初一数学竞赛系列讲座9

合集下载

初一数学竞赛讲座

初一数学竞赛讲座

初一数学竞赛讲座第3讲奇偶分析我们知道,全体自然数按被2除的余数不同可以划分为奇数与偶数两大类。

被2除余1的属于一类,被2整除的属于另一类。

前一类中的数叫做奇数,后一类中的数叫做偶数。

关于奇偶数有一些特殊性质,比如,奇数≠偶数,奇数个奇数之和是奇数等。

灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题。

用奇偶数性质解题的方法称为奇偶分析,善于运用奇偶分析,往往有意想不到的效果。

例1 右表中有15个数,选出5个数,使它们的和等于30,你能做到吗?为什么?分析与解:如果一个一个去找、去试、去算,那就太费事了。

因为无论你选择哪5个数,它们的和总不等于30,而且你还不敢马上断言这是做不到的。

最简单的方法是利用奇偶数的性质来解,因为奇数个奇数之和仍是奇数,表中15个数全是奇数,所以要想从中找出5个使它们的和为偶数,是不可能的。

例2 小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。

小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。

试问,小丽所加得的和数能否为2000?解:不能。

由于每一张上的两数之和都为奇数,而25个奇数之和为奇数,故不可能为2000。

说明:“相邻两个自然数的和一定是奇数”,这条性质几乎是显然的,但在解题过程中,能有意识地运用它却不容易做到,这要靠同学们多练习、多总结。

例3 有98个孩子,每人胸前有一个号码,号码从1到98各不相同。

试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。

解:不能。

如果可以按要求排成,每排中都有一个孩子的号码数等于同排中其余孩子号码数的和,那么每一排中各号码数之和都是某一个孩子号码数的2倍,是个偶数。

所以这98个号码数的总和是个偶数,但是这98个数的总和为1+2+…+98=99×49,是个奇数,矛盾!所以不能按要求排成。

数学竞赛专题讲座七年级第9讲_绝对值与一元一次方程(含答案)

数学竞赛专题讲座七年级第9讲_绝对值与一元一次方程(含答案)

绝对值与一元一次方程知识纵横绝对值是初中数学最活跃的概念之一,•能与数学中很多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,•非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题求解【例1】方程│5x+6│=6x-5的解是_______.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.解:x=11提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0讨论.【例2】适合│2a+7│+│2a-1│=8的整数a的值的个数有( ).A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.解:选B提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,•所以2a表示-7到1之间的偶数.【例3】解方程:│x-│3x+1││=4; (天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.解:x=-54或x=32提示:原方程化为x-│3x+1=4或x-│3x+1│=-4【例4】解下列方程:(1)│x+3│-│x-1│=x+1; (北京市“迎春杯”竞赛题)(2)│x-1│+│x-5│=4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段实行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.(2)提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1≤x≤5,此即为原方程的解.【例5】已知关于x的方程│x-2│+│x-3│=a,研究a存有的条件,对这个方程的解实行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,所以,探求这种关系是解本例的关键,•使用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1)当a>1时,原方程解为x=52a;(2)当a=1时,原方程解为2≤x≤3;(3)当a<1时,原方程无解.学力训练一、基础夯实1.方程3(│x│-1)= ||5x+1的解是_______;方程│3x-1│=│2x+1│的解是____.2.已知│3990x+1995│=1995,那么x=______.3.已知│x│=x+2,那么19x99+3x+27的值为________.4.关于x的方程│a│x=│a+1│-x的解是x=0,则a的值是______;关于x的方程│a│x=│a+1│-x的解是x=1,则有理数a的取值范围是________.5.使方程3│x+2│+2=0成立的未知数x的值是( ).A.-2B.0C. 23D.不存有6.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)7.已知关于x的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m的值是( ).A.10或25B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题)8.若│2000x+2000│=20×2000,则x等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)9.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.10.讨论方程││x+3│-2│=k的解的情况.二、水平拓展11.方程││x-2│-1│=2的解是________.12.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.13.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.(武汉市选拨赛试题)14.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.15.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数18.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.(“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?三、综合创新21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.【学力训练】(答案)1.±107、2或0 2.0或-1 3.54.-1,a≥0 提示:由│a+1│=│a│+1得a×1≥0,即a≥05.D6.B7.A8.D9.(1)x=3或x=13;(2)x=9或x=-37;(3)x=-43或x=2;(4)提示:分x<-1、-1≤x<12、 •12≤x≤2、x≥2四种情况分别去掉绝对值符号解方程,当考虑到12≤x≤2时,•原方程化为(2x-1)-(x-2)=x+1,即1=1,这是一个恒等式,说明凡是满足12≤x≤2的x值都是方程的解.10.当k<0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0<k<2时,原方程化为│x+3│=2±k,此时原方程有四解:x=-3±(2±k);当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;当k>2时,原方程有两解:x+3=±2(•2+k).11.±5 12.1-x 13.b≤x≤a 提示:利用绝对值的几何意义解.14.7、21提示:当0<x<3时,则有│x-3│=3-x=a,a的解是1,2;当3≤x<10时,则有│x-3│=x-3=a,a的解为0,1,2,3,4,5,615.D 提示:m≤0 16.A 17.C 提示:-2≤3x≤4 18.B19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解;如果都不是零,则得4个解,故b=3.20.提示:由绝对值几何意义知:当-3<a<3时,方程有一解;当a=±3时,•方程有无穷多个解;当a>3或a<-3时,方程无解.21.提示:已知等式可化为:│x+2│+│x-1│+│y+1│+│y-5│=9,•由绝对值的几何意义知,当-2≤x≤1且-1≤y≤5时,上式成立,故当x=-2,y=-1时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1)│a-b│;(2)不存在;(3)x=±3,±2,±1,0.。

初中数学竞赛讲座——数论部分9(费马小定理)

初中数学竞赛讲座——数论部分9(费马小定理)

初中数学竞赛讲座——数论部分9(费马小定理)第9讲费尔马小定理一、基础知识:法国数学家费尔马在1640年提出了一个有关整数幂余数的定理,在解决许多关于某个整数幂除以某个整数的余数问题时非常方便有用,在介绍这个定理之前,我们先来看一些具体的同余式,请同学们注意观察,发现这些同余式符合什么规律.3≡1(mod 2),5≡1(mod 2),7≡1(mod 2)…22≡1(mod 3),42≡1(mod 3),52≡1(mod 3)…24≡1(mod 5),34≡1(mod 5),44≡1(mod 5)…26≡(23)2≡1(mod 7),36≡(33)2≡1(mod 7),46≡(43)2≡1(mod 7)…这些同余式都符合同一个规律,这个规律就是费尔马小定理.费尔马小定理:如果p是质数,(a,p)=1,那么a p-1≡1(mod p)第 2 页共 20 页第 3 页共 20 页这个算法的缺点是它非常慢,运算率高;但是它很适合在计算机上面运行程序进行验算一个数是否是质数。

(一)准备知识:引理1.若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m)证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(mod m)可得a≡b(mo d m)引理2.若m为整数且m>1,a1,a2,a3,a4,…a m为m个整数,若在这m个数中任取2个整数对m不同余,则这m个整数对m构成完全剩余系。

证明:构造m的完全剩余系(0,1,2,…m-1),所有的整数必然是这些整数中的1个对模m 同余。

取r1=0,r2=1,r3=2,r4=3,…r i=i-1,1<i≤m。

第 4 页共 20 页令(1):a1≡r1(mod m),a2≡r2(mod m), …a m≡r m(mod m)(顺序可以不同),因为只有在这种情况下才能保证集合{a1,a2,a3,a4,…a m}中的任意2个数不同余,否则必然有2个数同余。

初一数学竞赛讲座、例题练习及答案⑼应用问题选讲

初一数学竞赛讲座、例题练习及答案⑼应用问题选讲

初一数学竞赛讲座第9讲应用问题选讲我们知道,数学是一门基础学科。

我们在学校中学习数学的目的,一方面是为学习其它学科和学习更深的数学知识打下一个基础,更重要的是为了现在和将来运用所学的数学知识去解决一些日常生活、科学实验、工农业生产以及经济活动中所遇到的实际问题。

运用数学知识解决实际问题的基本思路是:先将这个实际问题转化为一个数学问题(我们称之为建立数学模型),然后解答这个数学问题,从而解决这个实际问题。

即:这里,建立数学模型是关键的一步。

也就是说,要通过审题,将实际问题与自己学过的数学知识、数学方法联系起来,将其归结到某一类型的数学问题,然后解答这个数学问题。

下面介绍一些典型的数学模型。

一、两个量变化时,和一定的问题两个变化着的量,如果在变化的过程中,它们的和始终保持不变,那么它们的差与积之间有什么关系呢?观察下面的表:我们不难得出如下的规律:两个变化着的量,如果在变化的过程中,和始终保持不变,那么它们的差越小,积就越大。

若它们能够相等,则当它们相等时,积最大。

这个规律对于三个和三个以上的变量都是成立的。

例1农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个靠墙的长方形鸡窝。

为了防止鸡飞出,所建鸡窝的高度不得低于2米,要使鸡窝面积最大,长方形的长和宽分别应是多少?解:如上图,设长方形的长和宽分别为x米和y米,则有x+2y=1.2×20=24。

长方形的面积为因为x和2y的和等于24是一个定值,故它们的乘积当它们相等时最大,此时长方形面积S也最大。

于是有x=12, y=6。

例2如果将进货单价为40元的商品按50元售出,那么每个的利润是10元,但只能卖出500个。

当这种商品每个涨价1元时,其销售量就减少10个。

为了赚得最多的利润,售价应定为多少?解:设每个商品售价为(50+x)元,则销量为(500-10X)个。

总共可以获利:(50+x-40)×(500-10x)=10×(10+X)×(50-X)(元)。

初中数学竞赛专题讲座有理数及其运算的技巧

初中数学竞赛专题讲座有理数及其运算的技巧

有理数及其运算技巧经验谈:有理数运算是中学数学中全部运算的基础,正确的理解有理数有关的看法,以及它的运算法例、公式,并且擅长依据所给题目要求,将推理与计算相联合,灵巧奇妙的选择简捷的算法,能够很好的提升思想的矫捷性。

将现实中的问题与学习中的知知趣联合,并合理的解决它,你会发现数学的好多乐趣。

内容综述:当我们认识了零、负整数和负分数后,就引出了有理数的看法。

整数(正整数、零、负整数)和分数(正分数、负分数)统称有理数,任何一个有理数都能够表示为一个既约分数。

并且,有理数能够比较大小,有理数的和、差、积、商(分母不为零)仍为有理数,随意两个有理数之间都有无量个有理数,有理数运算是中学数学中全部运算的基础,它要求同学们在理解有理数的有关看法、法例的基础上,能依据法例,公式等正确、快速地进行运算,同时还要擅长依据题目条件,将推理与计算相联合,灵巧奇妙地选择合理的简捷的算法解决问题,从而提升运算能力,发展思想的矫捷性与灵巧性。

