光敏二极管和光敏三极管区别
光电阻、光敏二极管、光敏三极管电路符号
光电阻、光敏二极管和光敏三极管是电子领域中常见的光敏元件,它们在光控制电路中起着重要的作用。
光电阻又称光敏电阻,是一种导电材料,它的电阻值随光强度的变化而变化。
光敏二极管和光敏三极管则是半导体器件,它们能够将光信号转换成电信号。
在本文中,我们将一起来探讨这三种光敏元件的电路符号及其应用。
1. 光电阻的电路符号是一个类似变阻器的图案,但在其中还有一个箭头指向光敏元件,表示这是一个受光控制的电阻元件。
光电阻常用于光敏电路中,如光控开关、光敏控制器等。
当光照强度增加时,光电阻的电阻值减小;当光照强度减小时,光电阻的电阻值增加。
这种特性使得光电阻在光控制电路中具有很大的应用空间。
2. 光敏二极管的电路符号类似于普通二极管,但在箭头处有一个光线的符号,表示这是一个受光控制的二极管。
光敏二极管是一种能够将光信号转换成电信号的器件,它的工作原理是基于内部光电效应。
当有光照射到光敏二极管时,它的导通电阻会明显减小,从而使得电路中的电流增大。
光敏二极管常用于光电传感器、光电开关等领域。
3. 光敏三极管的电路符号也类似于普通三极管,但在箭头处同样有一个光线的符号,表示这是一种受光控制的三极管。
光敏三极管也是一种能够将光信号转换成电信号的器件,它具有较高的光敏度和响应速度。
在实际电路中,光敏三极管常用于光电开关、光电传感器、光控制器等领域。
在实际应用中,光电阻、光敏二极管和光敏三极管常常需要与其他元件配合使用,以构成完整的光控制电路。
可以将光敏元件与运算放大器、比较器等元件结合起来,实现光控制电路对环境光强度的监测和控制。
光敏元件还可以与单片机或其他数字电路相连,实现数字化的光控制功能。
总结回顾:通过本文的介绍,我们了解了光电阻、光敏二极管和光敏三极管的电路符号及其应用。
在现代电子技术中,光敏元件在光控制领域有着广泛的应用,它们为光控制电路的设计和实现提供了重要的支持。
希望本文能够帮助您更全面、深刻和灵活地理解光敏元件及其在电子领域中的作用。
光电二极管与光电三极管
光电二极管与光电三极管一、光电二极管(Photodiode)光电二极管是一种基于半导体材料的光电器件,它利用光电效应将光信号转化为电信号。
光电二极管的结构和正常的二极管类似,由P型和N型半导体材料构成,并且在P-N结附近形成一个细微的PN结。
当光照射到PN结处时,光子的能量会被电子吸收,从而激发电子-空穴对的产生。
光电二极管的工作原理是利用光电效应,该效应是指当光照射到半导体材料上时,光子的能量会激发材料中的电子跃迁到导带中,形成电子-空穴对。
当光照强度越大时,激发的电子-空穴对数量越多,产生的电流也越大。
因此,光电二极管可以通过测量电流大小来检测光照强度。
1.快速响应速度:光电二极管具有快速的响应速度,能够在纳秒级别内检测到光的变化。
2.高灵敏度:光电二极管对光信号非常敏感,能够检测到较低光强度下的光信号。
3.低噪声:光电二极管的噪声很低,能够准确地检测到微弱的光信号。
4.宽波长范围:光电二极管可以检测多种波长的光信号,通常在可见光和红外光范围内。
1.光通信:光电二极管作为光信号的接收器,在光通信中发挥重要作用。
2.光谱分析:光电二极管可以用于测量、分析和检测光谱信号,例如光谱仪,气体和液体分析等。
3.光电测量:光电二极管可以用于测量光强度的变化,例如光照度计、照度计等。
4.医疗设备:光电二极管可以用于心率监测、血氧测量、生物检测等医疗设备中。
5.光电控制:光电二极管可以用于光敏开关、光电电路等光电控制领域。
二、光电三极管(Phototransistor)光电三极管是光电传感器中另一种常见的光电器件,它是在光电二极管的基础上发展而来的。
