人教版八年级数学上册第一章分式测试题(含知识点)
人教版八年级上册数学试题: 15.3 分式方程 经典题、易错题(解析)
分式方程 经典题1. 如果0132=--x x ,则=+221xx . 分析:这是一道填空题,题目与例3极为相近,唯一区别在于条件中常数项一个是“1+”,另一个是“1-”.把0132=--x x 变形后得到31=-xx ,两边平方,不难得到911222=+⋅⋅-x x x x ,整理为11122=+xx .同学们观察后,容易发现 “1+” 与“1-”的区别,前者结果为平方后等式右边的值“2-”;而后者结果为平方后等式右边的值“2+”.解:如果0132=--x x ,则=+221x x 11 .2.若分式11x x -+的值为零,则x 的值为 . 分析:在解分式AB值为零这类问题时必须注意到A=0且B ≠0的条件,•二者缺一不可. 解:由分式值为零的条件得:|x|-1=0且x+1≠0,得x=1; 3.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 分析:原方程有增根,说明分母为0的那个值是使得方程出现增根,x=1,只要带入方程即可求出a 值。
解:去分母并整理,得ax +1=x -1,因为原方程有增根,增根只能是x =1,将x =1代入去分母后的整式方程,得a =-1.4. 解方程43.44x x x +=-++ 分析:注意到本题中有相同的分母,这是应该将其移项、合并。
解:原方程可化为43,44x x x +=-++ 合并,得43,4x x +=-+ 即1=-3,结论矛盾,故原分式方程无解.5. 解方程2.65x xx x +=-- 分析:注意到方程两边只是各有一个分式,此时应该交叉相乘比较简单。
解:由原方程,得(x+2)(x -5)=x(x -6),可得x=10.3经检验:x=103是原分式方程的解.6. 解下列方程:xx x x -++=--212253 析解:先确定最简公分母,再两边同乘以最简公分母,将原方程化为整式方程,求出根并检验即可.原方程即为212253-+-=--x x x x 方程两边同乘以(x 一2),去分母,得: 3x 一5=2(x 一2)一(x 十1)整理,得x=0检验:当x=0时,x 一2≠0 所以x=2是原方程的根.点评:去分母的关键是找出最简公分母,将分式方程转化为整式方程,但还应注意:(1)灵活运用分式符号法则,有时将能使最简分母更简单,(2)方程两边同乘以最简公分母时,别忘了常数项相乘(3)当去分母时,分数线消失,应在分子部分添上括号,并且要特别注意符号.7.解方程2x+15x +=3x -2+1.5x + 分析:本题可以将方程两边相同的分式消去解:方程左右两边分式相消,得 2x=3x -2,解得x=2.经检验:x=2是原分式方程的解. 8. 解方程11 3.22xx x-=--- 分析:本题可用一般的解题方法解答,这里还可以是一个参数,达到化简的目的 解:设x -2=y,则x -1=y+1.原方程可化为11 3.y y y+=- 即112y y=-,0=-2,结论矛盾. 所以原分式方程无解.9. 已知方程214x -+2=2kx -有增根,则k =______________. 分析:原方程有增根,说明分母为0的那个值是使得方程出现增根,增根可能是2x =或2x =-.,然后分别代入求解。
人教版八年级上册数学《分式》单元综合检测附答案
(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少?
25.我市计划对某地块的1000m2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.
9.化简 的结果是
A.- B. C. D.
10.使分式 的值为整数,则整数x可取的个数为( )
A.2个B.3个C.4个D.5个
11.王老师坚持绿色出行,每天先步行到离家500米的公共自行车点取车,然后骑车4.5千米到校.某天王老师从手机获知,骑车平均每小时比步行多10千米,共用时24分钟.设步行的平均速度为每小时x千米,则可列方程 ( ).
A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b
【答案】B
【解析】
a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣ , , ,
∵﹣ ,
∴b<a<d<c.
故选B.
点睛:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
故选A
【点睛】本题考核知识点:分式的定义.解题关键点:理解分式的定义.
2.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为( )
A.当x=2时, 的值为零
B.无论x为何值, 的值总为正数
人教版八年级数学上册分式(含知识点)
⑴边边边( ):三边对应相等的两个三角形全等.
⑵边角边( ):两边和它们的夹角对应相等的两个三角形全等.
⑶角边角( ):两角和它们的夹边对应相等的两个三角形全等.
⑷角角边( ):两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边( ):斜边和一条直角边对应相等的两个直角三角形
⑷多边形的外角和:多边形的外角和为360°.
⑸多边形对角线的条数:①从 边形的一个顶点出发可以引 条对角
线,把多边形分成 个三角形.② 边形共有 条对角线.
第十二章 全等三角形
一、知识框架:
二、知识概念:
1.基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
2.基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
⑶经过分析,找出由已知推出求证的途径,写出证明过程.
第十三章 轴对称
一、知识框架:
二、知识概念:
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相
重合,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一
个图形重合,那么就说这两个图形关于这条直线对称.
一、知识框架 :
二、知识概念:
1.分式:形如 , 是整式, 中含有字母且 不等于0的整式叫做分式.其中 叫做分式的分子, 叫做分式的分母.
人教版数学八年级上册 分式解答题单元测试卷(含答案解析)
一、八年级数学分式解答题压轴题(难)1.已知分式 A =2344(1)11a a a a a -++-÷-- (1)化简这个分式;(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.【答案】(1)22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】【分析】(1)根据分式混合运算顺序和运算法则化简即可得;(2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a 的范围判断结果与0的大小即可得;(3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】 解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯-- =22a a +-; (2)变小了,理由如下: ∵22a A a +=-, ∴62a B a +=+, ∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,∴20a ->,24a +>,∴0A B ->,∴分式的值变小了;(3)∵A 是整数,a 是整数, 则24122a A a a +==+--, ∴21a -=±、2±、4±, ∵1a ≠,∴a 的值可能为:3、0、4、6、-2;∴3046(2)11++++-=;∴符合条件的所有a 值的和为11.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.2.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。
人教版八年级数学上册第1单元测试卷
人教版八年级数学上册第1单元测试卷学习八年级数学第一单元知识不在于力量多少,而在能坚持多久。
下面由店铺为你整理的人教版八年级数学上册第1单元测试卷附答案,希望对大家有帮助!人教版八年级数学上册第1单元测试卷第1章分式类型之一分式的概念1.若分式2a+1有意义,则a的取值范围是 ( )A.a=0B.a=1C.a≠-1D.a≠02.当a ________时,分式1a+2有意义.3. 若式子2x-1-1的值为零,则x=________.4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.类型之二分式的基本性质5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).类型之三分式的计算与化简6.化简1x-3-x+1x2-1(x-3)的结果是 ( )A.2B.2x-1C.2x-3D.x-4x-17.化简x(x-1)2-1(x-1)2的结果是______________.8.化简:1+1x÷2x-1+x2x.9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.类型之四整数指数幂11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.类型之五科学记数法12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .类型之六解分式方程13.分式方程12x2-9-2x-3=1x+3的解为 ( )A.x=3B.x=-3C.无解D.x=3或-314.解方程:2x-1=1x-2.15.解方程:23x-1-1=36x-2.类型之七分式方程的应用16.李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍,且李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.人教版八年级数学上册第1单元测试卷答案1.C2.≠-23.34.【解析】要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.5.=6.B 【解析】原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.7.1x-18.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)10.【解析】本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.当x2-x=0时,原式=0-2=-2.11.【解析】先算乘方,再算乘除.解:(1)原式=-1-7+3+5=0;(2)原式=m-6n-2•2-2m4n6÷m-3n3=14m-6+4-(-3)n-2+6-3=14mn.12.9.63×10-513.C 【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:当x=3时,(x+3)(x-3)=0,即x=3不是原分式方程的解,故原方程无解.14.解:方程两边都乘(x-1)(x-2),得2( x-2)=x-1,去括号,得2x-4=x-1,移项,得x=3.经检验,x=3是原方程的解,所以原分式方程的解是x=3.15.解:方程两边同时乘6x-2,得4-(6x-2)=3,化简,得-6x=-3,解得x=12.检验:当x=12时,6x-2≠0,所以x=12是原方程的解.16.【解析】(1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x 米/分,根据题意,得2 100x-2 1003x=20,解得x=70,经检验,x=70是原方程的解,所以李明步行的速度是70米/分.(2)因为2 10070+2 1003×70+1=41(分)<42(分),所以李明能在联欢会开始前赶到学校.17.【解析】本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意,得1 200x-1 2001.5x=10,解得x=40,经检验x=40是原方程的根,所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。
八年级上册数学《分式》单元测试含答案
一.选择题
1.若分式 在实数范围内有意义,则实数x的取值范围是()
A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2
[答案]D
[解析]
[分析]
直接利用分式有意义的条件分析得出答案.