重点解说:§1、数轴与大小:两个有理数的大小由它们在数轴上对应点的地点关系来确立:对应点在右侧的数总比对应点在左侧的数大。

★★例 1 察看图 1 中的数轴用字母a,b,c挨次表示点A, B, C 对应的数,试确立这三个数的大小关系。

思路:由 B 点在 A 点右侧,知b-a>0 ,而 A, B 都在原点左侧,故ab>0 ,又 c>0 ,这说明要比较的大小,只要比较分母ab,b-a,c的大小。

解:因为 C 点在 1 的右侧,所以c>1 ,因为 A 点在 -1 与之间,B点在与0之间,所以AB 的距离大于而小于1,即由相同的原因有,。

所以又 ab>0, 故从而有0<ab<b-a<c。

所以★★例 2:设证明 1:a,b∵是两个有理数,且a<b,∴ b>a,∴ba<b, 求证:-a>0..而∴∴证明2∵∴即∴又∴即故说明:由本例可知,随意两个不相等的有理数a,b之间存在一个有理数,由此可推知,随意两个有理数之间存在无穷多个有理数。

抽屉原理——初一数学竞赛系列讲座(9)

抽屉原理——初一数学竞赛系列讲座(9)

例 1 在 3行 9列共 2 小方 格涂 上红 色或 蓝 色 , 明无论 7个 证
如何涂 法 , 中至少有 两 列涂 色方 法相 同. 其

分 析与 解一 因每 列 有 3个小 方 格 , 个 小方 格 可 涂两 种 颜 每 色 , 每一 列共 有 8种涂 法 ( 法原 理 )即 有 8个 抽屉 )现 在 有 9列 ( 故 乘 ( . 即
颜色. 证毕 .
反思 抽屉原理本身虽然简单 明了, 但是要运用得恰到好处 , 还需 要 同学们 在练 习时多 加 讨论和 思考 , 分析 二 中用到 了抽屉原 理二.
维普资讯
饼 例2 从前2 个正整数中 5 任意取出7 个数, 证明: 取出
“ 抽屉 ” .
利 用抽 屉原 理解 题的 一般 步骤是 :
第 一步 , 据 元 素 的特 征 , 造 抽 屉 ( 根 构 是运 用 抽 屉 原 理 解 决 问题 的
关键 ) ;
第二 步 , 把元 素放入 所构 造 的抽屉 ; 第三 步 , 用 抽屉原 理 , 运 对所 论证 的 问题作 出分 析解 答.
抽屉 原理主 要 有下面 几种 表述 形 式 : 抽屉原 理一 :把 +1 物 体任意 放 到 个 抽屉 里 , 么 , 个 那 必有 一 个 抽屉里 至 少放 2个元 素.
抽屉原理二 : m个物体任意放入 个抽屉里( 把 ≥n )则至少 >0 ,
有 个 屉 至 有k 物 是 示 小 的 小 数) 少 一 一 抽 里 少 个 体(表 不 于 最 整 ; 有 至
少有一个抽屉里含有两个或两个以上的苹果”这个道理是非常明显的 , . 但应 用 它却可 以解 决许 多有趣 的 问题 , 并且 常 常得到 一些 令人 惊 异 的结 果. 抽屉原 理是 各 级各类 数 学 竞赛 中的 重 要 内容 , 讲 就来 学 习 它 的有 本

初一数学竞赛系列讲座(10)_5

初一数学竞赛系列讲座(10)_5

初一数学竞赛系列讲座(10)应用题(二)一、一、知识要点1、工程类问题工程类问题讨论工作效率、工作时间和工作总量之间的相互关系。

它们满足如下基本关系式:工作效率⨯工作时间=工作总量解工程问题时常将工作总量当作整体“1”2、溶液类问题溶质:能溶解到溶剂中的物质。

如盐、糖、酒精等。

溶剂:能溶解溶质的物质。

如水等。

溶液:溶质和溶剂的混合体。

如盐水、糖水、酒精溶液等。

溶液的浓度:指一定量溶液中所含溶质的量,经常用百分数表示。

浓度的基本算式是:%100⨯=溶液量溶质量浓度二、二、例题精讲例1江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完,如果要在10分钟内抽完水,那么至少需要抽水机 台。

(1999年全国初中数学联合竞赛试题)解:设开始抽水前管涌已经涌出的水量为a 立方米,管涌每分钟涌出的水量为b 立方米,又设每台抽水机每分钟可抽水c 立方米,由条件可得:⎩⎨⎧⨯=+⨯=+c b a c b a 1641640240 解得⎪⎩⎪⎨⎧==c b c a 323160 如果要在10分钟内抽完水,那么至少需要抽水机的台数为:61032031601010=+=+c c c c b a评注:本题设了三个未知数a 、b 、c ,但只列出两个方程。

实质上c 是个辅助未知数,在解方程时把c 视为常数,解出a ,b(用c 表示出来),然后再代入求出所要求的结果。

例2 甲、乙、丙三队要完成A 、B 两项工程。

B 工程的工作量比A 工程的工作量多25%,甲、乙、丙三队单独完成A 工程所需的时间分别是20天、24天、30天。

为了共同完成这两项工程,先派甲队做A 工程,乙、丙二队做B 工程;经过几天后,又调丙队与甲队共同完成A 工程。

问乙、丙二队合作了多少天?(第十四届迎春杯决赛试题)解:设乙、丙二队合作了x 天,丙队与甲队合作了y 天。

将工程A 视为1,则工程B 可视为1+25%=5/4,由题意得:⎪⎩⎪⎨⎧⎩⎨⎧=+=+=++=++150596053 452430*********y x y x y x x y y x 去分母得,由此可解得x=15答:乙、丙二队合作了15天评注:在工程问题中,如果工作总量不是一个具体的量,常常将工作总量视为1。

初中数学竞赛辅导资料(初一用)

初中数学竞赛辅导资料(初一用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除。

0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y=6。

∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x =8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。

初中数学(初一)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)

初中数学(初一)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)

初一数学竞赛讲义重难点有效突破知识点梳理及重点题型举一反三练习专题01 质数那些事阅读与思考一个大于1的自然数如果只能被1和本身整除,就叫作质数(也叫素数);如果能被1和本身以外的自然数整除,就叫作合数;自然数1既不是质数,也不是合数,叫作单位数.这样,我们可以按约数个数将正整数分为三类:关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4.2.1既不是质数,也不是合数;2是唯一的偶质数.3.若质数|,则必有|或|.4.算术基本定理:任意一个大于1的整数N能唯一地分解成个质因数的乘积(不考虑质因数之间的顺序关系):N=,其中,为质数,为非负数(=1,2,3,…,).正整数N的正约数的个数为(1+)(1+)…(1+),所有正约数的和为(1++…+)(1++…+)…(1++…+).例题与求解【例1】已知三个质数,,满足+++=99,那么的值等于_________________.(江苏省竞赛试题) 解题思想:运用质数性质,结合奇偶性分析,推出,,的值.【例2】若为质数,+5仍为质数,则+7为( )A.质数B.可为质数,也可为合数C.合数D.既不是质数,也不是合数(湖北省黄冈市竞赛试题) 解题思想:从简单情形入手,实验、归纳与猜想.【例3】求这样的质数,当它加上10和14时,仍为质数.(上海市竞赛试题) 解题思想:由于质数的分布不规则,不妨从最小的质数开始进行实验,另外,需考虑这样的质数是否唯一,按剩余类加以深入讨论.【例4】⑴将1,2,…,2 004这2 004个数随意排成一行,得到一个数,求证:一定是合数.⑵若是大于2的正整数,求证:-1与+1中至多有一个质数.⑶求360的所有正约数的倒数和.(江苏省竞赛试题) 解题思想:⑴将1到2 004随意排成一行,由于中间的数很多,不可能一一排出,不妨找出无论怎样排,所得数都有非1和本身的约数;⑵只需说明-1与+1中必有一个是合数,不能同为质数即可;⑶逐个求解正约数太麻烦,考虑整体求解.【例5】设和是正整数,≠,是奇质数,并且,求+的值.解题思想:由题意变形得出整除或,不妨设.由质数的定义得到2-1=1或2-1=.由≠及2-1为质数即可得出结论.【例6】若一个质数的各位数码经任意排列后仍然是质数,则称它是一个“绝对质数”[如2,3,5,7,11,13(31),17(71),37(73),79(97),113(131,311),199(919,991),337(373,733),…都是质数].求证:绝对质数的各位数码不能同时出现数码1,3,7,9.(青少年国际城市邀请赛试题) 解题思想:一个绝对质数如果同时含有数字1,3,7,9,则在这个质数的十进制表示中,不可能含有数字0,2,4,5,6,8,否则,进行适当排列后,这个数能被2或5整除.能力训练A级1.若,,,为整数,=1997,则=________.2.在1,2,3,…,这个自然数中,已知共有个质数,个合数,个奇数,个偶数,则(-)+(-)=__________.3.设,为自然数,满足1176=,则的最小值为__________.(“希望杯”邀请赛试题) 4.已知是质数,并且+3也是质数,则-48的值为____________.(北京市竞赛试题) 5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是( )A.4B.8C.12D.06.在2 005,2 007,2 009这三个数中,质数有( )A.0个B.1个C.2个D.3个(“希望杯”邀请赛试题) 7.一个两位数的个位数字和十位数字变换位置后,所得的数比原来的数大9,这样的两位中,质数有()A.1个B.3 个C.5个D.6 个(“希望杯”邀请赛试题) 8.设,,都是质数,并且+=,<.求.9.写出十个连续的自然数,使得个个都是合数.(上海市竞赛试题)10.在黑板上写出下面的数2,3,4,…,1 994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由.(五城市联赛试题)11.用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为cm规格的地砖,恰用块,若选用边长为cm规格的地砖,则要比前一种刚好多用124块,已知,,都是正整数,且(,)=1,试问这块地有多少平方米?(湖北省荆州市竞赛试题)B级1.若质数,满足5+7=129,则+的值为__________.2.已知,均为质数,并且存在两个正整数,,使得=+,=×,则的值为__________.3.自然数,,,,都大于1,其乘积=2 000,则其和++++的最大值为__________,最小值为____________.(“五羊杯”竞赛试题) 4.机器人对自然数从1开始由小到大按如下的规则染色:凡能表示为两个合数之和的自然数都染成红色,不合上述要求的自然数都染成黄色,若被染成红色的数由小到大数下去,则第1 992个数是_______________.(北京市“迎春杯”竞赛试题) 5.若,均为质数,且满足+=2 089,则49-=_________.A.0B.2 007C.2 008D.2 010(“五羊杯”竞赛试题) 6.设为质数,并且7+8和8+7也都为质数,记=77+8,=88+7,则在以下情形中,必定成立的是()A.,都是质数B.,都是合数C.,一个是质数,一个是合数 D.对不同的,以上皆可能出现(江西省竞赛试题) 7.设,,,是自然数,并且,求证:+++一定是合数.(北京市竞赛试题)8.请同时取六个互异的自然数,使它们同时满足:⑴6个数中任意两个都互质;⑵6个数任取2个,3个,4个,5个,6个数之和都是合数,并简述选择的数符合条件的理由.9.已知正整数,都是质数,并且7+与+11也都是质数,试求的值.(湖北省荆州市竞赛试题)10. 41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(l) 能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2) 能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举出一例;若不能办到,请说明理由.专题01 质数那些事例1 34例2 C例3 3符合要求提示:当p=3k+1时,p+10=3k+11,p+14=3(k+5),显然p+14是合数,当p=3k+2时,p+10=3(k+4)是合数,当p=3k时,只有k=1才符合题意.例4 (1)因1+2+…+2004=×2004×(1+2004)=1002×2005为3的倍数,故无论怎样交换这2004个数的顺序,所得数都有3这个约数.(2)因n是大于2的正整数,则-1≥7,-1、、+1是不小于7的三个连续的正整数,其中必有一个被3整除,但3不整除,故-1与+1中至多有一个数是质数.(3)设正整数a的所有正约数之和为b,,,,…,为a的正约数从小到大的排列,于是=1,=a.由于中各分数分母的最小公倍数=a,故S===,而a=360=,故b=(1+2++)×(1+3+)×(1+5)=1170.==.例5 由=,得x+y==k.(k为正整数),可得2xy=kp,所以p整除2xy且p为奇质数,故p整除x或y,不放设x=tp,则tp+y=2ty,得y=为整数.又t与2t-1互质,故2t-1整除p,p为质数,所以2t-1=1或2t-1=p.若2t-1=,得t=1,x=y=p,与x≠y矛盾;若2t-1=p,则=,2xy=p(x+y).∵p是奇质数,则x +y为偶数,x、y同奇偶性,只能同为xy=必有某数含因数p.令x=ap,ay=,2ay=ap+y.∴y=,故a,2a-1互质,2a-1整除p,又p是质数,则2a-1=p,a=,故x==,∴x+y=+=。