光电三极管同样基于光电效应,将光信号转化为电信号,但是相较于光电二极管,光电三极管具有更高的灵敏度和增益。
光电三极管的结构和普通的三极管类似,由P型、N型和P型三个区域组成。
在光电三极管中,光照射到PN结处时会产生电子-空穴对,电子会从P区域注入到N区域,形成电流。
光电二极管与光电三极管
光电二极管与光电三极管
一、光电二极管
1、定义及结构
光电二极管(简称光二极管)又称为光敏二极管,是一种集光检测、
光放大、光信号处理等功能为一体的特殊型号的二极管。
光二极管由一种
金属包覆绝缘层,上面涂有一层光敏物质的接点,以及一个共享电极(称
为公共极),以及一个用于放大的三极管组成。
2、工作原理
光二极管的电路原理与普通二极管相同,都是由电流通过接点的光敏层,来激发其中的光敏物质,从而使其产生从正向到反向(又称反向偏移)的电势差。
激发电压可在可见光(380nm到780nm)的波长范围内发挥最
大的作用,并伴随着电流的衰减,从而使输出信号电压随着距离的增加而
减小。
3、应用
光二极管由于具有高敏感度、快速响应、高对信号的采集和处理能力,以及可以容易扩大到大规模并行系统,因此广泛应用于遥控、热量报警、
红外报警、防盗、天然气报警等等各种类型的报警装置中。
同时,它也被
广泛应用于数据通信,它可以将一组电信号转变成光信号,作为数据传输
的媒介,可以提高电信号的传输距离和信号的稳定性。
1、定义及结构。
光电二极管三极管的性能及运用
光电二极管三极管的性能及运用光电二极管及光电三极管的工作原理及用途可得工贸的光电二极管和光电三极管具有低功耗、响应速度快、抗干扰性能强等特点,可得公司是一家专业从事研发, 生产,销售LED 和红外光电器件的高新技术企业:其中光敏二极管、850nm/940nm 红外发射管,LED数码管,数码模块,以及发光二极管等产品以良好的品质受到市场的认可。
在红外遥制系统中,光电二极管(也称光敏二极管)及光电三极管(也称光敏三极管)均为红外线接收管,它把接收到的红外线变成电信号,经过放大及信号处理后用于各种控制。
除广泛用于红外线遥控外,还可用于光纤通信、光纤传感器、工业测量、自动控制、火灾报警器、防盗报警器、光电读出装置(纸带读出器、条形码读出器等)及光电耦合器等方面。
不同用途的光电二极管有不同的外形及封装,但用于红外遥控的光电二极管一般都是树脂封装的。
为减少可见光的干扰常采用黑色树脂,可以滤掉700nm波长以下的光线。
常见的几种光电二极管外形。
对方形或长方形的管子,往往做出标记角,指示受光面的方向。
一般如引脚长短不一样,长者为正极。
光电三极管可以等效为一个光电二极管与一只晶体三极管的组合,所以它具有电流放大作用。
其等效电路、外形及电路符号,光电三极管一般仅引出集电极及发射极两个引脚,外形与一般发光二极管一样,常用透明树脂封装。
光电二极管及光电三极管的管芯主要用硅材料制作。
光电二极管的两种工作状态当光电二极管加上反压时,管子的反向电流将随光照强度的变化而变化如同一个光敏电阻,光照强度越大电阻越小,反向电流越大。
大多数情况都工作于这种状态。
光电二极管上不加电压,利用P?N结受光照射时产生正向电压的原理,可看作微型光电池。
这种工作状态一般用作光电检测器。
光电二极管的工作电压VR ,允许的最高反向电压一般不超过10V,最高的可达50V。
暗电流ID及光电流IL ,无光照时,加一定反压时的反向漏电流称为暗电流ID,一般ID小于100nA 。
光敏二极管与光敏三极管判别教案
授课日期
授课章节名称
项目教学:光敏二极管与光敏三极管判别
教学目标
知识目标:1、掌握光敏二极管、光敏三极管的性能与工作原理;
2、掌握光敏二极管与光敏三极管判别方法;
能力目标:1、会利用所学知识对应用实例进行分析;
2、能设计相应电路并进行电路分析。
