tyt=20+L*sin(theta)*tzt=0效果如图1图1 图22.圆和圆弧圆的数学方程为(x-x0)^2+(y-y0)^2=r^2,若圆心坐标为(50,40),半径r为30,即UG表达式为:r=30theta=t*360xt=50+r*cos(theta)yt=40+r*sin(theta)zt=0效果如图23.椭圆和椭圆弧椭圆的数学方程为(x-x0)^2/a^2+(y-y0)^2/b^2=1,若椭圆中心坐标为(50,40),长半轴a为30(在X轴上),短半轴b为20,即UG表达式为:a=30b=20theta=t*360xt=50+a*cos(theta)yt=40+b*sin(theta)zt=0效果如图3图3 图44.双曲线双曲线的数学方程为x2/a2-y2/b2=1,若中心坐标为(0,0),实长半轴a为4(在x轴上),虚半轴b为3,y的取值范围为-5~+5内的一段,即UG表达式为:a=4b=3yt=10*t-5xt=a/b*sqrt(b^2+yt^2)或xt=-a/b*sqrt(b^2+yt^2)zt=0做出一半后进行镜像复制,效果如图45.抛物线抛物线I的数学方程为y2=2px,若抛物线的顶点为(30,20)焦点到准线的距离p=8,y的取值范围为-25~+25,即UG表达式为:p=8yt=50*t-25+20xt=(yt-20)^2/(2*p)+30zt=0效果如图5-1抛物线II数学参数方程:x=2pt2,y=2pt(其中t为参数)。

UG常用曲线方程式大全

UG常用曲线方程式大全

U G常用曲线方程式大全(总25页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--UG常用曲线方程式大全2表示有N种方法;ˉ表示用可以实现。

ˉ双外摆线b=l=t=1xt=3*b*cos(t*360)+l*cos(3*t*360)yt=3*b*sin(t*360)+l*sin(3*t*360)ˉ星形线a=5t=1xt=a*(cos(360*t))^3yt=a*(sin(360*t))^3叶形线a=10t=1xt=3*a*t/(1+(t^3))yt=3*a*(t^2)/(1+(t^3))ˉ螺纹线t=1xt=4*cos(t*(5*360))yt=4*sin(t*(5*360))zt=6*t蛇形线2t=1xt=2*cos(t*360*3)*tyt=2*sin(t*360*3)*tzt=(sqrt(sqrt(sqrt(t))))^3*5 2t=1theta=t*360*3zt=sqrt(t)*72t=1rho=360*sqrt(t)*2theta=t*25phi=360*t*4ˉ双余弦线t=1xt=-*+t***2)yt=cos(t*360**2)-2) zt=cos(t*360*8)*5ˉ对数线t=1xt=10*tyt=log(10*t+抛物线t=1xt=(4*t)yt=(3*t)+(5*t^2)ˉ勾形线t=1xt=(5*(cos(t*360))^3)*t yt=(5*(sin(t*360))^3)*tˉ次声波t=1xt=t*5yt=cos(t*360*8)*t正弦波t=1xt=5*t*tyt=sin(t*8*360)*渐开线pitch_diameter=10pressure_angle=20r=(pitch_diameter/2)*cos(pressure_angle)t=1xt=r*cos(90*t*t)+r*(90*t*t)*(pi/180)*sin(90*t*t) yt=r*sin(90*t*t)-r*(90*t*t)*(pi/180)*cos(90*t*t)普通外摆线r=10t=1xt=t*(2*pi*r)-sin(t*360)*ryt=r-cos(t*360)*rˉ小飞机t=1xt=cos(t*360)+cos(3*t*360)yt=sin(t*360)+sin(5*t*360)ˉ弯月t=1xt=cos(t*360)+cos(2*t*360)yt=sin(t*360)*2+sin(t*360)*2ˉ五角形线t=1xt=2+(10-6)*cos(360*4*t)+10*cos((10/6-1)*(360*4*t)) yt=2+(10-6)*sin(360*4*t)-6*sin((10/6-1)*(360*4*t))ˉt=1xt=2+(10-6)*cos(360*4*t)+10*cos((10/6-1)*(360*4*t)) yt=2+(10-6)*sin(360*4*t)-10*sin((10/6-1)*(360*4*t))ˉt=1xt=2+(10-2)*cos(360*4*t)+10*cos((10/6-1)*(360*4*t)) yt=2+(10-2)*sin(360*4*t)-10*sin((10/6-1)*(360*4*t))ˉt=1xt=+(10-6)*cos(360*5*t)+10*cos((6/10-1)*(360*5*t)) yt=+(10-6)*sin(360*5*t)-10*sin((6/10-1)*(360*5*t))热带鱼a=5t=1xt=(a*(cos(t*360*3))^4)*tyt=(a*(sin(t*360*3))^4)*t双蝴蝶线t=1theta=t*360+90r=cos(360*t*5)*3+ zt=cos(360*t*3)*3t=1theta=t*360+18r=cos(360*t*5)*+zt=cos(t*360*5)*t=1theta=t*360-54r=cos(360*t*5)*+zt=cos(t*360*5+90)*心电图t=1r=sin(t*360*2)+ theta=10+t*(6*360) zt=t*3ˉ燕尾剪t=1xt=3*cos(t*360*4) yt=3*sin(t*360*3) zt=tt=1r=t*2theta=10+t*(12*360) zt=t*3碟形线t=1r=10+10*sin(6*t*360) zt=2*sin(6*360*t)花篮t=1r=5zt=(sin*(t*720)-90))+2小兔兔t=1theta=t*360-90r=cos(360*(t/(1+t^*t)))*6*t)*+5红十字t=1r=cos(360*t*4)*+1theta=t*360+90心形线t=1r=10*(1+cos(t*360))t=1theta=t*360*4r=1+cos(t*360*5)t=1theta=t*360*5r=8+5*sin(t*360*5*5)*t太阳花t=1theta=-t*360+180r=cos(360*t/(1+t^8)*7)*3+6t=1theta=t*360r=cos(360*t*20)**t+1t=1theta=t*360*2r=cos(360*t*30)**t+2*tt=1theta=t*360*5r=cos(360*t*20)**t+1手掌t=1theta=t*360+180r=cos(360*t^3*6)*2+5t=1theta=t*360*4r=(cos(360*t*16)**t+1)*t天蚕丝t=1theta=t*3600r=(cos(360*t*20)**t+1)*t人民币t=1theta=-t*360+180r=cos(360*(t/(1+t^6))*6)*3+5t=1rho=360*t*10theta=360*t*20phi=360*t*5球面螺旋线t=1rho=4theta=t*180 phi=t*360*12蝴蝶线t=1rho=8*ttheta=360*t*4 phi=360*t*8t=1rho=3*ttheta=360*t*5 phi=360*t*t=1rho=8*ttheta=360*t*4 phi=360*t*4。