七年级趣味数学大擂台之神秘的九宫图

七年级趣味数学大擂台之神秘的九宫图

七年级趣味数学大擂台---神秘的九宫图
神秘的九宫图规则:
1、把给出的九个数填入九宫格里,使横行、竖行、斜行三个数相加的和都相等。

2、分给各班代表表格一份,把答案填在表格内,答对的按上交的时间定名次,
第1名加20分,第2名加15分,第3名加10分,第4名加5分,其余的不加分。

3、能总结出规律的同学给相应的班加10分,并有奖品一份,全体同学可参与。

1、把1、
2、
3、
4、
5、
6、
7、
8、9这九个数填入九宫格里,使横行、竖行、斜行三个数相加的和都相等。

2、把34、35、36、37、38、39、40、41、42这九个数填入九宫格里,使横行、竖行、斜行三个数相加的和都相等。

口诀:五居中央,二四为肩,六八为足,上九下一,左七右三。

竞赛讲座(有理数的有关知识)

竞赛讲座(有理数的有关知识)

竞赛讲座(有理数的有关知识)一、 知识要点 1、绝对值x 的绝对值x 的意义如下:x =⎩⎨⎧<-≥0x x x x ,如果,如果x 是一个非负数,当且仅当x=0时,x =0绝对值的几何意义是:一个数的绝对值表示这个数对应的数轴上的点到原点的距离;由此可得:b a -表示数轴上a 点到b 点的距离。

2、倒数1除以一个数(零除外)的商,叫做这个数的倒数。

如果两个数互为倒数,那么这两个数的积等于1。

3、相反数绝对值相同而符号相反的两个数互为相反数。

两个互为相反数的数的和等于0。

二、 例题精讲 例1 化简 6312-+--+x x x分析:由2x+1=0、x-3=0、x-6=0求出零点,然后用零点分段法将绝对值去掉,从而达到化简的目的。

解:由2x+1=0、x-3=0、x-6=0 分别求得:x= -1/2, x=3, x=6 当21-<x 时,原式= -(2x+1)+(x-3) - (x-6)= -2x+2 当321<≤-x 时,原式= (2x+1)+(x-3) - (x-6)= 2x+4 当63<≤x 时,原式= (2x+1)-(x-3) - (x-6)= 10当x ≥6时,原式= (2x+1)-(x-3) + (x-6)= 2x-2∴原式=⎪⎪⎩⎪⎪⎨⎧≥<≤<≤-+-<+-时当,时当,时当,时当,6x 2-2x 63 103 42 222121x x x x x评注:用零点分段法,通过零点分段将绝对值去掉,从而化简式子,解决问题是解决含绝对值问题的基本方法。

例2 已知312351312+----≥--x x xx x ,求的最大值和最小值。

(第六届迎春杯决赛试题)分析:先解不等式,求出x 的范围,然后利用绝对值的几何意义来求最大值和最小值。

解:解不等式2351312x x x --≥-- 得: 117≤x1131+--x x 的几何意义是x 到1的距离与x 到-3的距离的差,从上图中可以看出:当x ≤-3时这差取得最大值4,因117≤x ,则当117=x 时这差取得最小值1133-.评注:1、本题是采用数形结合的思想,用绝对值的几何意义来解题。

初一数学竞赛系列讲座全套

初一数学竞赛系列讲座全套

初一数学竞赛讲座(三)数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0.对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,那么m n 的末位数字就是a n 的末位数字。

(2) (2) 设p 、q 都是正整数,m 是任意正整数,那么m 4p+q 的末位数字与m q 的末位数字相同。

3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。

这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑〞、“猜〞的方法求解,是一种有趣的数学游戏。

二、二、例题精讲例1、有一个四位数,其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。

分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。

解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d)=9988比拟等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c-2=d ,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将条件转化为等式,从而解决问题。

例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,假设最大数与最小数的差正好等于原来的数N ,那么称N 为“新生数〞,试求所有的三位“新生数〞。

竞赛数学讲座PPT课件

竞赛数学讲座PPT课件

或参观游览,第五天闭幕式,宣布考试成绩和颁奖。
成绩最好的约30名选手(现改为约60名)以及中国
女子数学奥林匹克和中国西部数学奥林匹克的前两
名(现已无参加集训队资格)组成参加当年IMO的
中国国家集训队。3月中旬至4月初,进行参加IMO
的中国代表队的选拔工作。每年7月份参加IMO。
全国中学生数学冬令营是在全国高中数学联赛的基
2.广东省历届国际数学奥林匹克竞赛获奖情 况:13人14次,其中华南师范大学附中7人8 次,深圳中学4人,深圳高级中学1人,深圳 第三高级中学1人。9人就读北京大学,3人就 读清华大学,1人就读中国科技大学。
.
13
三、IMO——中国队获奖情况
2013年获奖的饶家鼎,深圳市第三高级中学 高二年级学生 (7岁从加拿大回国读书)。 2010年,12岁的高一学生饶家鼎参加全国高 中数学联赛,与高三顶尖学生同台竞技,获 得全国三等奖。当同龄人还在读初一、初二 的时候,他已经被北京大学数学科学学院和 清华大学数学科学系提前预录取,并入选 2012年中国数学奥林匹克广东省数学代表队, 在2013年以一分之差,遗憾地摘取了国际奥 林匹克数学竞赛银牌,而此前他被寄予得满 分的厚望。
四个方面。前两道题每题40分,后两道 题每题50分。
.
26
七、全国高中学联赛题型与 考试大纲
考试大纲:一试完全按照全日制中学 《数学教学大纲》中所规定的教学要求
和内容,即高考所规定的知识范围和方 法,在方法的要求上略有提高。 二试:超过高考大纲(有具体的规定)
.
27
二试
1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角

数学竞赛专题讲座组合数学

数学竞赛专题讲座组合数学

举例说明抽屉原理
例1 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小 朋友任意选择两件,则不管怎样挑选,在任意七个小朋友中总 有两个彼此选的玩具都相同,试说明道理.
解 从三种玩具中挑选两件,搭配方式只能是下面六种: (兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊
猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿) 把每种搭配方式看作一个抽屉,把7个小朋友看作物体,则根
k0
定义3 从n个不同的元素中取出m个,按照一 定的顺序排在一个封闭曲线上,叫做环形排列 (或循环排列、圆排列).
相异元素的 圆排列数公式为:
fn,mA m nmm1!Cnm
二、基础知识
定义4 从n个不同的元素中,允许重复取出m 个元素,按照一定的顺序排成一列,称为n个 相异元素允许重复的m元排列.
组合问题的知识点并不多,主要在于对问题性质的探索与思考。 联赛中组合题以存在性问题和最值问题以及组合数论问题为主,这类 问题的关键常常在于构造例子或反例。因此,只要我们多加练习这两 类问题,在联赛中还是可以拿到满意的分数的。
2016-07-23
教学资料
• 资料仅供参考
相异元素的可重复排列数计算公式为:Un,mnm. 定义5 从n个不同的元素中,允许重复取出m
个元素,不管怎样的顺序并成一组,称为n个 相异元素允许重复的m元组合. 相异元素的可重复组合数计算公式为:
f n,mCnmm1.
二、基础知识
定义6 若n个元素中,有n1个a1, n2个a2...
nm个am,且 n1n2 nmn ,则这n个元素的
二、基础知识
有7个定义、9个定理: 定义1 从n个不同的元素中取出m个,按照一定
的顺序排成一列,叫做从n个不同的元素中取出 m个元素的一个排列. 相异元素排列数的计算公式为:

数学竞赛辅导讲座(新)

数学竞赛辅导讲座(新)