情感目标:培养严谨的分析思维与合作学习的意识
教学重点
教学内容及程序设计
备注
教师活动
教学内容与步骤
学生活动
根据学生操作时间步骤9可增减
复习引入
新课讲解
引导思考
提出命题
引导分析归纳形成方案
巡视指导
组织探讨
巡视指导
提问
布置作业
1.对刚学过的光电元件进行复习引入所学知识;
2.对光敏二极管及光敏三极管的结构、原理和特性进行分析。
3.针对二脚光敏三极管与光敏二极管不易分辨引出探究项目:光敏二极管2CU2与光敏三极管3DU5判别。
1.掌握光敏二极管、光敏三极管的性能与工作原理;
2.探究光敏二极管与光敏三极管判别方法。
教学难点
1.电路进行分析;
更新补充
删节内容
1.判别方案研究
2.实际应用电路分析
教学手段
多媒体课件、实物训练、讨论法
教学方法
及
设计思路
针对高职学生的学习要求,以强化学生的逻辑分析与思维能力和实践操作技能为目的设计本项目。
4.提出测定需解决的问题。
5.根据控制变量法设计测定方案。(可同时复习万用表使用知识)
6.进行测定并纪录数据。
7.分析数据提出结论。
8.共同探讨得出最终结论。
9.每人根据结论进行验证
(可选择部分项目进行)
(整理)第七章光电传感器习题答案
•第七章光敏传感器•1.光电效应通常分为哪几类?简要叙述之。
与之对应的光电器件有哪些?•2.半导体内光电效应与入射光频率的关系是什么?3.光电倍增管产生暗电流的原因有哪些?如何降低暗电流?•4.试述光电倍增管的组成及工作原理?•5.简述光敏二极管和光敏三极管的结构特点、工作原理及两管的区别?•6.为什么在光照度增大到一定程度后,硅光电池的开路电压不再•随入射照度的增大而增大?硅光电池的最大开路电压为多少?•7.试举出几个实例说明光电传感器的实际应用,并进行工作原理的分析。
答案:一、光电效应分为两类:外光电效应和内光电效应外光电效应:入射光子被物质的表面所吸收,并从表面向外部释放电子的一种物理现象。
基于外光电效应的光电器件有光电管、光电倍增管。
内光电效应当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。
分为光电导效应(如:光敏电阻)和光生伏特效应(如光电池、光电二极管、光电三极管)。
二、、对于不同的本征半导体材料,禁带宽度Eg不同,对入射光的波长或频率的要求也不同,一般都必须满足:7he1.24「hv=T^^-Eg式中v、A分别为入射光的频率和波长。
对于杂质半导体:Ei为杂质电离能三、1、欧姆漏电欧姆漏电主要指光电倍增管的电极之间玻璃漏电、管座漏电和灰尘漏电等。
欧姆漏电通常比较稳定,对噪声的贡献小。
在低电压工作时,欧姆漏电成为暗电流的主要部分。
在使用光电倍增管时,保证管壳和所有连接件的清洁干燥是十分必要的。
2、热发射由于光电阴极材料的光电发射阈值较低,容易产生热电子发射,即使在室温下也会有一定的热电子发射,并被电子倍增系统倍增。
要减小热电子发射,应选用热发射小的阴极材料,并在满足使用的前提下,尽量减小光电阴极的面积,降低光电倍增管温度。
3、残余气体放电光电倍增管中高速运动的电子会使管中的残余气体电离,产生正离子和光子,它们也将被倍增,形成暗电流。
这种效应在工作电压高时特别严重,使倍增管工作不稳定。
光敏二极管原理
光敏二极管原理光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。
一、光敏二极管1.结构特点与符号光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有其特殊的地方。
光敏二极管在电路中的符号如图Z0129 所示。
光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。