最全的UG方程曲线及详细表达式

最全的UG方程曲线及详细表达式

在UG中利用【规律曲线】|【根据方程】绘制各种方程曲线:1、极坐标(或柱坐标r,θ,z)与直角坐标系(x,y,z)的转换关系:x=r*cos(θ);y=r*sin(θ);z=z2、球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ;y=rsinθsinφ;z=rcosθ在UG表达式中输入的theta=θ;phi=φ;r=rho【注:所有UG表达式中,必须先在名称栏输入t,公式栏输入0,类型为恒定的,即无单位。

t是UG自带的系统变量,其取值为0~1之间的连续数】1.直线直线的数学方程为y-y0=tan(θ)*(x-x0),若直线经过点(10,20),倾角θ为30°,长度L为40,即UG表达式为:theta=30L=40xt=10+L*cos(theta)*tyt=20+L*sin(theta)*tzt=0效果如图1图1 图22.圆和圆弧圆的数学方程为(x-x0)^2+(y-y0)^2=r^2,若圆心坐标为(50,40),半径r为30,即UG 表达式为:r=30theta=t*360xt=50+r*cos(theta)yt=40+r*sin(theta)zt=0效果如图23.椭圆和椭圆弧椭圆的数学方程为(x-x0)^2/a^2+(y-y0)^2/b^2=1,若椭圆中心坐标为(50,40),长半轴a为30(在X轴上),短半轴b为20,即UG表达式为:a=30b=20theta=t*360xt=50+a*cos(theta)yt=40+b*sin(theta)zt=0效果如图3图3 图44.双曲线双曲线的数学方程为x2/a2-y2/b2=1,若中心坐标为(0,0),实长半轴a为4(在x轴上),虚半轴b为3,y的取值范围为-5~+5内的一段,即UG表达式为:a=4b=3yt=10*t-5xt=a/b*sqrt(b^2+yt^2)或xt=-a/b*sqrt(b^2+yt^2)zt=0做出一半后进行镜像复制,效果如图45.抛物线抛物线I的数学方程为y2=2px,若抛物线的顶点为(30,20)焦点到准线的距离p=8,y的取值范围为-25~+25,即UG表达式为:p=8yt=50*t-25+20xt=(yt-20)^2/(2*p)+30zt=0效果如图5-1抛物线II数学参数方程:x=2pt2,y=2pt(其中t为参数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