数学竞赛辅导系列讲座一 ——数1.计算:1111(12)(123)(12320)2320+++++++++++.2.如果5555555555555554444666666233322n++++++++⨯=+++,那么n=_______. 3.军训基地购买苹果慰问学员,已知苹果总数用八进制表示为abc ,七进制表示为cba ,那么苹果总数用十进制表示为_______.4.已知实数a 满足|2014|a a -=,那么a -20142的值是( )A 、2013B 、2014C 、2015D 、20165.设分数13(13)56n n n -≠+不是最简分数,那么正整数n 的最小值可以是( )A 、84B 、68C 、45D 、1156.数272-1能被500与600之间的若干整数整除,试找出三个这样的整数,它们是________. 7.n 是自然数,19n+14与10n+3都是某个不等于1的自然数d 的倍数,则d=________.8.设1a =,则3a 3+12a 2-6a -12=( )A 、24B 、25C 、10D 、129.已知a 、b 是正整数,且满足2是整数,则这样的有序数对(a ,b )共有____对.10.设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数有( )个A 、3B 、4C 、5D 、611.设n a 表示数4n 的末位数,则122012a a a +++=________.12.如果对于某一特定范围内x 的任意允许值,p=|1-2x|+|1-3x|+…+|1-10x|为定值,则定值为( )A 、2 B 、3C 、4D 、513.若1,2,3xy yz zxx y y z z x===+++,则x=______. 14.试求|x -1|+|x -2|+|x -3|+…+|x -2015|的最小值.15.已知p 、q 均为素数,且满足5p 2+3q=59,则以p+3,1-p+q ,2p+q -4为边长的三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形16.若x 1、x 2 、x 3 、x 4 、x 5为互不相等的正奇数,满足(2005-x 1)(2005-x 2)(2005-x 3)(2005-x 4)(2005-x 5)=242,则x 12+x 22+x 32+x 42+x 52的末尾数字是( ) A 、1B 、3C 、5D 、717.在数1、2、3、…、2014、2015前面任意添加上“+”或“-”进行计算,所得可能的最小非负数是________.18.设a 、b 、c 为实数,2222,2,2362x a b y b c z c a πππ=-+=-+=-+,x 、y 、z 中至少有一个值( )A 、大于0B 、等于0C 、不大于0D 、小于019.今天是星期日,若明天算第1天,则第13+23+…+20163天是星期_____. 20.已知()()()⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++++=201313121201321.11)(2f f f f f f x x f 则=.21.已知四个互不相等的正数x 、y 、m 、n 中,x 最小,n 最大,且x :y=m :n ,试比较x+n 与y+m 的大小,并证明你的结论. 22.10099++++.23.设x>0,y>0=的值.24.25.设a 、b 、c26.=且0<x<y ,那么满足上述等式的整数对(x ,y)的个数有多少?27.设1980100S =++++[S]表示不超过S 的最大整数,试求S .28.已知x 、y 是整数,并且13|(9x+10y),求证:13|(4x+3y).29、若a 、b 是整数,且7|(a+b),7|(2a -b),求证:7|(5a+2b). 30.正整数p 、q 都大于1,且2121,p q q p--都是整数,求p+q . 31.当n 是正整数时,n 4-6n 2+25是质数还是合数?证明你的结论. 32.已知a 是自然数,问a 4-3a 2+9是质数还是合数?证明你的结论.33.试求出一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同.34.设a 、b 、c 、d 是正整数,并且a 2+b 2=c 2+d 2,证明a+b+c+d 一定是合数.35.你能找到三个正整数a 、b 、c ,使得关系式(a+b+c)(a -b+c)(a+b -c)(b+c -a)=3388成立吗?如果能找到,请举一例;如果找不到,请说明理由.36.一个正整数a ,若将其数字重新排列,可得到一个新的正整数b ,如果a 恰好是b 的3倍,我们称a 是一个“希望数”. (1)请你举例:“希望数”一定存在;(2)请你证明:如果a 、b 都是“希望数”,则ab 一定是729的倍数.37.将自然数1、2、3、…、21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33. 38.设x =a 是x 的小数部分,b 是-x 的小数部分,求333a b ab ++的值.39.设a 、b 都是整数,求证:a ,b ,a 2+b 2,a 2-b 2中一定有一个被5整除.40.若一个数能够表示成2222x xy y ++(x ,y 是整数)的形式,则称该数为“好数” (1)试判断29是否为好数;(2)写出80,81,…,100中的好数; (3)如果m ,n 都是好数,证明mn 也是好数.41.有三堆小石子的个数分别是19、8、9,现在进行如下的操作:每次从三堆中的任意两堆中取出1个石子,然后把这两个石子都加到另一堆中,试问能否进过若干次这样的操作后,使得(1)三堆的石子数分别是2、12、22? (2)三堆的石子数都是12? 如能达到要求,请用最小的操作次数完成它,如不能达到,请说明理由.注:每次操作可用如下方式表示,比如从第一、二堆中各取出一个石子,加到第三堆上,可表示为(19,8,9)→(18,7,11)等等.42.为无理数.43.已知p 为大于3的质数,证明p 的平方被24除的余数是1.44.已知M 是一个四位的完全平方数,若将M 的千位数字减少3而个位数字增加3可以得到另一个完全平方数,则M=_________.45.在“□1□2□3□4□5□6□7□8□9”的小方格中填上“+”或“-”号,如果可以使其代数和为n ,就称数n 是“可被表出的数”,否则,就称数n 是“不可被表出的数”(如1是可被表出的数,这是因为1+2-3-4+5+6-7-8+9是1的一种可被表出的方法). (1)求证:7是可被表出的数,而8是不可被表出的数; (2)求25可被表出的不同方法种数.46.是否存在:用0,1,2,…,9这十个数字组成几个数,使它们的和恰好为100,每个数字都用一次并且只能用一次.47.设〔x 〕表示不超过实数x 的最大整数.则在平面直角坐标系xoy 中满足〔x 〕〔y 〕=2011的所有点(x ,y )组成的图形的面积 . 48.已知122015,,,a a a 是一列互不相等的正整数.若任意改变这2015个数的顺序,并122015,,,b b b 记为.则数()()()112220152015M a b a b a b =---的值必为 .49.(1)证明:由2015个1和0组成的自然数不是完全平方数;(2)试说明:存在最左边2015位都是1的形如11…1﹡﹡…﹡的自然数(﹡代表阿拉伯数码)是完全平方数.数学竞赛辅导系列讲座二 ——式1.已知x _______.2.已知a+b+c=11与1111317a b b c c a ++=+++,则a b cb c c a a b+++++的值是_______. 3.已知实数a ,b ,c 满足(a+b)(b+c)(c+a)=0,且abc<0,则代数式||||||a b ca b c ++的值是_______.4.已知a ,b 为实数,且ab=1,a ≠1,设11,1111a b M N a b a b =+=+++++,则M-N=____. 5.a ,b ,c 不全为0,满足a+b+c=0,a 3+b 3+c 3=0,称使得a n+b n+c n=0恒成立的正整数n 为“好数”,则不超过2013的正整数中好数的个数为( )A 、2B 、1007C 、2012D 、20136.设()()94122=++++y y x x ,则=+++1422x y y x ______.7.设a ,b ,c 的积为负数,和为正数,且||||||||||||a b c ab bc cax a b c ab bc ca =+++++,则321ax bx cx +++的值为( )A 、0B 、1C 、2D 、-18.若|x-a|=a-|x|(x ≠0,a ≠x)( )A 、2aB 、2xC 、-2aD 、-2x9.若a ,b 为实数,满足111a b a b -=+,则b aa b-的值为( ) A 、-1 B 、0C 、12D 、110.设a ,b ,c 为互不相同的有理数,满足((2b ac +=++,则满足条件的a ,b ,c 共有( )组A 、0B 、1C 、2D 、411.已知x y ==,则3312x xy y ++=___________.12.的结果是( )A 、1B 、 3C 、2D 、413.分式222253051611x xy y x xy y ++++的最小值是( )A 、-5B 、-3C 、5D 、314.非零实数a ,b ,c ,x ,y ,z 满足关系式x y za b c==,则()()()()()()xyz a b b c c a abc x y y z z x ++++++=_____. 15.已知x ,y ,z 为实数,若2222221,2,2x y y z x z +=+=+=,则xy+yz+zx 的最小值为( )A 、52B 、12+ 3C 、-12D 、12- 3 16.若44222226a b a a b b +=-++,则22a b +=_____. 17.若实数x ,y 满足703392xy x y x y xy+++=⎧⎨+=+⎩,则22x y xy +=_______.18.设x ,y 为实数,代数式2254824x y xy x +-++的最小值为_______.19.已知实数a ,b ,c 满足27,160a b c ab bc b c -+=++++=,则b a 的值等于_____.20.分解下列因式:(1)2(61)(21)(31)(1)x x x x x ----+ (2)42221x x ax a +++- (3)322222422x x z x y xyz xy y z --++- (4)444()x y x y +++ (5)22276212x xy y x y -++-- (6)32211176x x x +++ (7)136912++++x x x x(8)33221a b ab a b -+++21.使27m m ++为完全平方数的正整数m 的个数为__________. 22.若实数a 满足322331132a a a a a a +-+=--,则1a a+=________. 23.已知实数x ,y 满足(2015x y -=,则2232332014x y x y -+--的值为( )A 、-2015B 、2015C 、-1D 、124.设a =5432322a a a a a a a+---+-=________. 25.设a ,b ,c ,d 都是正整数且5432,a b c d ==,19=-a c .求d -b 的值.26.若2223331,2,3x y z x y z x y z ++=++=++=,求444x y z ++的值.27.若22221,1,0a b c d ac bd +=+=+=,试求ab+cd 的值.28.已知x>y>z>0,求合适等式xyz+xy+yz+zx+x+y+z=1989的整数x ,y ,z 的值. 29.已知一组数据4,-2,0,2,x 的极差是10,求x 的值. 30.设1219,,,x x x 都是正整数,且满足121995x x x +++=,求2221219x x x +++的最大值.31.实数a ,b1032b b =-+--,求22a b +的最大值.32.22013.33.当x 变化时,求分式22365112x x x x ++++的最小值.34.已知x y z uy z u z u x u x y x y z===++++++++,求x y y z z u u xz u u x x y y z+++++++++++的值. 35.求证:(1)一个自然数的平方被7除的余数只能是0,1,4,2;(2)对任意正整数n,不被7整除. 36.12,,,n x x x 为实数,()21222212n n x x x x x x n++++++=,求证:12n x x x ===.37.已知a ,b ,c 均为正整数,且满足222a b c +=,又a 为质数,求证:(1)b 与c 这两个数的乘积为偶数;(2)2(a+b+1)是完全平方数.38.设a ,b ,c 均是不等于0的实数,且满足22a b bc -=及22b c ca -=,证明:22a c ab -=.39.设实数x ,y 满足(1x y ++=,求x+y 的值.40.已知a ,b ,c 为实数,证明2222(),(),(),()a b c a b c b c a c a b +++-+-+-这四个代数式的值中至少有一个不小于222a b c ++的值,也至少有一个不大于222a b c ++的值. 41.设实数x ,y ,z 同时满足33334,266,398x y x y z y z x z +=++=++=+,试求2222013(1)2014(1)2015(1)x y z -+-+-的值.42.如果实数a ,b 满足条件22221,|12|21a b a b a b a +=-+++=-,a+b 的值是多少? 43.已知a ,b ,c 为正数,满足下列条件 32a b c ++= …………①14b c a c a b a b c bc ca ab +-+-+-++= …………②为三边长的三角形可构成以一个直角三角形. 44.已知cb ac b a ++=++1111.求证:a+b ,b+C ,c+a 中至少有一个为零.45. 互不相等的实数a 、b 、c ,d.且x ad d c c b b a =+=+=+=+1111, 求x 的值. 46.已知1abc =-,221a bc c+=,求555ab bc ca ++的值.数学竞赛辅导系列讲座三 ——方程1.方程|3x|+|x -2|=4的解的个数是( )A 、0B 、1C 、2D 、32.以关于x ,y 的方程组32339mx y x my +=⎧⎨-=⎩的解为坐标的点(x ,y )在第二象限,则符合条件的实数m 的范围是( )A 、m>19B 、m<-2C 、-2<m<19D 、-12<m<93.已知实数a>0,b>0,满足22014,2014a b b +=+=,则a+b 的值是______.4.关于x 的方程22211ax a a x -=+-的解为________. 5.已知p 是质数,且方程24440x px p +-=的两个根都是整数,则p=_____. 6.方程323652x x x y y ++=-+的整数解(x ,y )的个数是( )A 、0B 、1C 、3D 、无数多个7.若a ,b 都是整数,方程220080ax bx +-=的两相异根都是质数,则3a+b 的值是( )A 、100B 、400C 、700D 、10008.对于实数x ,符合[x]表示不大于x 的最大整数,例如[3.14]=3,[-7.59]=-8,则关于x 的方程3747x +⎡⎤=⎢⎥⎣⎦的整数解有( )个 A 、4B 、3C 、2D 、19.