2.光电转换原理根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。
此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。
当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。
不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。
被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流。
波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。
在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。
因此,光照射时,流过PN结的光电流应是三部分光电流之和。
二、光敏三极管工作原理光敏三极管和普通三极管的结构相类似。
不同之处是光敏三极管必须有一个对光敏感的PN结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。
其结构及符号如图Z0130所示。
三、光敏二极管的两种工作状态光敏二极管又称光电二极管,它是一种光电转换器件,其基本原理是光照到P-N结上时,吸收光能并转变为电能。
光敏二极管和光敏三极管77页PPT
6
、
露
凝无游氛, Nhomakorabea天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
77
光敏二极管和光敏三极管共77页文档
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
光敏二极管和光敏三极管
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。
检测范围达到紫外线的光敏二极管 灵敏度非常高的光敏三极管
检测范围达到紫外线的光敏二极管/灵敏度非常高的光敏三极管
三、检测范围达到紫外线的光敏二极管
GaAs(砷化镓)光敏二极管具有测量范围达紫外领域的灵敏度,利用它的这种特性,可以将其制作成紫外光敏二极管。
用紫外(UV)选透滤光片与 GaAs 光敏二极管配合使用,可以使其在 260~400nm 的波长范围内灵敏,而对于波长在 400 nm 以上的可见光及红外线都不具备有灵敏性。
这种组合可以使用于测量太阳光的紫外线。
照片 1.3 是紫外光敏二极管的外观形貌。
四、灵敏度非常高的光敏三极管
光敏三极管是在光敏二极管的基础上又增加了一个三极管,属于一种电流放大倍数比光敏二极管增大了 hFE 倍的光敏传感器。
三极管的直流电流放大率 hFE 为几十年至几百倍,因此光敏三极管的输出电流与光敏二极管的输出电流相比就变成了一个非常大的数值。
但是,作为代价,在频率特性方面就做出了牺牲。
光敏三极管的温度特性和线性度也会受到三极管的直流电流放大倍数 hFE 的影响。
因此,与利用光敏三极管模拟特性的电路相比,它更适合用于数字电路。
在应用光三极管的具有代表性产品中有光学断续器(见照片 1.4)以及反射型光敏传感器等。
它们都是由发光二极管与光敏三极管组合而成的,价格便宜,所以被大量地应用于手机照相机、印刷机以及复印机等领域。
照片1.5是通用型光敏三级管的外观形貌。
光敏二极管和光敏三极管
信号处理
探测器
B: 本身就是uction & working principle
Energy transfer
Upconversion pump
Double cladding pump
光纤激光器的组成
光纤激光器的性能指标:
光源与光纤耦合示意图
影响耦合效率的主要因素是光源的发散角和光纤 的数值孔径。发散角大,耦合效率低;数值孔径大, 耦合效率高。此外,光源发光面和光纤端面的尺寸、 形状及两者之间的距离都会影响到耦合效率。
光源与光纤的耦合一般采用两种方法,即直接耦 合与透镜耦合。
直接耦合是将光纤端面直接对准光源发光面进行 耦合的方法。当光源发光面积大于纤芯面积时,这是 一种有效的方法。这种直接耦合的方法结构简单,但 耦合效率低。
I/%
2 160 120
80 1
40
0 400 800 1200 1600 T/h
升,有些样品阻值下降,但 最后达到一个稳定值后就不 再变了。这就是光敏电阻的 主要优点。
光敏电阻的使用寿命在
密封良好、使用合理的情况 下,几乎是无限长的。
(7)温度特性
其性能(灵敏度、暗电阻)受温度的影响较大。随着温 度的升高,其暗电阻和灵敏度下降,光谱特性曲线的 峰值向波长短的方向移动。硫化镉的光电流I和温度T 的关系如图所示。有时为了提高灵敏度,或为了能够 接收较长波段的辐射,将元件降温使用。例如,可利 用制冷器使光敏电阻的温度降低。
砷化镓光电池转换效率比硅光电池稍高,光谱响应特性则与太 阳光谱最吻合。且工作温度最高,更耐受宇宙射线的辐射。因此, 它在宇宙飞船、卫星、太空探测器等电源方面的应用是有发展前 途的。
1. 光电池的结构和工作原理
光电导效应的光电器件
光电导效应的光电器件
光电导效应是指当光照射到半导体材料时,会产生电子-空穴对,从而使半导体的电导率增加的现象。
利用光电导效应可以制作多种光电器件,例如光敏电阻、光敏二极管、光敏三极管等。
光敏电阻是一种基于光电导效应的电阻器件,其电阻值随着光强的增加而减小。
光敏电阻通常由半导体材料制成,例如硅、锗、砷化镓等。
当光照射到光敏电阻上时,会产生电子-空穴对,从而使半导体的电导率增加,电阻值减小。
光敏电阻的优点是响应速度快、灵敏度高、成本低,广泛应用于光控开关、光探测器、光敏传感器等领域。
光敏二极管和光敏三极管是一种基于光电导效应的二极管和三极管器件,其工作原理与光敏电阻类似,但具有更高的灵敏度和更快的响应速度。
光敏二极管和光敏三极管通常由硅、锗等半导体材料制成,当光照射到光敏二极管或光敏三极管上时,会产生电子-空穴对,从而使半导体的电导率增加,产生电流信号。
光敏二极管和光敏三极管的优点是灵敏度高、响应速度快、噪声低,广泛应用于光通信、光探测器、光敏传感器等领域。
除了上述光电器件外,利用光电导效应还可以制作其他光电器件,例如光敏电池、光敏集成电路等。
这些光电器件在光学通信、光学检测、光学控制等领域具有广泛的应用前景。
红色一般用于红光感应
深圳市数冠电子科技有限公司 光敏二极管选型指导 版本:2018.04
说明1: 注意区分光敏二极管和光敏三极管, 两者都统称光敏管,一般都是两只引脚,但两者是不同类型产品,
光敏二极管灵敏度高,内部没有放大,需要外部放大电路,反应速度快,一般用于高灵敏度感应或数据传输. 光敏三极管内部有放大电路(三极管),反应速度慢,一般用于开关类光电检测.
说明2: 光敏二极管感光波长是一个范围,中心波长是最高灵敏度的波长,其它波长灵敏度参考规格书图表.
说明3: 感光电流可以体现感光灵敏度,外形和颜色等其它条件相同的情况下,感光电流越大的产品灵敏度越高.说明4: 上升/下降时间可以用于估算反应速度,计算最大传输频率等.
说明5: 颜色选用: 透明的感光波长是400nm--1100nm,也就是既可以感应可见光,也可以感应红外光; 黑色主要 用于红外光感应,感应波长大约是800--1100nm (850nm发射源最好选用透明或专用于850nm的黑色),
红色一般用于红光感应.
说明6: 产品不断更新,请下载最新版本, 也可以按客户要求开发新产品.