U G规律曲线公式大全文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]U G中的规律曲线在ug里我们必须把方程都转换为参数方程,参数方程大家在高中的时候都学过,圆的参数方程不是难事,即;x=r*sint,y=r*cost,因为ug 里的t是永远只从0递增到1,而我们实际要求的t要从0到360,所以把方程变一下,即;xt=r*sin(360*t),yt=r*cos(360*t),(因为ug默认x,y变量为xt,yt所以一般把x,y写成xt,yt,当然你写成x,y也行只要在形成规律曲线时改过来就行了),好,这样就可以用规律曲线形成圆了,如果再稍微复杂一点呢?现在再来讲一个如下图的弹簧的方程。

我的方法是先分析曲线在x,y平面投影的曲线方程,显然该投影曲线是一个半径不断变化的圆,而半径的变化规律为常数加上一个正弦曲线,即;r=a+b*sint.如是把圆的参数方程里的r替换一下,即xt=(a+b*sint)*sintyt=(a+b*sint)*cost(这里面的t只是代表其为一个变量,真正出表达式的时候要赋予变量范围的)x,y平面投影的曲线写好之后再来看z方向上的曲线方程,显然是一个正弦(或余弦)曲线,但是该曲线必须与x,y平面的正弦曲线错开一个90度的相位,为什么?(留给大家去分析,不难想的!)即;zt=b*cost好,方程都已经分析完了,现在就要赋予变量不同的变化范围,例如,螺旋圈数啊,螺旋半径啊等等,这也不难,这儿就不讲了。

下面是图示弹簧的方程!a=360*tn=20t=0R=40r=10xt=(R+r*sin(a*n))*sin(a)yt=(R+r*sin(a*n))*cos(a)zt=r*cos(a*n)下面再给几个其他常用的曲线方程。

渐开线方程(用于齿轮)R=40a=720*tt=0xt=R*(cos(a)+a*sin(a))yt=R*(sin(a)-a*cos(a))阿基米德螺线(等进螺线)(用于凸轮)a=360*tt=0xt=a*sin(a)yt=a*cos(a)UF_MODL_dissect_exp_string()功能:将表达式的名称与数值分离,并得到表达式的标识;UF_MODL_ask_exp()功能:根据表达式的名称查找表达式是否存在,并取的表达式的全名;UF_MODL_delete_exp()功能:删除表达式;UF_MODL_eval_exp()功能:计算表达式的数值;.UF_MODL_edit_exp()功能:更新表达式的数值,需与UF_MODL_update()合用;UF_MODL_rename_exp()功能:重命名表达式;UF_MODL_ask_exps_of_feature()功能:获取特征的所有表达式标识;UF_MODL_ask_exps_of_part()功能:获取part的所有表达式标识;UF_MODL_ask_exp_tag_string()功能:根据表达式的标识获取表达式的字符串;UG曲线方程大全--------------------------------------------------------------------------------该文章讲述了UG曲线方程大全.2表示有N种方法;ˉ表示用UG3.0可以实现。