已知正数a ,b ,c ,d ,e ,f 满足1114,9,16,,,4916bcdef acdef abdef abcef abcdf abcde a b c d e f ======,则 (a+c+e)-(b+d+f)的值为________.10.方程||(1)0x x k --=有三个不相等的实根,则k 的取值范围是( )A 、-14<k<0B 、0<k<14C 、k>-14D 、k<1411.若整数m 使得方程220060x mx m -++=的根为非零整数,这样的整数m 的个数为________.12.设x 1,x 2是方程240x x +-=的两根,则3212510x x -+=( )A 、-29B 、-19C 、-15D 、-913.方程22332x xy y x y ++=-的非负整数解(x ,y )的组数为( )A 、0B 、1C 、2D 、314.方程7[2][3]82x x x +=-的所有实数解为_____________. 15.对于实数u ,v ,定义一种运算“*”为:u*v=uv+v ,若关于x 的方程x*(a*x)=- 14 有两个不同的实数根,则满足条件的实数a 的取值范围是____________.16.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度一样,而且18路公交车总站每隔固定的时间发一辆车,那么发车间隔为几分钟?17.不定方程5x -14y=11的最小正整数解是____________. 18.方程22[]30x x --=的解的个数是( )A 、1B 、2C 、3D 、419.已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=,的两个非负实根,则22(1)(1)a b --的最小值是________. 20.已知m ,n是二次方程2201470x x ++=的两根,那么22(20136)(20158)m m n n ++++等于( )A 、2006 B 、2007 C 、2008 D 、200921.若实数x ,y ,z 满足方程组122232xyx y yzy z zxz x⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩,则( ) A 、x+2y+3z=0B 、7x+5y+2z=0C 、9x+6y+3z=0D 、10x+7y+z=022.已知实数a ,b ,c ,d ,且a ≠b ,c ≠d ,若关系式22222,2,4,4a ac b bc c ac d ad +=+=+=+=同时成立,则6a+2b+3c+2d=__________.23.方程组3322181x y z x y z +=-⎧⎨+=-⎩的正整数解(x ,y ,z )为_____________. 24.方程222522007x xy y ++=的所有不同的整数解共有_______组.25.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入□x 2+□x+□=0的三个方框中,作为一元二次方程的二次项系数,一次项系数和常数项,使得方程至少有一个整数根的a ,b ,c 有( )A 、不存在B 、有一组C 、有两组D 、多于两组26.已知a ,b ,c 为正数,关于x 的一元二次方程20ax bx c ++=有两个相等的实数根,则方程2(1)(2)(1)0a x b x c +++++=的根的情况是( ) A 、没有实根B 、有两个相等的实根C 、有两个不等实根D 、根的情况不确定27.求方程232730x xy y -+=的正整数解.28.设x ,y ,z 是都不为零的相异实数,且满足等式y z z x x yy z x+++==,试证明:此等式的值不可能是实数.29.解方程:222916(3)x x x +=- 30.满足方程2221x y -=的所有质数解(即x ,y 都是质数的解)是_______. 31.若2222,x y m n x y m n +=++=+,求证:2014201420142014xy m n +=+.32.已知a>0,且b>a+c ,证明方程20ax bx c ++=必有两个不同的实根. 33.解下列方程:(1)4322914920x x x x -+-+=(2)44(2)820x x +--= (3)222(231)(251)9x x x x x -+++=(4)222211114325671221x x x x x x x x +++=+++++++ (5)2240119x x x x ⎛⎫⎛⎫+= ⎪ ⎪-+⎝⎭⎝⎭(6)1321121111x x x++=+++34.设a 为整数,使得关于x 的方程2(5)70ax a x a -+++=至少有一个有理根,试求方程所有可能的有理根.35.已知正整数a ,b ,c 满足a<b<c ,且ab+bc+ca=abc ,求所有可能符合条件的a ,b ,c . 36.当a ,b 为何值时,方程2222(1)(3442)0x a x a ab b ++++++=有实根. 37.m 为有理数,试确定方程22443240x mx x m m k -++-+=的根为有理数.38.当12122()p p q q =+时,试证方程2110x p x q ++=和2220x p x q ++=中至少有一个方程有实根.39.周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明共有几个? 40.如果关于x 的方程2211k x kx x x x x+-=--只有一个解,求k 的值. 41.把最大正整数是31的连续31个正整数分成A ,B 两组,且10在A 组,如果把10从A 组移到B 组中,则A 组中的各数的平均数增加12 ,B 组中各数的平均数也增加12 ,问A 组中原有多少个数?42.已知a>2,b>2,试判断关于x 的方程2()0x a b x ab -++=与方程2x abx a b -++=有没有公共根,并说明理由.43.求满足条件的所有实数k ,使得关于x 的方程2(1)(1)0kx k x k +++-=的根都是整数. 44.设a ,b ,c 为互不相等的非零实数,求证三个方程22220,20,20ax bx c bx cx a cx ax b ++=++=++=不可能同时有两个相等实根.45.设△是整系数二次方程20ax bx c ++=的判别式,(1)4,5,6,7,8五个数值中,哪几个能作为判别式△的值?分别写出一个相应的二次方程;(2)请你从中导出一般规律——一切整数中怎样的整数值不能作为△的值,并给出理由. 46.设a 、b 、c 、d 是正整数,a 、b 是方程()02=+--cd x c d x 的两个根.证明:存在边长是整数且面积为ab 乘积的直角三角形.数学竞赛辅导系列讲座四——不等式1.不等式2|26|x x a +-≥对一切实数x 都成立,则实数a 的最大值为_____.2.x <<x 的个数是( ) A 、4B 、5C 、6D 、73.已知-1<2x -1<1,则21x-的取值范围是_______. 4.已知关于x 的不等式(2m -n)x -m -5n>0的解集为x<107 ,那么关于x 的不等式mx>n(m ≠0)的解集为__________. 5.使关于x 的不等式12ax a x --≥成立的x 的最大值是-1,则a 的值是____. 6.关于x 的不等式|2x -1|<6的所有非负整数解的和为_______.7.若正数x ,y ,z 满足不等式组1126352351124z x y z x y z x y x z y ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩,则x ,y ,z 的大小关系是( )A 、x<y<zB 、y<z<xC 、z<x<yD 、不能确定8.若a ,c ,d 是整数,b 是正整数,且满足a+b=c ,b+c=d ,c+d=a ,那么a+b+c+d 的最大值为( )A 、-1B 、-5C 、0D 、19.若a ,b ,c ,d 为乘积是1的四个正数,则代数式2222a b c d ab ac ad bc bd cd +++++++++的最小值是( )A 、0B 、4C 、8D 、1010.设实数x 满足3142631323510x x x ----≥-,求2|x -1|+|x+4|的最小值. 11.求证:2211331x x x x -+≤≤++(x 为实数).12.已知221a b +=,对于满足条件0≤x ≤1的一切实数x ,不等式a(1-x)(1-x -ax)-bx(b -x -bx)≥0.恒成立,当乘积ab 取最小值时,求a ,b 的值13.设x ,y 为实数,若22222,x xy y x xy y k -+=++=,求k 的取值范围.14.解关于x 的不等式组365(12)8mx mxmx x m x -<-⎧⎨+>-+⎩.15.在坐标平面上,纵坐标与横坐标都是整数的点称为整点,试在二次函数2910105x x y =-+的图像上找出满足y ≤|x|的所有整点(x ,y ),并说明理由.16.已知0<a<1,0<b<1,0<c<1,求证:(1-a)b ,(1-b)c ,(1-c)a 不可能同时大于14 .17.一玩具厂用于生产的全部劳动力为450个工时原料为400个单位.生产一个小熊要用15个工时,20个单位的原料,售价为80元;生产一个小猫要用10个工时,5个单位的原料,售价为45元.在劳动力和原料的限制下合理安排生产小熊小猫的个数.可以使小熊和小猫总售价尽可能高.请你用学过的数学知识分析,总售价是否可能达到2200元.18.求满足不等式 a 2+b 2+c 2+3﹤ab+3b+2c 的整数解.19.由沿河岸一城市A 运货物到离河岸30km 的地点B,按沿河岸距离计算,B 离A 的距离AC 是40km .如果水路运费是公路运费的一半,应该怎样确定在河岸的点D,从B 点筑一条公路到D ,才能使由A 到B 的运费最少?20.甲乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元.则其中单价为9元的商品有几件?21.货轮上卸下若干只箱子,其总质量为10吨.每只箱子的质量不超过1吨,为了保证能把这些箱子一次性运走.问至少需要多少载重为3吨的车子.22.已知二次函数y=2x +(m+1)x+n 过点(3,3),并且对于一切实数x ,所对应的函数值均不小于x ,求这个函数图像的顶点到原点的距离.23.如图,△ABC 中,∠C 为锐角,AD ,BE 分别是BC 和AC 边上的高线,设CD=2m BC ,CE=2nAC ,当m ,n 为正整数时,试判断△ABC 的形状,并说明理由.24.已知y x x x )2(622222-=+-+-,求yx -1的值.25.已知a ,b 为实数,且满足16a 2+2a+8ab+b 2—1=O ,求3a+b 的最小值.26.设10p p x ,求证:21)1(11522+-+++≤p x x .27.若二次函数()x f =a x ax --22满足()()()()0312f f f f ,则实数a 的取值范围为 . 28.已知+∈R y x ,.求yx yy x x 22+++的最大值.29.能同时表示成连续9个整数之和、连续10个整数之和及连续11个整数之和的最小正整数为 .30.四边形ABCD 两条对角线AC 、BD 相交于点O ,且⊿AOB 与⊿COD 的面积分别为1、9.求四边形ABCD 面积的最小值,并判断当取得最小值时四边形的形状.31.已知正数a 、b 、c 、a 1、b 1、c 1,满足条件a+a 1=b+b 1=c+c 1=k ,求证:a b 1+ b c 1+ c a 1﹤k 2.32.设a 、b 、c +∈R ,求证:2222cb a ac c c b b b a a ++≥+++++.33.已知a 、b 是给定的大于2015的实数,对于任意实数x 、y ,都有122))((22222++--+++k k ay bx y x b a >0,其中k 是实数,求k 的取值范围.34.当三个非负实数x 、y 、z 满足关系式323=++z y x 与433=++z y x 时,M=3x-2y+4z 的最小值和最大值分别为 .35.有n 个连续的正整数1、2、…,n ,去掉其中的一个数x 后,剩下的平均数是16 .则满足条件的n 和x 的值分别是 .36.已知实数x 、y 满足5422=--y x x ,记y x t 2-=,则t 的取值范围是 .37.小马在体育场卖饮料,雪碧每瓶4元,汽水每瓶7元,开始时他有350瓶饮料,虽然没有全部卖完,但是他的销售收入恰好是2009元,则他至少卖出了 瓶汽水. 38.请判断1002是多少位整数(要有详细的过程).数学竞赛辅导系列讲座五 ——函数1.在平面直角坐标系中有点A (-2,2)、B (3,2),C 是坐标轴上的一点,若△ABC 是直角三角形,则符合条件的点C 有( )个A 、1B 、2C 、4D 、62.已知一次函数y=kx+b ,kb<0,则这样的一次函数的图象必经过的公共象限有____个,即第_________象限.3.若反比例函数y=kx 的图像与一次函数y=ax+b 的图像交于点A (-2,m )、B (5,n ),则3a+b=_______.4.已知二次函数2y x x a =-+的图像与x 轴的两个不同交点到原点的距离之和不超过5,则a 的取值范围是__________.5.已知点A 、B 分别在一次函数y=x ,y=8x 的图像上,其横坐标分别为a ,b (a>0,b>0),若直线AB 为一次函数y=kx+m 的图像,则当b a是整数时,满足条件的整数k 的值共有( )A 、1个B 、2个C 、3个D 、4个6.一次函数13y x =-+与x 轴、y 轴分别交于点A 、B ,以线段AB 为边在第一象限内作正方形ABCD ,在第二象限内有一点P (a ,12 ),满足S △ABP =S 正方形ABCD ,则a=________.7.已知y =x ,y 均为实数),则y 的最大值与最小值的差为( )A 、 6 -3B 、3C 、 5 - 3D 、 6 - 38.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图像与x 轴有两个不同交点的概率是( )A 、512B 、49C 、1736D 、129.过点P (-1,3)作直线,使它与坐标轴围成的三角形面积为5,这样的直线可以做( )A 、4条B 、3条C 、2条D 、1条10.若关于x 的函数2(3)(41)4y a x a x a =---+的图像与坐标轴有两个交点,则a 的值为_______.11.二次函数2(0)y ax bx c a =++≠的图像经过(-1,2)且与x 轴的交点的横坐标分别为x 1,x 2(-2<x 1<-1,0<x 2<1),给出下列结论:①abc>0,②4a -2b+c<0,③2a -b<0,④b 2+8a>4ac ,其中正确的有( )个A 、1B 、2C 、3D 、412.过原点的直线与反比例函数y=- 7x 的图像交于A ,C ,自点A ,C 分别作x 轴的垂线,垂足分别为B ,D ,则四边形ABCD 的面积等于______.13.设抛物线24y x kx =++与x 轴有两个不同的交点(x 1,0)、(x 2,0),则下列结论中一定成立的是( )A 、221217x x +=B 、22128x x +=C 、221217x x +<D 、22128x x +>14.一次函数y=kx+b 的图像过点P (1,4),且分别与x 轴,y 轴的正半轴交于A ,B ,O 为坐标原点,△ABO 的面积最小时,k ,b 的值分别是( )A 、-4,8B 、-4,4C 、-2,4D 、-2,-215.已知函数2()f x ax c =-(a ,c 为实数),若-4≤f(1)≤-1,-1≤f(2)≤2,则f(8)的最大值是__________.16.