[详解]∵代数式 在实数范围内有意义,
∴x+2]本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键.
[分析]
根据题意可得 ,解方程组可得A,B,再代入求值.
[详解]解:∵ ,
∴ ,
解得 ,
∴3A﹣B=6﹣4=2.
故3A﹣B的值是2.
[点睛]本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.
17.先约分,再求值: 其中 .
[答案]
[解析]
分析:先把分式的分子分母分解因式,约分后把A、B的值代入即可求出答案.
∴3x=36.
答:自行车的速度是12km/h,公共汽车的速度是36km/h.
[点睛]本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.
20.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了 ,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
[答案]
[解析]
[分析]
分式方程两边同乘3(x+1),解出x的解,再检验解是否满足.
[详解]解:方程两边都乘 ,
得: ,
解得: ,
经检验 是方程的解,
原方程的解为 .
[点睛]本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.
16.若A,B为实数,且 ,求3A﹣B的值.
八年级数学人教版上册同步练习分式的基本性质(解析版)
15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。
八年级数学上册分式的基本性质课时练习(含解析)
分式的基本性质一、选择题1、下列说法正确的是( )A.2y x 与23x y x+的最简公分母是5x 2B. 313a b 与316ab 的最简公分母是3ab C. 313a b 与316ab的最简公分母是3a 3b 3 D. 2y x 与23x y x +的最简公分母是6x 2【答案】D【解析】试题分析:根据最简公分母的定义求出结果.解:A 选项:2y x 与23x y x+的最简公分母是6x 2,故A 选项错误;B 选项:313a b 与316ab的最简公分母是6a 3b 3,故B 选项错误;C 选项:313a b 与316ab的最简公分母是6a 3b 3,故C 选项错误;D 选项:2y x 与23x y x +的最简公分母是6x 2,故D 选项正确.故应选D.考点:最简公分母2、下列分式是最简分式的( )A.223a a b B.23a a a - C.22a b a b ++ D. 222a ab a b --【答案】C【解析】试题分析:根据最简分式的定义进行判断.解:A 选项:223a a b 的分子、分母中有公因式a ,故A 选项不符合题意;B 选项:23a a a-的分子、分母中有公因式a ,故B 选项不符合题意;C 选项:22a b a b++的分子、分母没有公因式,所以是最简分式,故C 选项符合题意;D 选项:222a ab a b--的分子、分母中有公因式a-b ,故D 选项不符合题意.故应选C.考点:最简分式3、分式221x y -与1x y+的最简公分母为( )A. x-yB. x+yC. x 2-y 2D. (x 2-y 2)(x+y)【答案】C【解析】试题分析:先对可以分解因式的分母分解因式,再根据求最简公分母的方法求解即可.解:∵()()22x y x y x y -=+-∴分式221x y -与1x y+的最简公分母为x 2-y 2故应选C.考点:最简公分母4、如果把分式3x y x y+中的x 和y 都扩大为2倍,则分式的值( )A. 扩大为4倍 B. 扩大为8倍 C. 不变 D. 缩小为2倍【答案】B【解析】试题分析:根据分式的基本性质对分式进行变形,根据变形结果进行判断.解:如果x 和y 都扩大为2倍,则有()()()()333322821682222x y x y x y x y x y x y x y x y ⋅⋅===++++,所以分式的值扩大为原来的8倍.故应选B.考点:分式的基本性质5、已知2334b a b =-,则a b=( )A. 6 B. 119 C. 215 D. 27-【答案】B【解析】试题分析:根据比例的性质,可得8b=9a﹣3b,根据等式的性质,可得答案.解:由比例的性质,得8b=9a﹣3b.由等式的性质,得11b=9a ,119a b =故应选:B .考点:分式的基本性质.6、不改变分式的值,将分式20.020.23x x a b-+中各项系数均化为整数,结果为 ( )A. 2223x x a b -+ B.25010150x x a b -+ C. 2502103x x a b -+ D. 2210150x x a b-+【答案】B【解析】试题分析:利用分式的基本性质把分式的分子、分母都乘以100即可得到结果.解:()()2220.021000.02500.230.2310010150x x x x x x a b a b a b-⨯--==++⨯+,故应应选B.考点:分式的基本性质7、不改变分式的值,将下列各分式中的分子、分母的系数化为整数,其结果不正确的为( )A. 113223113223a b a b a ba b ++=-- B. 1.30.813820.7207x y x y x y x y --=-- C. 134624172748x y x y x yx y --=++ D. 135320.55x y x y x x --=【答案】D【解析】试题分析:根据分式的基本性质进行变形得到结果,根据得到的结果判断正误.解:A 选项,分子、分母同乘以6,正确;B 选项,分子、分母同乘以10,正确;C 选项,分子、分母同乘以8,正确;D 选项,分子、分母同乘以2,即得13620.5x y x y x x--=,错误.故应选D.考点:分式的基本性质8、根据分式的基本性质,分式a a b--可变形为( )A. a a b -- B. a a b + C. a a b -- D. a a b -+ 【答案】C【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:.故应选C.考点:分式的基本性质二、填空题9、分式312x ;()216x x y -的最简公分母是_ .【答案】6x 3(x-y)【解析】试题分析:根据确定最简公分母的方法求出结果.解:分式312x ;()216x x y -的最简公分母是6x 3(x-y)考点:最简公分母10、不改变分式的值,使分式的分子与分母都不含负号.(1)5x y-=-_____________;(2)2a b--=-_____________.【答案】(1) 5x y ;(2) 2a b-【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:(1)55x x y y-=-;(2) 22a a b b--=--.故答案是(1) 5x y ;(2) 2a b-.考点:分式的基本性质11、把分式32223a b a b -+的分子、分母中的各项系数都化为整数,且保持分式的值不变,则结果为_________________.【答案】12946a ba b-+【解析】试题分析:根据分式的基本性质把分子、分母同时乘以6,可得结果.解:33262129222246633a b a b a b a b a b a b ⎛⎫-⨯- ⎪-⎝⎭==+⎛⎫++⨯ ⎪⎝⎭.故答案是12946a b a b-+.考点:分式的基本性质. 12、若23b a =,则a b a b -=+ .【答案】15【解析】试题分析:根据23b a =,可设a=3k ,b=2k ,然后再利用代入法求出分式的值.解:因为23b a =,设a=3k ,b=2k ,3213255a b k k k a b k k k --===++.故答案是15.考点:分式的基本性质三、解答题13、化简:2223712a a a a ---+.【答案】14a a +-【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:2223712a a a a ---+()()()()3134a a a a -+=--14a a +=-.考点:约分14、约分:22211m m m-+-.【答案】11mm -+【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:22211m m m -+-()()()2111m m m -=-+11m m -=+.考点:约分15、先化简,再求值.(1)22969m m m -++,其中m=5.【答案】14【解析】试题分析:首先根据分式的基本性质把分式化简,然后再把字母的值代入化简后的分式中求值.解:22969m m m -++()()()2333m m m +-=+33m m -=+,当m=5时,原式33m m -=+5353-=+14=考点:分式的化简求值.。