深圳市数冠电子科技有限公司 光敏二极管选型指导 版本:2018.04
深圳市数冠电子科技有限公司 光敏二极管选型指导 版本:2018.04。
光敏二极管和三极管结构与工作原理
光敏二极管和三极管结构与工作原理光敏二极管(Photodiode)和三极管(Phototransistor)是一种光电器件,可以将光信号转换为电信号,常用于光电传感器、光通信等领域。
它们的结构和工作原理在一定程度上相似,但也存在一些不同之处。
本文将对光敏二极管和三极管的结构和工作原理进行详细介绍。
一、光敏二极管的结构和工作原理1.结构:光敏二极管的结构与普通二极管类似,由一个P-N结构组成。
其中,P型半导体的掺杂浓度较大,N型半导体的掺杂浓度较小。
在P-N结的结界面附近存在感光区域,通过控制感光区域的宽度和掺杂浓度,可以调节光敏二极管的光敏度和响应速度。
2.工作原理:当光敏二极管受到光照时,光子会激发半导体内的电子-空穴对,其中电子会被推向N型区,空穴会被推向P型区。
这些载流子的移动会导致P-N结两侧产生电势差,从而使光敏二极管形成反向电压信号。
二、光敏三极管的结构和工作原理1.结构:光敏三极管在结构上与普通三极管相似,由一个P-N-P或者N-P-N结构组成。
此外,在基区域还包含了一个光电区域,用于接收光信号。
控制光电区域的掺杂浓度和面积,可以调节光敏三极管的灵敏度和响应速度。
2.工作原理:光敏三极管的工作原理与光敏二极管类似,只是在信号放大上有所不同。
当光敏三极管受到光照时,光子激发电子-空穴对,电子会被注入基区,形成电流。
这个电流会导致基区的电子-空穴对增加,从而控制集电极和发射极之间的电流。
光敏三极管在光照条件下,可以实现信号的放大,因此在传感器、光通信等领域得到广泛应用。
与光敏二极管相比,光敏三极管在高频范围内具有更高的响应速度和灵敏度。
三、光敏二极管和三极管的比较1.灵敏度:2.响应速度:3.成本:总的来说,光敏二极管和三极管在应用中有着各自的优势和适用范围。
选择合适的光电器件需要根据具体应用需求来进行评估和选择。
希望通过本文的介绍,读者对光敏二极管和三极管有更深入的理解。
光敏二极管和光敏三极管区别
光敏二极管和光敏三极管简介及应用光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。
一、光敏二极管1.结构特点与符号光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有其特殊的地方。
光敏二极管在电路中的符号如图Z0129 所示。
光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。
2.光电转换原理根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。
此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。
当有光照射P N结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。
不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。
被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P 区,形成光电流。
波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。
在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。
因此,光照射时,流过PN结的光电流应是三部分光电流之和。
二、光敏三极管光敏三极管和普通三极管的结构相类似。
不同之处是光敏三极管必须有一个对光敏感的P N结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。
光敏二极管和三极管结构与工作原理.
《传感器应用技术》课程
8-光电传感器
8-6-1光敏二极管和三极管的结构与工 作原理
《传感器应用技术》
目 录
1
光敏二极管
2
光敏三极管
《传感器应用技术》
光敏二极管
1.结构 光敏二极管的结构与一般二 极管相似,它装在透明玻璃外 壳中,其 PN 结装在管顶,可直 接受到光照射。
光敏三极管测量电路
电气自动化技术专业 主讲:教师姓名 教学资源库
谢 谢 大 家 !