如果函数y=b 的图像与函数23|1|43y x x x =----的图像恰有三个交点,则b 的可能值为_________.17.若函数245(1)y x x t x t =--+≤≤+的最大值关于t 的表达式y max =______. 18.已知abc<0,则在图中的四个选项中,表示2y ax bx c =++的图像可能是( )ABCD19.如图,两个反比例函数1k y x =和2ky x=(k 1>k 2>0)在第一象限内的图像依次是曲线C 1和C 2,设点P 在C 1上,PE ⊥x 轴于点E ,交C 2与点A ,PD ⊥y 轴于点D ,交C 2于点B,则四边形PAOB 的面积为( ) A 、k 1+k 2 B 、k 1-k 2 C 、k 1k 2D 、k 1k 220.如图已知点A 、B 分别在反比例函数)0(x x n y =、)0( x xm y =的图像上,OB OA ⊥,则tanB= .21.在平面直角坐标系中,已知点A (1,1)在坐标轴上找一点P ,使△AOP 为等腰三角形,求P点坐标.22.设抛物线25(21)24y x a x a =++++的图像与x 轴只有一个交点. (1)求a 的值;(2)求186323a a -+.23.已知直线y=b (b 为实数)与函数2|43|y x x =-+的图像至少有三个公共点,则实数b 的取值范围.24.已知一次函数y=Ax+B 与反比例函数y=kx 的图像交于点M (2,3),N (-4,m )(1)求一次函数y=Ax+B 与反比例函数y=kx 的解析式;(2)求△OMN 的面积.25.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )A .B .C .D .C D E FA B26.求满足下列条件的正整数n 的所有可能值:对这样的n ,能找到实数a ,b ,使得函数21()f x x ax b n=++对任意整数x ,f(x)都是整数. 27.如图,已知点M (0,1),N (0,-1),P 是抛物线214y x =上的一个动点 (1)判断以点P 为圆心,PM 为半径的圆与直线y=-1的位置关系;(2PNM=∠QNM28.已知二次函数2(0)y x bx c c =++<的图像与x 轴的交点分别为A ,B ,与y 轴的交点为C ,设△ABC 的外接圆的圆心为P .(1)证明⊙P 与y 轴的另一个交点为定点;(2)如果AB 恰好为⊙P 的直径且S △ABC =2,求b 和c 的值.29.已知抛物线2y x px q =++上有一点M (x 0,y 0)位于x 轴的下方.(1)求证:已知抛物线与x 轴必有两个交点A (x 1,0),B (x 2,0),其中x 1<x 2; (2)求证x 1< x 0<x 2;(3)若点M 为(1,-2)时,求整数x 1,x 2的值.30. 如果抛物线1C 的顶点在抛物线2C 上,同时,抛物线2C 的顶点在抛物线1C 上,那么,我们称抛物线1C 与2C 关联.(1)已知抛物线①122-+=x x y ,判断下列抛物线②122++-=x x y ;③122++=x x y 与已知抛物线①是否关联,并说明理由.(2)抛物线1C :2)1(812-+=x y ,动点P 的坐标为(t ,2),将抛物线绕点P (t ,2)旋转︒180得到抛物线2C ,若抛物线1C 与2C 关联,求抛物线2C 的解析式.(3)点A 为抛物线1C :2)1(812-+=x y 的顶点,点B 为与抛物线1C 关联的抛物线顶点,是否存在以AB 为斜边的等腰直角ABC Δ,使其直角顶点C 在y 轴上,若存在,求出C 点的坐标;若不存在,请说明理由.31.已知二次函数2222(0)y x mx m m =--≠的图像与x 轴交于点A ,B ,它的顶点在以AB 为直径的圆上.(1)证明:A ,B 是x 轴上两个不同的交点; (2)求二次函数的解析式;(3)设以AB 为直径的圆与y 轴交于点C ,D ,求弦CD 的长.32.如图,双曲线xy 2=(x >0)经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得△C B A ',B '点落在OA 上,则四边形OABC 的面积是 .33.如图,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B .(1)写出点B 的坐标 ;(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧..部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点. 若以CD 为直角边的△PCD 与△OCD 相似,则点P 的坐标为 .34.我们知道,对于二次函数y=a (x+m )2+k 的图像,可由函数y=ax 2的图像进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax 2为“基本函数”,而称由它平移得到的二次函数y=a (x+m )2+k 为“基本函数”y=ax 2的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离22k m +称为朋友距离.第32题图B'yx O CBAOBC D由此,我们所学的函数:二次函数y=ax 2,函数y=kx 和反比例函数xky =都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”. 如一次函数y=2x-5是基本函数y=2x 的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=103122=+.(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x 先向 ,再向下平移7单位,相应的朋友距离为 .(2)探究二:已知函数y=x 2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离. (3)探究三:为函数143++=x x y 和它的基本函数xy 1=,找到朋友路径,并求相应的朋友距离.35.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是( )36.已知等腰三角形ABC 的两个顶点分别是A (0,1),B (0,3),第三个顶点C 在x 轴的负半轴上.关于y 轴对称的抛物线y =ax 2+bx +c 经过A ,D (3,-2),P 三点,且点P 关于直线AC 的对称点在x 轴上. (1)求直线BC 的解析式;(2)求抛物线y =ax 2+bx +c 的解析式及点P 的坐标;(3)设M 是y 轴上的一个动点,求PM +CM 的取值范围.ABCDMN P37.抛物线2y ax bx c =++(a ≠ 0)满足条件:(1)40a b -=;(2)0a b c -+>; (3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①0a <; ②0c >;③0a b c ++<;④43c ca <<,其中所有正确结论的序号是( ) A .①③ B .②④ C .①② D .③④38.已知抛物线y=2x 2—4mx+21与x 轴有2个不同的交点A ,B ,抛物线的顶点为C , (1)当△ABC 为等边三角形时,试确定点C 的位置; (2)如何平移符合条件(1)的抛物线,使AC=23AB ; (3)设点D ,E 分别是AC ,BC 的中点,点F ,G 分别是DC ,EC 的中点,问四边形DFGE 的面积S 的大小与m 的取值是否有关?若有关,写出其关系式;若无关,请说明理由.39.已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥恒成立.(1)试确定抛物线y =(1)(1)()0a x x ax bx b x bx ------≥的开口方向以及与x 轴的交点个数.(2)求乘积ab 的最小值.(3)当ab 取最小值时,求抛物线y =(1)(1)()0a x x ax bx b x bx ------≥的解析式.40.已知二次函数c bx ax x f ++=2)(2(c ﹥b ﹥a),其图象过点(1,0),并且与直线a y -=有公共点.证明:ab≤0﹤1. 41.方程 ()42330ax a x a --+=有一个根小于-2,另外三个根都大于-1,求a 的取值范围.数学竞赛辅导系列讲座六——三角形1.设△ABC 的三边分别为a ,b ,c 且2228440a c b ab bc ++--=,则△ABC 一定是( )A 、直角三角形B 、等边三角形C 、等腰三角形D 、钝角三角形2.△ABC 的边a ,b ,c 满足条件211b a c=+,则b 边所对的∠B 的大小是( ) A 、锐角B 、直角C 、钝角D 、锐角、直角、钝角都有可能3.在锐角△ABC 中,三个内角的度数都是质数,且最短边的长是1,则满足条件的互不全等的三角形的个数为( )A 、1B 、2C 、3D 、多于34.7条长度均为整数的线段127,,,a a a ,满足127a a a <<<,且这7条线段中的任意三条都不能构成三角形,若a 1=1,a 7=21,则a 6=( )A 、18B 、13C 、8D 、55.1239A A A A 是一个正九边形,1213,A A a A A b ==,则15A A 等于( )ABC 、12(a+b)D 、a+b6.在Rt △ABC 中,∠C=90°,BC<AC ,且241AB AC BC =⨯,则∠A=( ) A 、15°B 、18°C 、20°D 、25°7.如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角, 在直线l 上取一点P ,使得∠APB=30°,则这样的点P 有( )A 、3个B 、2个C 、1个D 、不存在8.在△ABC 中,AB=AC=2,BC 边上有100个不同的点123100,,,,P P P P , 记()100,,3,2,12K =⨯+=i PC BP AP m i i i i ,则12100m m m +++=( )A 、100B 、200C 、300D 、4009.如图,在线段AE 同侧作两个等边△ABC ,△CDE (∠ACE<120°),P ,M 分别是线段BE 和AD 的中点,则△PCM 是( )A 、钝角三角形B 、直角三角形C 、等边三角形D 、非等腰三角形 10.在△ABC 中,∠C=3∠A ,a=27,c=48,则b 等于( )A 、33B 、35C 、37D 、不确定BDE11.在△ABC 中,AB=5,AC=12,BC=13,D ,E 在边BC 上,满足BD=1,CE=8,则∠DAE 的度数为_______.12.在Rt △ABC 中,F 是斜边AB 的中点,D 、E 分别在CA 、CB 上,满足∠DFE=90°,若AD=3,BE=4,则线段DE 的长度为______.13.如图,在正△ABC 中,D 、E 分别在BC ,CA 上,使CD=AE ,AD 与BE 交于点P ,BQ ⊥AD 于点Q ,则QPQB=______.14.设P 是边长为12的正△ABC 内一点,过P 分别作三条边BC 、CA 、AB 的垂线,垂足为别为D 、E 、F ,已知PD:PE:PF=1:2:3,那么四边形BDPF 的面积是________. 15.如图,已知∠BAD=∠DAC=9°,AD ⊥AE ,且AB+AC=BE ,则∠B=________.16.如图,在三角形ABC 中,∠BAC=45°,AD ⊥BC 于点D ,若BD=3,CD=2,则S △ABC =________. 17.在△ABC 中,AB=7,AC=11,M 是BC 边的中点,AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长是______.18.在△ABC 中,∠CAB=70°,∠CAB 和∠ACB 的平分线交于点I ,若AC+AI=BC ,则∠ACB= _____°.19.在钝角△ABC 中,∠A<∠B<∠C ,∠A 、∠C 的外角平分线交对边延长线与D 、E ,且AD=AC=CE ,则∠BAC 的大小是__________.20、在底角等于80°的等腰△ABC 的两腰AB ,AC 上分别取点D 、E 使得∠BDC=50°,∠BEC =40°,则∠ADE=______.21.已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF .22.如图,以△ABC 的AB 、AC 为斜边向形外作直角三角形ABD 和ACE 且使∠1=∠2,M 是BC 的中点,求证:MD=ME .D EC23.已知在△ABC 中,∠A>90°,AD ⊥BC ,求证AC+AB<AD+BC .24.在等腰三角形ABC 一腰AB 上取一点D ,在另一腰AC 的延长线上去CE=BD ,连DE ,求证:DE>BC .25.锐角△ABC 中,BC<AB ,AH 是BC 边上的高,BM 是AC 边上的中线,AH=BM ,求证:∠MBC =30°.26.如图,△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°的角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形成一个三角形,求证:△AMN 的周长等于2.27.如图,△ABC 中,∠ACB=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC ,BD=0.5,DE+BC=1,求证:∠ABC=30°.28.如图,∠ABD=∠ACD=60°,∠ADB=900—12 ∠BDC ,求证:△ABC 是等腰三角形.E29.如图,在△ABC 中,已知∠A=90°,AB=AC ,D 为AC 中点,AE ⊥BD ,延长AE 交BC 于F ,求证:∠ADB=∠CDF .30.如果P 是等边三角形ABC 内一点,PA=2,PB=2 3 ,PC=4,求正△ABC 的边长. 31.如图,已知D 、E 、F 分别是锐角△ABC 的三边BC 、CA 、AB 上的点,且AD 、BE 、CF 相交于点P ,AP=BP=CP=6,设PD=x ,PE=y ,PF=z ,若xy+yz+zx=28,求xyz 的大小.32.如图,在一张长方形纸片ABCD 中,AB AD <,点E F 、分别是AB 和CD 的中点,现将这张纸片按图示方式折叠,使点B 落在线段EF 上的点G 处,折痕AK 交EF 于H ,则下列说法正确的个数有 ①30DAG ∠=︒;②△GHK 是正三角形;③2GH EH =;④3FG EH =. ( )A .1个B .2个C .3个D .4个33.如图,同一段铁丝分成相等的四段可围成正方形,若分成相等的五段,则可围成正五边形,其中正方形的边长为(2212a ab b -+)m ,正五边形的边长为(25)b m -,则这段铁丝的总长是_______________m .34.如图,直线l 1、l 2、l 3相交于点A 、B 、C ,得到△ABC ,其中∠ACB =90°,AC=6,BC=8,点O 在线段AC 上,且OA=2OC ,将△ABC 绕点O 旋转得到△A /B /C /,当点A /落在这三条直线上时,线段AA /的长是_______________.35.如果长为l 的一根绳子恰好可围成两个全等三角形,那么其中一个三角形的最长边x的取值范围是( ) A .8l ≤x <4l B .6l ≤x <4l C .8l ≤x <3l D .6l ≤x <2l 36.已知AD 是△ABC 的中线,∠ABC =30°,∠ADC =45°,则∠ACB = 度.EDPCAEFHK GF DAB C。