人教版八年级数学上册 分式混合运算(习题及答案)
÷ x + 2 - ⎪ . 解:原式 = - ÷例 2:先化简 ⎢⎡ x ( x + 1) + x ⎥ ÷ 解:原式 = ⋅例题示范例 1:混合运算: 分式混合运算(习题)4 - x ⎛ 12 ⎫x - 2 ⎝ x - 2 ⎭【过程书写】x - 4 x 2 - 4 - 12x - 2 x - 2 x - 4 x 2 - 16 =- ÷x - 2 x - 2 x - 4 x - 2 =- ⋅x - 2 ( x + 4)( x - 4)=-1x + 4⎤ 2 x⎣ x - 1 ⎦ 1 - x,然后在 -2 ≤ x ≤ 2 的范围内选取一个你认为合适的整数 x 代入求值.【过程书写】x 2 + x + x 2 - x 1 - x x - 1 2 x2 x 2 1 - x = ⋅x - 1 2 x = - x∵ -2 ≤ x ≤ 2 ,且 x 为整数∴使原式有意义的 x 的值为-2,-1 或 2 当 x =2 时,原式=-2(2) - 1⎪ ÷ (3)⎪(4) y - 1 - y - 1 ⎭ y 2 + y巩固练习1. 计算:(1)1 - x - y x 2 - y 2÷x + 2 y x 2 + 4 x y + 4 y 2;⎛ a ⎫ ⎝ a - 1 ⎭ a 1 2 - 2a + 1;⎛ 2 ⎝ a 2 - b 2 - 1 ⎫ a ÷ a 2 - ab ⎭ a + b;⎛ 8 ⎫ y 2 - 6 y + 9 ⎪ ÷ ⎝;(5) ÷ - ⎪ ; (6) ÷ -1⎪ ;x ⎪ ⎪ ; 3 - x ⎛ 5 ⎫ x - 2 ⎛ -5 ⎫ ÷ - x - 3 ⎪ ; ÷ x + 2 -(10) ( x 2 - 1) - - 1⎪ ; 1a 2 - 2ab + b 2 ⎛ 1 1 ⎫ x 2 - 4x + 4 ⎛ 2 ⎫ 2a - 2b ⎝ b a ⎭ ⎝ x ⎭(7) ⎛ ⎝ 3x + 4 2 ⎫ x + 2 - ÷ x 2 - 1 x - 1 ⎭ x 2- 2 x + 1;(8) (9) 2 x - 4 ⎝ x - 2 ⎭ 2 x - 6 ⎝ x - 3 ⎭⎛ 1 ⎫ ⎝ x - 1 x + 1 ⎭(11) - ÷ - - ⎪ . ⎝ x + y x - y ⎭ x 2- 3xy ⎝x y ⎭ (1)先化简,再求值: 1 - ⎪÷(2)先化简,再求值: + ÷ x 2 - y 2 y 2 - x 2 ⎭ x 2 y - xy 2⎛ 2 1 ⎫ x 2 - y 2 ⎛ 1 1 ⎫ ⎪ ⋅2. 化简求值:⎛ ⎝ 1 ⎫ x 2 + 2x + 1 x + 2 ⎭ x + 2,其中 x = 3 -1.⎛ 5x + 3 y 2 x ⎫ 1 ⎪ ⎝x = 3 + 2 , y = 3 - 2 .,其中(3)先化简 ⎛ + 1⎪ ÷ (4)已知 A = .x + 1 ⎫ x 2 + x 2 - 2 x +⎝ x - 1 ⎭ x 2 - 2 x + 1 x 2 - 1,然后在 -2 ≤ x ≤ 2的范围内选取一个合适的整数 x 代入求值.x 2 + 2 x + 1 x -x 2 - 1 x - 1①化简 A ; ⎧ x -1≥ 0②当 x 满足不等式组 ⎨ ,且 x 为整数时,求 A 的值.⎩ x - 3 < 0x 2 + 3 B . x 2 + 1 D. 2ab 中的分子、分母的值同时扩大为原来的 2 倍,则分式的值(ab 中 a ,b 的值都扩大为原来的 2 倍,则分式的值(x 2 + y 2 中 x ,y 的值都扩大为原来的 2 倍,则分式的值(( x - 2)( x + 3) = x + 3,则 A =_______,B =_______.3. 不改变分式13x - y2 的值,把分子、分母中各项系数化为整数,结果是( )1 3 x2 + 1A . 6 x - yC . 3x - 3 y 18 x - 3 y2 x 2 + 6 18 x -3 y2 x 2 + 34. 把分式 a - 3bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12)5. 把分式 3a - 4bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 126. 把分式 2 xyA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12))7. 已知 4 x + 7A x - 2 + B2.(1)原式=1,当x=3-1时,原式=【参考答案】巩固练习1.(1)-yx+y (2)a-1(3)1 a2(4)y(y+1)(y2-2y-7) (y-1)(y-3)2(5)ab 2(6)-x+2(7)x-1 x+1(8)-(9)-1 2x+6 1 2x+4(10)-x2+3(11)-yx+y3x+13(2)原式=3xy,当x=3+2,y=3-2时,原式=3(3)原式=2x-4x+1,当x=2时,原式=0(4)①1x-1;②13. 4. 5. 6. 7.BADA 3,1。
八年级上册数学《分式》单元测试题(带答案)
[答案]B
[解析]
[详解]解:去分母得:
由分式方程无解,得到 即
把 代入整式方程得:
故选B.
5.一份工作,甲单独做需A天完成,乙单独做需B天完成,则甲乙两人合作一天的工作量是()
A.A+BB. C. D.
[答案]D
[解析]
[分析]
甲、乙合做一天的工作量=甲一天的工作量+乙一天的工作量,把相关数值代入即可.
15.已知 ,则 =_____.
16.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他 步行速度为_____千米/小时.
三.解答题(共72分,共8小题)
17.解下列分式方程:
(1) ;
(2) .
18.化简求值: ,其中x=1.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
参考答案
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以
C.分子与分母同时乘 D.分子与分母同时除以
[答案]B
[解析]
[分析]
把 中的分母利用平方差因式分解,再根据分式的基本性质即可解答.
[详解]根据分式的基本性质可得:
∴ = × ,
解得x=27,
经检验x=27是原方程的解,且符合题意.
即:小王用自驾车方式上班平均每小时行驶27千米.
故答案选:B.
[点睛]本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
八年级数学分式定义及分式有意义(人教版)(基础)(含答案)
解题思路:
提示:
分式有意义,分母不为0;
分式值为0,分母不为0,分子为0.
思路:
分式有意义,则: ,即 ,
得 ;
当 时,分式值为1;
若分式值为0,则 ,
由于无论 取何值, 都不能等于0,
故不论 取何值,分式值都不为0.
故选C
试题难度:三颗星知识点:略
10.已知分式 ,当x=2时,分式的值为零;当x=-2时,分式没有意义,则分式有意义时,a+b的值为( )
若使分式有意义,则分母不为零
因为 恒成立
所分式 一定有意义
故选B
试题难度:三颗星知识点:略
7.若分式 的值为0,则 的值是( )
A.1 B.0
C.-1 D.±1
答案:A
解题思路:
当 时,需满足 ,
∴ .