光敏二极管符号
《传感器应用技术》
光敏二极管
光敏二极管在电路中一般是 处于反向工作状态,如下图所示。
2.工作原理
没有光照射时:光敏二极管反向电阻很大 ,反向电流很小,光敏二极管处于截止状 态。反向电流也叫做暗电流。 受光照射时:PN结附近受光子轰击,吸收 其能量而产生电子-空穴对,从而使P区和 N 区的少数载流子浓度大大增加,因此在 外加反向偏压和内电场的作用下, P区的 少数载流子渡越阻挡层进入 N 区, N 区的 少数载流子渡越阻挡层进入 P 区,从而使 通过PN结的反向电流大为增加,这就形成 了光电流。
光敏二极管测量电路
《传感器应三极管有PNP型和NPN 型两种,如右图所示。 其结构与一般三极管很相 似,具有电流增益,只是它的发 射极一边做的很大,以扩大光的 照射面积,且其基极不接引线。
光敏三极管图形符号
《传感器应用技术》
光敏三极管
2.工作原理 当集电极加上正电压,基极开 路时,集电极处于反向偏置状态。 当光线照射在集电结的基区时, 会产生电子-空穴对,在内电场 的作用下,光生电子被拉到集电 极,基区留下空穴,使基极与发 射极间的电压升高,这样便有大 量的电子流向集电极,形成输出 电流,且集电极电流为光电流的 β倍。
「红外对管接收管二极管与三极管的区别」
(接收管起的都是在光照下实现通断开关的作用)
红外接收管,平时用得最多的是右边这种形状和规格的接收管,而这种接收管分为两种,一种是红外接收二极管,一种是三极管,从外形上无法判断是二极管还是三极管(如上图),可以用万用表测量,两脚之间的正反向电阻值一大一小的为二极管,正反向都很大的为三极管(阻值大概为几百K)。
在使用的时候,要先判断是二极管还是三极管。
如果是二极管,则可以根据正反向电阻的大小来区别正负级,光敏二极管与半导体二极管在结构上是类似的,其管芯是一个具有光敏特征
的PN结,具有单向导电性,正向电阻小,反向电阻大,因此工作时需加上反向电压(注意光敏二极管接的是反向电压)。
无光照时,有很小的饱和反向漏电流,即暗电流,此时光敏二极管截止。
当受到光照时,饱和反向漏电流大大增加,形成光电流,它随入射光强度的变化而变化。
而光敏三极管则只引出发射级和集电极,从外形上看和光敏二极管没有区别,(光敏三极光需要一个PN结作为接受光信号端)一般情况下都是以集电结为感光结,使用时集电极接电源,大部分情况下是短脚为集电极,最好使用时测试发射极的电流进行判断。
光敏二极管的光电流小,输出特性线性度好,响应时间快;光敏三极管的光电流大,输出特性线性度较差,响应时间慢。
一般要求灵敏度高,工作频率低的开关电路,选用光敏三极管,而要求光电流与照度成线性关系或要求在高频率下工作时,应采用光敏二极管。
以下是红外接收二极管和三极管的使用原理图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光敏二极管和光敏三极管简介及应用
光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。
一、光敏二极管
1.结构特点与符号
光敏二极管和普通二极管相比虽然都属于单向导电的非线
性半导体器件,但在结构上有其特殊的地方。
光敏二极管在电路中的符号如图Z0129 所示。
光敏二极管
使用时要反向接入电路中,即正极接电源负极,负极接电
源正极。
2.光电转换原理
根据PN结反向特性可知,在一定反向电压范围内,反向电
流很小且处于饱和状态。
此时,如果无光照射PN结,则因
本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。
当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。
不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。
被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,
就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P 区,形成光电流。
波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。
在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。
因此,光照射时,流过PN结的光电流应是三部分光电流之和。
二、光敏三极管
光敏三极管和普通三极管的结构相
类似。
不同之处是光敏三极管必须
有一个对光敏感的PN结作为感光
面,一般用集电结作为受光结,因
此,光敏二极管实质上是一种相当
于在基极和集电极之间接有光敏二
极管的普通二极管。
其结构及符号
如图Z0130所示。
三、光敏二极管的两种工作状态
光敏二极管又称光电二极管,它是
一种光电转换器件,其基本原理是
光照到P-N结上时,吸收光能并转变为电能。
它具有两种工作状态:
(1)当光敏二极管加上反向电压时,管子中的反向电流随着光照强度的改变而改变,光照强度越大,反向电流越大,大多数都工作在这种状态。
(2)光敏二极管上不加电压,利用P-N结在受光照时产生正向电压的原理,把它用作微型光电池。
这种工作状态,一般作光电检测器。
光敏二极管分有P-N结型、PIN结型、雪崩型和肖特基结型,其中用得最多的是P-N结型,价格便宜。
光信号放大和开关电路。