初中数学竞赛教程

初中数学竞赛教程

七年级第一讲 有理数(一)一、【能力训练点】1、正负数,数轴,相反数,有理数等概念。

2、有理数的两种分类:3、有理数的本质定义,能表成mn(0,,n m n ≠互质)。

4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。

5、绝对值的意义与性质: ① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性 2(||0,0)a a ≥≥③ 非负数的性质: i )非负数的和仍为非负数。

ii )几个非负数的和为0,则他们都为0。

二、【典型例题解析】:1. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方2.已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。

3.如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( ) A.2a B.2a - C.0 D.2b4.有3个有理数a,b,c ,两两不等,那么,,a b b c c ab c c a a b------中有几个负数?5.设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba,b 的形式,求20062007a b +。

6.三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac=+++++则321ax bx cx +++的值是多少?7.若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

第二讲 有理数(二)一、【能力训练点】: 1、绝对值的几何意义① |||0|a a =-表示数a 对应的点到原点的距离。

初一数学竞赛系列讲座

初一数学竞赛系列讲座

初一数学比赛系列讲座 (7)相关恒等式的证明一、一、知识重点恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常经过恒等变形从一边证到另一边,或证两边都等于同一个数或式。

在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体办理、 “ 1”的代换等;对于条件恒等式的证明,怎样办理好条件等式是重点,要仔细剖析条件等式的结构特点,以及它和要证明的恒等式之间的关系。

二、二、例题精讲例 1 求证: a 1+(1-a 1)a 2+(1-a 1)(1-a 2 )a 3+ +(1-a 1)(1-a 2) (1-an-1)a n=1-(1-a )(1-a ) (1-a n-1 )(1-a n )12剖析:要证等式成立,只需证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 - - (1-a 1)(1-a 2) (1-a n-1)a n=(1-a 1)(1-a 2) (1-a n-1)(1-an )证明: 1- a 1- (1-a 1 )a 2- (1-a 1)(1-a 2)a 3 - - (1-a 1)(1-a 2)(1-a n-1)a n=(1-a 1)[ 1- a 2- (1-a 2 )a 3- (1-a 2)(1-a 3)a 4 - - (1-a 2)(1-a 3) (1-a n-1)a n ]=(1-a 1) (1-a 2)[ 1- a 3- (1-a 3 )a 4- (1-a 3)(1-a 4)a 5 - - (1-a 3)(1-a 4) (1-an-1)a n ]=(1-a ) (1-a ) (1-a 3 )[ 1- a 4 - (1-a )a -(1-a )(1-a )a - - (1-a )(1-a ) (1-a n-1 )a ]12454 5 6 4 5 n==(1-a 1)(1-a 2) (1-an-1)(1-an )∴ 原等式成立例 2 证明恒等式a 1a 2a na 2 a 3a 1a 2 a 1 a 2 a 3 a 2 a 3a 1 a n a 1a 1 a 1 a 2a 2 a 2 a 3a n a n a 1(第二十届全俄数学奥林匹克九年级试题 )a 1a 2a n证明a 2 a 1 a 2a 3 a 2 a 3a 1 a n a 11 111 1 1 a2 a 1 a 2 a3 a 2 a 3a 1 a n a 11 1 111 1a 1a 1 a 2a 2 a 2 a 3a na na 1a 2a 3a 1a 1 a 1 a 2a 2 a 2 a 3a n a n a 1评注:裂项是恒等变形中常用的一种方法ab c1例 3 若 abc=1,求证 aba 1 bcb 1 cac 1剖析:所要求证的等式的左侧是三个分母差别很大的式子,因此变形比较困难。

初中数学竞赛辅导讲义(总77页)

初中数学竞赛辅导讲义(总77页)

初中数学竞赛辅导讲义-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。

2、综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。

3、分式运算:实质就是分式的通分与约分。

[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x例2. 已知z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。

解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。

解:1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21证:左边=21(1 - 31 + 31 - 51+ …… +121-n - 121+n ) =21(1- 121+n )∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21 [小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。

特殊四边形——数学竞赛系列讲座(9)

特殊四边形——数学竞赛系列讲座(9)

形 也是 轴 对称 图形 , 以对 角 线 为 对称 轴 , 而能 保 证 对 角 线相 互 垂 直 但 因
平分 , 对 角线都 平分 相应 的 内角 . 且 这样 思考 , 不 是感 到大 脑轻松 了一些 ? 是 “ 称 性 ” 学 习 特 殊 四 边 形 的 一 条 主 线 ; 有 一 条 主 线 是 与 三 角 形 对 是 还
本 处 在 于 抓 住 各 自 图 形 的 对 称 性 特 点 . , 行 四 边 形 最 重 要 的 特 征 是 如 平
中 , 称 . 的 性 质 : 边 平 行 、 等 , 角 相 等 , 角 线 相 互 平 分 等 都 1对 2 它 对 相 对 对
是 由 中 心 对 称 性 决 定 的 . 形 最 重 要 的 特 征 , 了 中 , 称 以 外 , 还 是 矩 除 1对 2 它 轴对称 图形 , 而其 对 角线相 等 , 保 证不 “ ” — 有 四个 角 为直 角. 因 且 歪 — 菱
‘;一 ‘
线 ), 图 2 其 中 , 一 个 小 正 方 形 、 个 平 行 四 边 形 和 5个 大 小 不 全 相 如 . 由 一 同的直 角 三角形 拼成 了一个大 正 方形. ( ) 若 设 正 方 形 ABCD 的 边 长 为 1 试 求 平 行 1 , 四 边 形 DEFH 的 面 积 ;
( )请 用 这 块 七 巧 板 分 别 拼 一 个 平 行 四边 形 2 ( 是 矩 形 、 形 ) 一 个 矩 形 ( 宽 不 等 ) 一 个 直 不 菱 : 长 、
筋哟 ! 例 1 如 图 1 四 边 形 ABCD 是 平 行 , 四 边 形 ,AE _ B , - BD , 足 分 别 为 j D CF j 垂
B C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学竞赛系列讲座(9)应用题(一)一、一、知识要点1、 1、 应用题是中学数学的重要内容之一,它着重培养学生理解问题、分析问题和解决问题的能力,解应用题最主要的方法是列方程或方程组。