故选A.
试题难度:三颗星知识点:略
8.若分式 的值为0,则 的值为( )
A.3或-3 B.-3
C.3 D.9
试题难度:三颗星知识点:略
2.若 是分式,则□可以是( )
A.3 B.-3
C. D.-6
答案:C
解题思路:
根据分式的定义可知□中必须含有字母,
故选C
试题难度:三颗星知识点:略
3.下列判断中,正确的是( )
A.分式的分子中一定含有字母B.当B=0时,分式 无意义
C.分式 的值为0,则A=0或B=0即可D.分数一定是分式
当分母 ,即 时,分式 无意义
故选D
试题难度:三颗星知识点:略
5.要使分式 有意义,则 的取值范围是( )
A. B.
C. 且 D. 或
答案:C
解题思路:
部编数学八年级上册专题01运算能力课之分式的化简求值综合专练(解析版)(人教版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题01运算能力课之分式的化简求值综合专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.(2021·山西八年级期末)先化简:221a a +-÷(a +1)+22121a a a --+,然后让a 在-1、1、5三个数中选一个合适的数代入求值.【答案】31a a +-;当a =5时,原式值为2【分析】先化除法为乘法,然后利用提取公因式、完全平方公式、平方差公式进行因式分解,通过约分对已知分式进行化简,最后代入求值.【详解】解:原式()()()()221111213111111a a a a a a a a a a a ++-++=´+=+=-+----由题意可知:21010210a a a a -¹ìï+¹íï-+¹î解得a ≠±1. 所以当a =5时,原式=5325-1+=.【点睛】本题考查了分式的化简求值.分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.2.(2021·辽宁阜新市·八年级期末)(1)因式分解:22()9()a x y b y x -+-.(2)解不等式组10213(1)x x x ì-<ïíï-£+î.(3)先化简,再求值:2244111x x x x x x -+æö+¸ç÷---èø,其中5x =.【答案】(1)()(3)(3)x y a b a b --+;(2)22x -£<;(3)11,23x -【分析】(1)先提公因式,再用公式法因式分解;(2)分别解不等式①②,再求不等式组的解集;(3)先化简分式,再将x 的值代入求解【详解】(1)原式()2222()9()()9a x y b x y x y a b =---=--()(3)(3)x y a b a b =--+(2)10213(1)x x x ì-<ïíï-£+î①②由①得,2x <,由②得,2x ³-,∴原不等式组解集为22x -£<.(3)原式2211(2)x x x x --æö=´ç÷--èø2(2)(1)1(2)x x x x ----=´--12x =-当5x =时,原式11523==-.【点睛】本题考查了多项式的因式分解,解一元一次不等式组,分式的化简求值,熟练运用以上知识是解题的关键.3.(2021·甘肃)先化简,再求值:22242244x x x x x -æö-¸ç÷--+èø,请在2-、0、2中选择一个适合的x 的值,代入求值.【答案】42x -+;-2【分析】把括号内通分,把除法转化为乘法约分化简,然后取一个使原分式有意义的数代入计算.【详解】解:原式2224244224x x x x x x x --+æö=-×ç÷---èø2242(2)2(2)(2)x x x x x x ---æö=×ç÷-+-èø24(2)(2)(2)(2)x x x x --=×-+-42x =-+,∵当x =2或-2时原分式无意义,∴x =0,∴原式4202=-=-+.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.4.(2021·安徽七年级期末)先化简,再求值:25(3)(222x x x x +--¸++,其中x =4.【答案】33x x -+,17【分析】先算括号内的减法,同时把除法变成乘法,再算乘法,最后代入求出答案即可.【详解】解:25(3)(222x x x x +--¸++=2(2)(2)522(3)x x x x x -+-+++g 2292=2(3)x x x x -+++g ()()2332=2(3)x x x x x +-+++g 3=3x x -+,当x =4时,原式=4343-+=17.【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算法则,正确进行化简是解题关键.5.(2021·安徽七年级期末)先化简,再求值:21(1)11x x x x --¸++,其中x 是16的算术平方根.【答案】11x --,1-3.【分析】先求出x 的值,再运用分式的四则混合运算法则进行化简,将x 的值代入计算即可.【详解】解:4,∴x =4.21(1)11x x x x --¸++=111()11(1)x x x x x x ++-×++-=11(1)x x x x x +-×+-=11x --.当x =4时,原式=11x --=11413-=--.【点睛】本题主要考查了算术平方根、分式的化简求值,正确的运用分式的四则混合运算法则进行化简是解答本题的关键.6.(2021·安徽七年级期末)观察以下等式:①111112212-==´;②111123623-==´;③1111341234-==´…,按以上规律解决下列问题:(1)第⑤个等式是 .(2)探究:111122334++´´´…+1(1)n n ´+= (用含的等式表示);(3)计算:若111133557++´´´+…1(21)(21)n n -´+=1633,求n 的值.【答案】(1)1115656-=´;(2)1n n +;(3)16【分析】(1)根据规律写出第5个等式即可;(2)根据规律裂项相消即可;(3)根据(2)的规律整理出n 的方程,解出n 值即可.【详解】解:(1)根据规律可知,第⑤个等式是1115656-=´故答案为:1115656-=´;(2)由规律可得,()1111111111111223341223341n n n n ++=-+-+-++-´´´´++L L 111n =-+1nn =+故答案为:1n n +;(3)∵11111323æö=-ç÷´èø,111135235æö=-ç÷´èø,111157257æö=-ç÷´èø∴可以得到()()1111212122121n n n n æö=-ç÷-´+-+èø∴()()11111335572121n n ++´´´-´+1111111112335572121n n æö=-+-+-++-ç÷-+èøL 111221n æö=-ç÷+èø21n n =+∵()()111116133557212133n n ++=´´´-´+∴162133n n =+解得n =16,经检验n =16,是该分式方程的解,故n 的值为16.【点睛】本题主要考查了数字的变化规律,利用规律化简分式是解题的关键.7.(2021·山东八年级期末)先化简再求值:2222a b ab b b a ab æö+--¸ç÷èø,已知4a b =-.【答案】2a b -,-2【分析】先将括号内两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把4a b =-代入计算即可就求出值.【详解】解:原式222=()22()a b ab ab a a b a b +-×-2()2a b a a a b-=×-2a b -=. ∵4a b =-,∴a -b =-4.∴原式=-2.【点睛】本题主要考查了分式的化简求值,熟练掌握运算法则是解题的关键.8.(2021·无锡市天一实验学校八年级期中)先化简再求值:23331111x x x x x -¸--++,其中2x =-.【答案】()11x x +,12【分析】先把除法化为乘法,再进行约分,然后算分式的减法,再代入求值,即可求解.【详解】解:原式=()3(1)111(1)31x x x x x x -+×-+-+=111x x -+=()()111x x x x x x +-++=()11x x +,当x =-2时,原式=()1221-´-+=12.【点睛】本题主要考查分式的化简求值,掌握分式的约分和通分是解题的关键.9.(2021·安徽)先化简,再求值(1﹣22221m m m +++)÷(11m -),其中m =2.【答案】1m m +,23【分析】根据分式的混合运算法则把原式化简,把m 的值代入计算即可.【详解】解:22211121m m m m +æöæö-¸-ç÷ç÷++èøèø222122121m m m m m m m æö++---æö=¸ç÷ç÷++èøèø221121m m m m m æö--=¸ç÷++èø()()()21111m m mm m +-=-+g 1mm =+把2m =代入上式中原式221213m m ===++【点睛】本题考查分式的化简求值.注意运算顺序和约分法则.还需注意分式的分母不能为0.10.