ˉ双外摆线b=2.5l=2.5t=1xt=3*b*cos(t*360)+l*cos(3*t*360) yt=3*b*sin(t*360)+l*sin(3*t*360)ˉ星形线a=5t=1xt=a*(cos(360*t))^3yt=a*(sin(360*t))^3叶形线a=10t=1xt=3*a*t/(1+(t^3))yt=3*a*(t^2)/(1+(t^3))ˉ螺纹线t=1xt=4*cos(t*(5*360))yt=4*sin(t*(5*360))zt=6*t蛇形线2t=1xt=2*cos(t*360*3)*tyt=2*sin(t*360*3)*tzt=(sqrt(sqrt(sqrt(t))))^3*52t=1theta=t*360*3zt=sqrt(t)*72t=1rho=360*sqrt(t)*2theta=t*25phi=360*t*4ˉ双余弦线t=1xt=-(9.5*6.5)+t*(9.5*6.5*2)yt=cos(t*360*6.5)*(6.35/2)-(6.35/2) zt=cos(t*360*8)*5ˉ对数线t=1xt=10*tyt=log(10*t+0.0001)抛物线t=1xt=(4*t)yt=(3*t)+(5*t^2)ˉ勾形线t=1xt=(5*(cos(t*360))^3)*t yt=(5*(sin(t*360))^3)*t ˉ次声波t=1xt=t*5yt=cos(t*360*8)*t正弦波t=1xt=5*t*tyt=sin(t*8*360)*0.5渐开线pitch_diameter=10pressure_angle=20r=(pitch_diameter/2)*cos(pressure_angle)t=1xt=r*cos(90*t*t)+r*(90*t*t)*(pi/180)*sin(90*t*t) yt=r*sin(90*t*t)-r*(90*t*t)*(pi/180)*cos(90*t*t)普通外摆线r=10t=1xt=t*(2*pi*r)-sin(t*360)*ryt=r-cos(t*360)*rˉ小飞机t=1xt=cos(t*360)+cos(3*t*360)yt=sin(t*360)+sin(5*t*360)ˉ弯月t=1xt=cos(t*360)+cos(2*t*360)yt=sin(t*360)*2+sin(t*360)*2ˉ五角形线t=1xt=2+(10-6)*cos(360*4*t)+10*cos((10/6-1)*(360*4*t))yt=2+(10-6)*sin(360*4*t)-6*sin((10/6-1)*(360*4*t))ˉt=1xt=2+(10-6)*cos(360*4*t)+10*cos((10/6-1)*(360*4*t))yt=2+(10-6)*sin(360*4*t)-10*sin((10/6-1)*(360*4*t))ˉt=1xt=2+(10-2)*cos(360*4*t)+10*cos((10/6-1)*(360*4*t))yt=2+(10-2)*sin(360*4*t)-10*sin((10/6-1)*(360*4*t))ˉt=1xt=0.5+(10-6)*cos(360*5*t)+10*cos((6/10-1)*(360*5*t)) yt=0.5+(10-6)*sin(360*5*t)-10*sin((6/10-1)*(360*5*t))热带鱼a=5t=1xt=(a*(cos(t*360*3))^4)*tyt=(a*(sin(t*360*3))^4)*t双蝴蝶线t=1theta=t*360+90r=cos(360*t*5)*3+0.5zt=cos(360*t*3)*3t=1theta=t*360+18r=cos(360*t*5)*0.75+3.5UG曲线方程大全(2)文章来源:不详作者:佚名--------------------------------------------------------------------------------该文章讲述了UG曲线方程大全(2).zt=cos(t*360*5)*0.4t=1theta=t*360-54r=cos(360*t*5)*0.5+2.5 zt=cos(t*360*5+90)*0.5心电图t=1r=sin(t*360*2)+0.2 theta=10+t*(6*360)zt=t*3ˉ燕尾剪t=1xt=3*cos(t*360*4)yt=3*sin(t*360*3)zt=tt=1r=t*2theta=10+t*(12*360)zt=t*3碟形线r=10+10*sin(6*t*360)zt=2*sin(6*360*t)花篮t=1r=5zt=(sin(3.5*(t*720)-90))+2小兔兔t=1theta=t*360-90r=cos(360*(t/(1+t^(6.5*t)))*6*t)*3.5+5红十字t=1r=cos(360*t*4)*0.5+1theta=t*360+90心形线t=1r=10*(1+cos(t*360))theta=t*360*4r=1+cos(t*360*5)t=1theta=t*360*5r=8+5*sin(t*360*5*5)*t太阳花t=1theta=-t*360+180r=cos(360*t/(1+t^8)*7)*3+6 t=1theta=t*360r=cos(360*t*20)*0.5*t+1t=1theta=t*360*2r=cos(360*t*30)*0.5*t+2*t t=1theta=t*360*5r=cos(360*t*20)*0.5*t+1手掌t=1theta=t*360+180r=cos(360*t^3*6)*2+5t=1theta=t*360*4r=(cos(360*t*16)*0.5*t+1)*t 天蚕丝t=1theta=t*3600r=(cos(360*t*20)*0.5*t+1)*t 人民币t=1theta=-t*360+180r=cos(360*(t/(1+t^6))*6)*3+5 t=1rho=360*t*10phi=360*t*5球面螺旋线t=1rho=4theta=t*180 phi=t*360*12蝴蝶线t=1rho=8*ttheta=360*t*4 phi=360*t*8t=1rho=3*ttheta=360*t*5 phi=360*t*2.5 t=1rho=8*tphi=360*t*4。

相关文档
最新文档