2、 2、 列方程(组)解应用题的一般步骤是:(1) (1) 弄清题意和题目中的数量关系,用字母表示题目中的一个未知数;(2) (2) 找出能够表示应用题全部含义的一个相等关系;(3) (3) 根据这个相等关系列出方程;(4) (4) 解这个方程,求出未知数的值;(5) (5) 写出答案(包括单位名称)。

3、行程类问题行程类问题讨论速度、时间和路程之间的相互关系。

它们满足如下基本关系式: 速度⨯时间=路程4、数字类问题数字类问题常用十进制来表示数,然后通过相等关系列出方程。

解数字类问题应注意数字间固有的关系,如:连续整数,一般设中间数为x ,则相邻两数分别为x-1、x+1;连续奇(偶)数,一般设中间数为x ,则相邻两数分别为x-2、x+2。

二、二、例题精讲例1 从甲地到乙地的公路,只有上坡路和下坡路,没有平路。

一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米,。

车从甲地开往乙地需9小时,乙地开往甲地需217小时,问:甲、乙两地间的公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?(第五届华杯赛复赛题)分析 本题用方程来解简单自然。

解 设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,根据题意得方程组⎪⎩⎪⎨⎧=+=+(2) 2172035(1)93520y x y x解这个方程组有很多种方法。

例如代入消元法、加减消元法等。

由于方程组系数比较特殊(第一个方程中x 的系数201恰好是第二个方程中y 的系数,而y 的系数351也恰好是第二个方程中x 的系数),也可以采用如下的解法:(1)+(2)得(x+y)( 201+351)=9+217所以 x+y=2103512012179=++ (3) (1)-(2)得 (x -y)( 201-351)=9-217所以 x-y=703512012179=-- (4) 由(3)、(4)得 x=140270210=+所以甲、乙两地间的公路长210千米,从甲地到乙地须行驶140千米的上坡路。

例2 公共汽车每隔x 分钟发车一次,小宏在大街上行走,发现从背后每隔6分钟开过来一辆公共汽车,而每隔724分钟迎面开来一辆公共汽车。

如果公共汽车与小宏行进的速度都是均匀的,则x 等于 分钟。

(第六届迎春杯初赛试题)分析:此题包括了行程问题中的相遇与追及两种情况。

若设汽车速度为a 米/每秒,小宏速度为b 米/每秒,则当一辆汽车追上小宏时,另一辆汽车在小宏后面ax 米处,它用6分钟追上小宏。

另一方面,当一辆汽车与小宏相遇时,另一辆汽车在小宏前面ax 米处,它经过724分钟与小宏相遇。

由此可列出两个方程。

解:设汽车速度为a 米/每秒,小宏速度为b 米/每秒,根据题意得⎪⎩⎪⎨⎧+⋅=-=)(724)(6b a ax b a ax两式相减得 12a=72b 即a=6b 代入可得x=5评注:行程问题常分为同向运动和相向运动两种,相遇问题就是相向运动,而追及问题就是同向运动。

解这类问题分析时往往要结合题意画出示意图,以便帮助我们直观、形象地理解题意。

例3 摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭。

由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息。

司机说,再走从C 市到这里路程的二分之一就到达目的地了。

问A 、B 两市相距多少千米?(第五届华杯赛决赛试题)分析:本题条件中只有路程,没有时间和速度,因而应当仔细分析各段路程之间的关系。

解:如图,设小镇为D ,傍晚汽车在E 休息 A D C E B由已知, AD 是AC 的三分之一,也就是AD =21DC 又由已知,EB=21CE两式相加得:AD+ EB=21DE因为DE=400千米,所以AD+ EB=21⨯400=200千米,从而A 、B 两市相距400+200=600千米评注:行程问题常通过画行程示意图来帮助我们思考。

例4 有编号为①、②、③的3条赛艇,其在静水中的速度依次为每小时v 1、v 2、v 3千米,且满足v 1> v 2> v 3> v >0,其中v 为河流的水流速度。

它们在河流上进行追逐赛,规则如下:(1) 3条赛艇在同一起跑线上同时出发,逆流而上,在出发的同时,有一浮标顺流而下;(2) 经过1小时,①、②、③号赛艇同时掉头,追赶浮标,谁先追上谁为冠军。

在整个比赛期间各艇的速度保持不变,则比赛的冠军为解:经过1小时,①、②、③号赛艇同时掉头,掉头时,各艇与浮标的距离为:S i =(v i -v)⨯1+v ⨯1= v i ⨯1(i=1、2、3)第i 号赛艇追上浮标的时间为:()11=⨯=-+=i i i i i v v v v v S t (小时)由此可见,掉头后各走1小时,同时追上浮标,所以3条赛艇并列冠军。

评注:顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

例5在一环行轨道上有三枚弹子同时沿逆时针方向运动。

已知甲于第10秒钟时追上乙,在第30秒时追上丙,第60秒时甲再次追上乙,并且在第70秒时再次追上丙,问乙追上丙用了多少时间?(第11届希望杯竞赛培训题)解:设甲的运动速度是甲,V 乙的运动速度是乙V ,丙的运动速度是丙V .设环形轨道长为L 。

甲比乙多运动一圈用时50秒,故有甲V -乙V =50L①甲比丙多运动一圈用时40秒,故有甲V -丙V =40L②②-①可得到乙V -丙V =40L -50L =200L③4=丙乙-乙甲-V V V V ④5=-丙乙丙甲-V V V V ⑤甲、乙、丙初始位置时,乙、丙之间的距离=甲、丙之间距离-甲、乙之间距离=(甲V -丙V )×30-( 甲V -乙V )×10; 乙追上丙所用时间=丙乙-乙、丙之间距离V V=--丙乙丙甲-30⨯V V V V 1104015010=-=丙乙-乙甲-⨯V V V V 秒.所以第110秒时,乙追上丙. 评注:相遇问题的关系式是:路程和=速度和⨯时间;追及问题的关系式是:追及路程=速度差⨯时间。

例6 一个三位数,三个数位上的数字和为17,百位上的数比十位上的数大7,个位上的数是十位上数的3倍,求这个三位数。

解:设十位上的数为x ,则个位上的数为3 x ,百位上的数是x+7由题意得:3 x+x+ x+7=17,∴x=2∴这个三位数是:100(x+7)+10 x+3 x=926答:这个三位数是926评注:数字问题常设出数位上的数字,再用十进制把数表示出来。

例7 两个三位整数,它们的和加1得1000,如果把大数放在小数的左边,并在这两数之间点上一个小数点,则所成的数正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求这两个数。

解:设大数为x ,则小数为999-x ,由题意得 )1000999(61000999x x x x +-=-+解这个方程得:x=857, ∴999-x=142答:大数为857,小数为142。

例8 一辆卡车在公路上匀速行驶,起初看到里程碑上的数字为AB ,过了1小时里程碑上的数字为BA ,又行驶了1小时里程碑上的数字为A0B ,求每次看到的数字和卡车的速度。

分析:相等关系是前一小时走的路程=后一小时走的路程。

解:依题意得:BA -AB =A0B -BA ,即AB +A0B =2BA ,所以 (10A+B)+(100A+B)=2(10B+A),整理得6A=B因为A 、B 取1到9的自然数,所以只有A=1,B=6故3次看到的数字分别是16,61,106,卡车的速度为45千米/时。

评注:本题得到的是一个不定方程,通过A 、B 是1到9的自然数来求出A 、B 。

例9 在黑板上从1开始,写出一组连续的自然数,然后擦去了一个数,其余的平均值为17735,试问擦去的数是什么数?分析:设出擦去的数,用平均值为17735来估计出写出的自然数,从而求出擦去的数。

解:设写出了n 个自然数1,2,…,n 中擦去的是k ,则由题意得:21211211773522112112117735n n n n n k n n n n n k n =--+++≥--+++=+=--+++≤--+++= 即⎪⎩⎪⎨⎧≤≤≤≥+171470171468 1773521773522n n n 解之得因为n 是自然数,且n-1必须是17的倍数,所以n=69于是由177********=-+++k ,可解得k=7,即擦去的数为7。

评注:本题运用了放缩原理来得出n 的范围,从而确定自然数n 的值,放缩法是数学竞赛中常用的方法。

三、三、巩固练习选择题1、甲、乙二人从M 地同时出发去N 地,甲用一半的时间以每小时a 千米的速度行走,另一半的时间以每小时b 千米的速度行走;乙以每小时a 千米的速度行走一半的路程,另一半路程以每小时b 千米的速度行走。

若a ≠b ,则( )先到达N 地。

A 、甲B 、乙C 、二人同时到达D 、不确定2、已知游艇在静水中的航速为每小时10千米,某一旅游团乘该游艇在黄河顺水航行2小时,又用3小时返回出发地,求该团所走的航程是( )A 、24千米B 、12千米C 、48千米D 、40千米3、某人从A 地步行到B 地,当走到预定时间时,离B 地还有0.5千米;若把步行速度提高25%,则可比预定时间早半小时到达B 地。

已知AB 两地相距12.5千米,则某人原来步行的速度是( )A 、2千米/时B 、4千米/时C 、5千米/时D 、6千米/时4、一个两位数,十位上的数与个位上的数的和是7,若十位上的数与个位上的数对换,现在的两位数与原来的两位数的差是9,则现在的两位数是( )A 、43B 、34C 、25D 、525、在由两个不同数字组成的所有两位数中,每个两位数被其两个数字之和除时,所得的商的最小值是( )A 、1.5B 、1.9C 、3.25D 、4.3756、一个插入一个一位数(包括0),就变成一个三位数,如:72中间插入6后变成了762。

有些两位数中间插入某个一位数后变成的三位数,是原来两位数的9倍,这样的两位数有( ) (第六届《祖冲之杯》数学邀请赛试题)A 、1个B 、4个C 、10个D 、超过10个填空题7、早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。

两辆汽车的速度都是每小时60千米,8点32分时,第一辆车离开化肥厂的距离是第二辆车的3倍。

到了8点39分时,第一辆车离开化肥厂的距离是第二辆车的2倍。

则第一辆车是8点 分离开化肥厂的.8、甲、乙两个同学从A 地到B 地,甲步行的速度为每小时3千米,乙步行的速度为每小时5千米,两人骑自行车的速度都是每小时15千米。

相关文档
最新文档