(2021·云南)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++ 第一步32132(3)x x x x -+=-++ 第二步2(3)212(3)2(3)x x x x -+=-++ 第三步26(21)2(3)x x x --+=+ 第四步26212(3)x x x --+=+ 第五步526x =-+ 第六步任务一 填空 在以上化简步骤中,其中有一步是根据分式的基本性质:“分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变,”对分式进行通分.这是第__________步;任务二 订正 请写出该分式化简的正确过程;任务三 求值 当114x -æö=ç÷èø时,求该分式的值.【答案】任务一:三;任务二:见解析;任务三:12-【分析】任务一:根据分式的基本性质即可判断;任务二:依据分式的加减运算法则计算可得;任务三:将x 的值化简代入计算即可.【详解】解:任务一:以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质,故答案为:三;任务二:解:原式2(3)(3)21(3)2(3)x x x x x +-+=-++32132(3)x x x x -+=-++2(3)212(3)2(3)x x x x -+=-++26(21)2(3)x x x --+=+ 26212(3)x x x ---=+ 726x =-+.任务三:解:当11()44x -==时,原式71=2462=--´+.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.11.(2021·苏州市景范中学校九年级二模)先化简,再求值:2222(1)32111x x x x x x x x ++-¸--+--,其中1x =+.【答案】31x -【分析】根据分式的运算法则进行化简,然后将x 的值代入原式即可求出答案.【详解】解:原式=22(1)(1)3(1)(1)(1)1x x x x x x x x ++-¸--+--=22(1)(1)(1)3(1)(1)1x x x x x x x x ++--´--+-=311x x x x ----=31x x x -+-=31x -;当1x =时,原式=【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.12.(2021·山东)化简和化简求值(1)21(11a a a a+¸--;(2)先化简2221(21)11x x x x x x -+¸++-+,再从-1,0,1中选择合适的x 值代入求值.【答案】(1)a -(2)11x -;当0x =时,原式1=-【分析】(1)先将括号里通分计算,再算除法;(2)先运用通分法则计算括号内部分,然后将除法转换为乘法计算化简后,挑一个使分式有意义的值代入计算即可.【详解】解:(1)原式11=(+)11(1)a a a a a a -¸---1(1)1a a a ´--=a =-;(2)原式2221(1)()11(1)(1)x x x x x x x -+=-+++-g 1111x x x +=+-g ,11x =-,由分式可知:1x ¹±,当0x =时,原式1=-.【点睛】本题主要考查分式的化简求值以及分式有意义的条件,熟练掌握分式的混合运算法则是解答本题的关键.13.(2021·江苏八年级期末)化简或解方程:(1)化简:21442a a a+--;(2)先化简再求值:222()111a a a a a ++¸+--,其中a 1.(3)解分式方程:11322x x x -=---.【答案】(1)124a +;(2)31a +;(3)原方程无解.【分析】(1)先把分式的分母分解因式,再通分,最后根据同分母的分式相加的法则求出答案即可;(2)先算括号内的加法,把除法变成乘法,算乘法,最后代入求出答案即可;(3)方程两边都乘以x ﹣2得出方程1=x ﹣1﹣3(x ﹣2),求出方程的解,再进行检验即可.【详解】解:(1)解:原式=()()()12222a a a a -+--,=()()()22222a a a a -++-,=()()2222a a a -+-,=()122a +,=124a +;(2)222()111a a a a a ++¸+--解:原式=()()221111a a a a a a éù+-+×êú++-êúëû,=()()()()()21211111a a a a a a a a éù-+-+×êú+-+-êúëû,=()()3111a a a a a -×+-,=31a + ,当a 1- (3)11322x x x -=---,解:方程两边都乘以x ﹣2,得1=x ﹣1﹣3(x ﹣2),解得:x =2,检验:当x =2时,x ﹣2=0,所以x =2是增根,即原方程无解.【点睛】本题主要考查分式化简求值和解分式方程,解决本题的关键是要熟练掌握分式化简求值和解分式方程的方法.14.(2021·湖北八年级期末)先化简,再求值:2222b b a a b a b ab bæö-¸ç÷--+èø,其中a =,b1.【答案】2,3b a b-【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:2222b b a a b a b ab bæö-¸ç÷--+èø=()()()()2b a b b b a b a b a b a +-+´+-=ab a b b a -´=2b a b-当a时,3===.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键,代值计算要仔细.15.(2021·福建莆田二中)先化简,再求值:(1﹣2a a a +)÷22121a a a -++,其中2a =.【答案】1a a -,2【分析】利用通分,因式分解,运算法则细心计算即可.【详解】解:原式=()()()222111a a a a a a a a +-+-¸++=()()()()221·111a a a a a a +++-=1a a -,当2a =时,原式2221==-.【点睛】本题考查了分式的化简,熟练运用分式的通分,因式分解,约分进行化简是解题的关键.16.(2021·河南八年级期末)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务:22112221x x x x x ---+++=2(1)(1)12(1)(1)x x x x x +---++…第一步=1112(1)x x x x ---++…第二步=2(1)12(1)2(1)x x x x ---++…第三步=2(1)(1)2(1)x x x ---+…第四步=2212(1)x x x ---+…第五步=322x x -+…第六步任务一:填空:(1)以上化简步骤中,第一步进行的运算是 .A .整式乘法B .因式分解(2)以上化简步骤中,第 步是进行分式的通分,通分的依据: .(3)第 步开始出现错误,这一步错误的原因: .任务二:请直接写出该分式化简后的正确结果,并从不等式组211102x x +³ìïí-+>ïî的解集中选择一个合适的整数作为x 的值,代入求值;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【答案】任务一:(1)B ;(2)四,分式的基本性质;(3)五,去括号没有变号;任务二:122x x -+,12-或0;任务三:分式化简时需要注意分母的取值不为零.【分析】任务一:分式化简的要先因式分解,再通分;任务二:解不等式组,求得解集,选取合适的值,代入计算即可;任务三:在运算时,去括号要注意变号,代入求值时,注意分母的取值.【详解】解:(1)第一步进行因式分解,故选:B ;(2)第四步分式通分,通分根据分式的基本性质,故答案为:四,分式的基本性质;(3)第五步出现错误,原式2(1)(1)2(1)x x x ---=+2212(1)x x x --+=+,在去括号时符号错误,故答案为:五,去括号没有变号;任务二:22112221x x x x x ---+++2(1)(1)1(1)2(1)x x x x x +--=-++1112(1)x x x x --=-++2(1)12(1)2(1)x x x x --=-++2(1)(1)2(1)x x x ---=+2212(1)x x x --+=+122x x -=+,解不等式组2 1 110 2x x +³ìïí-+>ïî①②,由①得,x ≥﹣1,由②得,x <2,∴不等式组的解集为﹣1≤x ≤2,∵x ≠﹣1,∴x 可以取0,1,当x =0时,原式=12-,当x =1时,原式=0;任务三:分式化简时需要注意分母的取值不为零.【点睛】本题考查了分式的化简,解不等式组,熟练掌握分式化简的方法,掌握分式的基本性质,注意分母的取值不为零的情况是解题的关键.17.(2021·贵州八年级期末)先化简,再求值:(x ﹣2122x -+)42x x -¸+,其中x =5.【答案】﹣x ﹣4,﹣9.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算即可.【详解】解:(x ﹣2122x -+)42x x -¸+()()22122x x x -+-=+•24x x +-2162x x -=+•24x x +- ()()442x x x +-=+•()24x x +-- =﹣(x +4)=﹣x ﹣4,当x =5时,原式=﹣5﹣4=﹣9.【点睛】本题主要考查分式的化简求值,解题关键是掌握分式的混合运算顺序和运算法则.18.(2021·湖南师大附中博才实验中学八年级期末)先化简,再求值:(1﹣31x +)÷2441x x x -++,其中x =3.【答案】1,12x -.【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解.【详解】解:原式=()2213111x x x x x -+æö-¸ç÷+++èø,=()22112x x x x -+×+-,=12x -,当x =3时,原式=1132=-.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式的通分和分式的运算法则.19.(2021·浙江七年级期末)先化简,再求值:x y xy -÷(x y y x-),其中x =12,y =﹣13.【答案】1x y+,6【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x 与y 的值代入原式即可求出答案.【详解】解:原式=22x y x y xy xy--¸=22x y xy xy x y --g =()()x y xy xy x y x y -+-g =1x y+,当x =12,y =﹣13时,原式=116=6.【点睛】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则进行计算,本题属于基础题型.20.(2021·辽宁八年级期末)先化简,再求值:2211121x x x x x---¸++,其中3x =.【答案】11x +,14【分析】根据分式的运算法则及运算顺序进行化简,再代入求值即可.【详解】解:2211121x x x x x---¸++()()()211111x x xx x +-=-×-+11=-+x x 11+-=+x x x 11x =+,当3x =时,原式131=+14=.【点睛】此题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.21.(2021·四川成都市·九年级期末)先化简,再求值:232a a a --÷(a +2﹣52a -),其中a 2+3a ﹣1=0.【答案】213a a +,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】解:原式=()()()225322a a a a a a +---¸--=()()()()23233a a a a a a --´-+-=()13a a +=213a a +,∵a 2+3a ﹣1=0,∴a 2+3a =1,则原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(2021·山西临汾市·八年级期中)计算:(1)101(1)12p -æö--+-ç÷èø(2)2241611a a a a a æö--+¸ç÷--èø,其中2a =-.【答案】(1(2)14a -+,12-【分析】(1)利用零指数幂,负正数指数幂,绝对值的性质化简计算即可;(2)先将括号内的分式通分计算,同时将除法转化为乘法,约分化简计算即可;【详解】解:(1)原式211=-+-=(2)原式24(1)(4)(4)111a a a a a a a a æö--+-=+¸ç÷---èø411(4)(4)a a a a a --=×-+-14a =-+.当2a =-时,原式11242=-=--+.【点睛】本题主要考查实数的混合运算及分式的混合运算,熟练运用零指数幂,负整数指数幂及绝对值的运算性质和分式的混合运算法则计算是解题的关键.23.(2021·重庆实验外国语学校八年级期末)化简求值:232228323y x x y x x y x y x xy y x yæö+-+¸×ç÷+++-èø,其中x y =【答案】x y x +-,﹣1【分析】先利用完全平方公式和提取公因式法和平方差公式分解因式,然后根据分式的运算法则进行化简,然后将x 与y 的值代入原式即可求出答案.【详解】解:2322283·23y x x y x x y x y x xy y x yæöæö+-+¸ç÷ç÷+++-èøèø()()22222383x x y y x y x x y x yx y éù+æö-+=¸êç÷+-+èøêúëûg ()()2222933x y y x x x y x x y x y +-=++-g g ()()()()223333y x y x x y x x y x x y x y+-+=++-g g x yx +=-把x =,y =原式=﹣1﹣y x =﹣1【点睛】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握分式的混合运算的相关方法.24.(2021·辽宁鞍山市·八年级期中)已知2m =2121m m m -+-的值.【答案】3【分析】结合m 值先化简分式,再将m 的值代入化简后的式子求解即可.【详解】2121m m m -+-2(1)1m m -=-11(1)m m m m -=---.Q 2m =110m \-=<,\原式1121123m m =-+===.【点睛】本题考查了分式的化简,二次根式的性质,分母有理化,正确的计算是解题的关键.25.(2021·辽宁葫芦岛市·八年级期中)给出以下式子:224114422x x x x x x æö-+-¸ç÷-+-+èø,先简化,然后从1-,2,2+【答案】22x x +-,2x =+1【分析】先根据分式的运算法则及运算顺序进行化简,再将使原式有意义的未知数的值代入计算即可.【详解】解:原式()()()22212212x x x x x x éù+-+=-×êú-+-êúëû212221x x x x x ++æö=-×ç÷--+èø1221x x x x ++=×-+x 2x 2+=-,由题意得,20x -¹,20x +¹,10x +¹,∴2x ¹,2x ¹-,1x ¹-,∴当2x =+原式==1=【点睛】本题考查了分式的化简求值和二次根式的化简求值,熟练掌握分式和二次根式的运算法则是解决本题的关键.26.(2021·河南南阳市·八年级期中)已知a 2+a =1,求代数式221312442a a a a a a a +---¸++++的值.【答案】222a a +-,-2【分析】先根据分式的运算法则进行化简,然后整体代入21a a +=即可求解.【详解】解:原式=()22122123a a a a a a +-+-´+-+=()()213221a a a a a +--++-=()()221321a a a a --++-222a a =+-21a a +=Q \原式2212==--【点睛】本题考查分式的化简求值,掌握整体代入思想是解题的关键.27.(2021·胶州市初级实验中学九年级一模)(1)计算:212111a a a a a +æö-+¸ç÷++èø(2)解不等式组:235123x x x -³-ìïí+<ïî(3)关于x 的方程()21310m x x ++-=有两个实数根,求m 的取值范围【答案】(1)2a a +;(2)不等式组的解集为3x >;(3)m 的取值范围为134m £且1m ¹-.【分析】(1)由分式的加减乘除混合运算进行化简,即可得到答案;(2)分别求出每个不等式的解集,然后取公共部分,即可得到答案;(3)根据根的判别式0D ³,即可求出m 的取值范围.【详解】解:(1)212111a a a a a +æö-+¸ç÷++èø=211111(2)a a a a a a æö-++´ç÷+++èø=211(2)a a a a a +´++=2a a +;(2)235123x x x -³-ìïí+<ïî①②解不等式①,得1x ³-;解不等式②,得3x >;∴不等式组的解集为3x >;(3)∵关于x 的方程()21310m x x ++-=有两个实数根,∴()()234110m D =-´+´-³,∴134m £;当10m +=,即1m =-时,原方程是一元一次方程,只有一个解,不符合题意;∴1m ¹-;∴m 的取值范围为134m £且1m ¹-.【点睛】本题考查了分式的加减乘除混合运算,分式的化简,解不等式组,一元二次方程根的判别式,解题的关键是熟练掌握运算法则,正确的进行计算.28.(2021·浙江七年级期末)按条件求值:①若分式52x +的值是整数,求非负整数x 的值.②已知分式321x x -+可以写成531x -+,利用上述结论解决;若分式234x x--表示一个整数,求整数x 的值.③化简:235222x x x x x x -æö¸+-¸ç÷--èø,再从0,2±,3±五个数中,选择一个你最喜欢的数代入并求值.【答案】①3;②3或5或9或-1;③13x +,1【分析】①根据分式的值是整数可得x +2=±5,从而求出x ;②将分式变形为524x ---,参照①中方法即可求出x ;③首先通分,计算括号里面分式的减法,然后再计算括号外的除法,化简后,再根据分式有意义的条件确定x 的值,然后代入x 的值即可.【详解】解:①分式52x +的值是整数,∴x +2=±5,∴x =3或x =-7,∵x 为非负整数,∴x =3;②234x x--=()42384x x --+--=524x ---,∴x -4=±1或±5,∴x =3或5或9或-1;③235222x x x x x x -æö¸+-¸ç÷--èø=()2345222x x x x x x x -æö-¸-¸ç÷---èø=()23922x x x x x x --¸¸--=()()()321233x x x x x x x--´´-+-=13x +∵x 不能取0,3,2,-3,∴x =-2时,原式=123-+=1.【点睛】此题主要考查了分式的化简求值,关键是掌握分式的除法和减法计算法则,正确把分式进行化简.29.(2021·山西八年级期中)阅读材料,完成任务.一道习题引发的思考小明在学习第16章《分式》时,遇到了一道习題,并对有关内容进行了研究:习题再现:己知12a a +=,求221a a+的值;解题过程:解:2112,4,a a a a æö+=\+=ç÷èøQ 221124a a a a \+×+=,即22124a a++=,2212a a \+=.通过以上的解题思路,小明可以总结出论:已知形如n mx a x ±=(m ,n 为常数,我们可以利用完全平方公式计算求出2222n m x x +的值.任务:(1)请你帮小明计算2222n m x x+的值;(2)①若131(0)2b b b -=>,求22194b b +的值;②在①的基础上,求132b b+的值.【答案】(1)22a mn -;(2)①4;.【分析】(1)根据阅读材料中的方法配成完全平方式即可求解;(2)①根据阅读材料中的方法将多项式变形,求出值即可;②对132b b +两边平方后,利用①的结论计算即可.【详解】解:(1)∵n mx a x +=(m ,n 为常数,0mn ¹),∴2222222222n n m n n m x m x x x x mx x x+=+-+××2()2n mx mn x=-+22a mn =-;(2)①∵131(0)2b b b -=>,∴222211211993232244b b b bb b b b -´×´+×+=+21(3)32b b=-+13=+4=;②222111(3)923224b b b b b b+=+´´+221934b b=++43=+7=,∵0b >,∴132b b+=.本题考查了配方法的应用,分式的化简求值,利用完全平方公式:a2±2ab+b2=(a±b)2配方是解题关键.。
人教版八年级上册数学分式方程专项练习题(含答案解析)
人教版八年级上册数学分式方程专项练习题(含答案解析)1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x分钟完工,则解,得x=80经检验:x=80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x千克,则解,得x=450经检验:x=450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x千米/时,则解,得x=5经检验:x=5是原方程的解。
进尔4x=20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x瓶酸奶,则解,得x=5经检验:x=5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x元,则解,得x=50经检验:x=50是原方程的解。
人教版数学八年级上册《分式》单元测试题(附答案)
点睛:分式有意义: ,分式无意义: ,分式值为0: ,是分式部分易混的3类题型.
3.化简: ÷ =_____.
【答案】m
【解析】
解:原式= • =m.故答案为m.
4.若分式 无意义,且 =0,那么 =_____.
【答案】﹣
【解析】
【分析】
首先根据分式有意义的条件,以及分式的值为零的条件,分别求出a、b的值各是多少;然后应用代入法,求出 的值是多少即可.
A.甲比乙便宜B.乙比甲便宜
C.甲与乙相同D.由m的值确定
17.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( )
A. + = B. ﹣Fra bibliotek==2019.
故答案为2019.
【点睛】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.
7.方程 =2﹣ 的增根是_____
【答案】x=3
【解析】
【分析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先让最简公分母x-3=0,得到增根x=3.
一.填空题(共7小题)
1.计算: __.
【答案】
【解析】
【分析】
原式利用同分母分式的减法法则计算即可求出值.
【详解】原式= .
故答案为:x-1.
【点睛】本题考查了分式的加减法,熟练掌握运算法则是解题的关键.
2.若分式 的值为0,则x、y需要满足的条件为_____.
八年级数学上册第一章分式检测题(含答案详解)
第一章 分式检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.已知21a a +=,则22211a a a---的值为( )C.-1D.12.(2012·山东淄博中考)化简2221121a a a a a a +-÷--+的结果是( ) A.1aB.aC.11a a +- D.11a a -+ 3.要使分式1(1)(2)x x x ++-有意义,则应满足( )A.≠-1B.≠2C.≠±1D.≠-1且≠24.若分式3621x x -+的值为0,则( ) A.=-2 B.=-12C.=12D.=25.使得1621n n -+的值是整数的所有正整数的个数是( ) A.1 B.2 C.3 D.4,则的值是(D.7.下列各式运算正确的是( )A.()()22 1a b b a -=- B.221a b a b a b+=++C.111a b a b+=+D.22x x÷= 8.下列约分正确的是( ) A.133m m m =++ B.122x y yx +=-- C.936321b ba a =++ D.()()x a b x y b a y -=- 9.把12x -,()()123x x -+,()223x +通分的过程中,不正确的是( ) A.最简公分母是()()223x x -+B.()()()2231223x x x x +=--+C.()()()()2132323x x x x x +=-+-+ D.()()()22222323x x x x -=+-+10.计算的结果是( ) A .-3 B .3 C .-12D .1211.化简2422m m m ⎛⎫+ ⎪--⎝⎭的结果是( )A .0B .1C .-1D .2(2)m +有增根,则的值为( D.313. 当=2时,分式22x x m -无意义,则当=3时,分式mxx m+的值为 . 14. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时的取值范围是≠±1;丙:当=-2时,分式的值为1,请你写出满足上述全部特点的一个分式 .15. 若分式 2139x x +-的值为负数,则的取值范围是 .16. 已知22753y x x y -=+且y ≠0,则xy= .17. (2013•新疆中考)化简2212124x x x x x --+÷=--__________. 18. 若分式方程244x a x x =+--的解为正数,则的取值范围是 . 三、解答题(共66分) 19.(8分)先将代数式()211x x x +⨯+化简,再从-1,1两数中选取一个适当的数作为的值代入求值.20.(8分)(2012•山东烟台中考)化简:2228441442a a a a a a ⎛⎫+--÷ ⎪+++. 分)(2012•山东淄博中考)解方程:22.(8分)先仔细看(1)题,再解答(2)题. (1)为何值时,方程233x a x x =+--会产生增根? 解:方程两边同时乘,得.①因为是原方程的增根,但却是方程①的根,所以将代入①得:,所以.(2)当为何值时,方程2211y m y y y y y--=--会产生增根? 23.(12分)计算:(1)2211244a a a a --÷+-; (2)2222·()1x x y x yx y ⎛⎫-- ⎪-+⎝⎭. 24.(10分)一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.25.(12分)某书店老板去图书批发市场购买某种图书.第一次用1 200元购书若干本,并按定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1 500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?第一章 分式检测题参考答案1.D 解析:原式()()()()()()()21211111111a a a a a a a a a a a -+-==+--+-+.∵ 21a a +=,∴ 原式()21111a a a a===++.故选D .2.A 解析:首先把分式的分子、分母分解因式,再把除法变成乘法,然后约分相乘即可.原式=()()()()2111111a a a a a a a-+⨯=--+,故选A. 3.D 解析:要使分式有意义,则(+1)(-2)≠0,∴ +1≠0且-2≠0, ∴ ≠-1且≠2.故选D .4.D 解析:由题意可得3-6=0且2+1≠0,所以12x ≠-,解得=2.故选D . 5.C 解析:当时,分式的值是正数,要使1621n n -+为整数,则≥,解得:≤,故这样的的值不存在; 当<时,分式的值是负数,则≥,解得:≤,则的正整数值是1,2,3,4,5. 在这五个数中,当时,分式1621n n -+是一个整数.当时,分式1621n n -+是一个整数.当时,分式1621n n -+的值为0,是一个整数. 故使得1621n n -+的值是整数的的正整数值是1,5和16,共3个.故选C . 6.A 解析:由分式的值为零的条件得210x -=,220x +≠,由210x -=,得1x =±,由220x +≠,得1x ≠-.综上得1x =.故选A . 7.A 解析:A.()()22a b b a -=-()()22a b a b --=1,所以A 正确; B.分子、分母不含公因式,不能约分,所以B 错误; C.11a b a b ab ++=,所以C 错误; D.22212·x x x x x÷==,所以D 错误.故选A . 8.C 解析:A.333113333m m mm m m +-==-≠++++,错误; B.222112222x y x y y yx x x +-+++==+≠----,错误; C.993633(21)21b b ba a a ==+++,正确; D.()()x a b xy b a y-=--,错误.故选C . 9.D 解析:A.最简公分母为()()223x x -+,正确;B.()()()2231223x x x x +=--+(分子、分母同乘),正确;C.()()()()2132323x x x x x +=-+-+(分子、分母同乘),正确;D.通分不正确,分子应为2(-2)=2-4.故选D .10.D 解析:原式=334x y ⎛⎫- ⎪⎝⎭×22 x y ⎛⎫- ⎪⎝⎭=12. 11.B 解析:原式()()222412 1m m m m +--=÷⨯=+()=.故选B . 1(1)(x x --+ 或,∴ 或. 两边同时乘,原方程可化为, 整理得,.当时,;当时,.当时,分式方程变形为,此方程无解,故舍去,即的值是13.4 解析:根据题意,当=2时,分式2x m-无意义,∴ ,∴ .把和=3代入分式mx x m +,则分式mx x m+的值是34.14.231x -(答案不唯一) 解析:由题意,可知所求分式可以是231x -,211x x +-,1 1x -等,答案不唯一.15.<3 解析:∵ 21x +恒为正值,分式2139x x +-的值为负数,∴ 3-9<0,解得<3.16.417- 解析:由已知22753y x x y -=+,得:,化简得:,则417x y =-.17.21x x +- 解析:原式21(2)(2)22(1)1x x x x x x x -+-+=⋅=---. 18.<8且≠4 解析:解分式方程244x ax x =+--,得,得.∵ >0,∴ 且,∴ 且, ∴ <8且≠4.19.解:原式=1(1)1x x x x +⨯=+, 当=-1时,分母为0,分式无意义,故不满足; 当=1时,代数式的值为1.20.分析:首先利用分式的加法法则计算括号内的式子,然后把除法转化成乘法,即可求解.解:原式=22222(44)(8)244(2)4444(2)442a a a a a a a a aa a a a a a ++-++-+⋅=⋅=++-+-+. 21.解:方程两边都乘(),得,解得.经检验,是方程的解.22.分析:根据增根产生的条件,最简公分母为0时,未知数的值即为增根,再求得m 的值. 解:方程两边同乘(1)y y -,得2221y m y -=-(),22212y m y y -=+-,221y m -=. 当0y =时,21m =-,此时m 无解; 当1y =时,21m =,此时1m =±. 故当1m =±时,方程有增根.23. 解:(1)原式(2)(21)2(1)(12)2()22a a a a a a a a -=⨯=+-++--+;(2)原式222·()()()()()()x x y x y x y x y x y x y x y x y x y -++=-=⋅-=-+-+-. 24.解:设前一小时的速度为 千米/时,则一小时后的速度为1.5 千米/时,由题意得:18018021 1.53x x x -⎛⎫-+= ⎪⎝⎭, 解这个方程得60x =.经检验,=60是所列方程的根,即前一小时的速度为60千米/时. 25.解:设第一次购书的进价为x 元,则第二次购书的进价为元.根据题意得:1 200 1 50010 1.2x x+=,解得:5x =. 经检验,5x =是原方程的解,所以第一次购书为1 2002405=(本), 第二次购书为24010250+=(本). 第一次赚钱为240(75)480⨯-=(元).第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元). 所以两次共赚钱48040520+=(元).答:该老板这两次售书总体上赚钱了,共赚520元.。
新人教版八年级数学上册《分式》知识点归纳
分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。
如果除式..B .中含有分母.....,那么称BA为分式。
(对于任何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。
人教版数学八年级上册《分式》单元检测题含答案
A x+1B. C.x-1D.
【答案】A
【解析】
【分析】
根据同分母分式相减,分母不变,将分子相减,再将分子利用平方差公式分解因式,然后约分即可化简.
【详解】解:原式= .
故答案为A
【点睛】此题考查分式的加减法,解题关键在于掌握运算法则.
7.下列计算错误的是()
A. B. C. D.
详解:原式= = =1.
故答案为1.
点睛:本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.
15.若3x-1= ,则x=_______.
【答案】-2
【解析】
3x-1= ,
x-1=-3,x=-2.
22.以下是小明同学解方程 的过程.
【解析】方程两边同时乘 ,得 .
第一步解得
第二步检验:当 时, .第三步
所以,原分式方程的解为 .第四步
(1)小明 解法从第________步开始出现错误;
(2)写出解方程 的正确过程.
23.先化简,再求值: ,其中x是不等式组 的整数解.
24.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:
21.(1)先化简,再求值: ,其中x=1;
(2)先化简,再求值: ,从不大于4的正整数中,选择一个合适的值代入x求值.
【答案】(1) ,2(2)取x=4,原式=
【解析】
试题分析:(1)通分,化简,代入求值.
(2)通分,化简,代入求值.
试题解析:
(1)原式= ,
当x=1时,原式=2.
(2)原式=( ·(x-3)= ·(x-3)= ,
人教版八年级数学上册《分式》单元检测试卷(含答案)
人教版八年级数学上册《分式》单元检测试卷(含答案)一、选择题(每小题3分,共30分)1.下列各式中,是分式的是()A. xπ−2B. 14x2 C. 2x−1x+3D. x22.若分式13−x有有意义,则x的取值范围是()A.x=3B. x<3C. x≠0D. x≠33.下列算式结果是﹣3的是()A. (−3)−1B. ﹣|﹣3|C. -(-3)D. (-3)04.如果把分式x+2yx+y中的x,y都扩大2倍,则分式的值()A. 扩大2倍B. 缩小2倍C. 是原来的23D. 不变5.下列式中是最简分式的是()A. 12b27a2B. 2(a−b)2b−aC. x2+y2x+yD. x2−y2x−y6.使分式x2+11−3x的值为负的条件是()A. x<0B. x>0C. x>13D. x<137.3xy24z2·(−8z3y)等于()A. 6xyzB. −3xy2−8z34yzC. −6xyzD. 6x²yz8.已知xx2−x+1=12,则x2+1x2的值为()A. 12B. 14C. 7D. 49.解分式方程1−xx−2+2=12−x,可知方程的解为()A. x=﹣2B. x=4C. x=3D. 无解10.A,B两地相距45千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. 45x+4+45x−4=9 B.454+x+454−x=9 C. 45x+4=9 D. 90x+4+90x−4=9二、填空题(每小题3分,共18分)11.当x_________时,分式|x|−3x+3的值为0.12.要使分式x−1x+2的值是非负数,则x的取值范围是________________.13.化简(a −b 2a)·aa−b 的结果是________________. 14.若分式3a+2无意义,且b−4b 2+1=0,那么ab =__________. 15.a ,b 为实数,且ab =1,设P =a a+1+bb+1,Q =1a+1+1b+1,则P__________Q (选填“>”“<”或“=”)16.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中, 设计划每天加工x 套,则根据题意可得方程为______________________. 三、解答题(72分) 17. (8分)计算与化简. (1)(4x 2−4+1x+2)÷1x−2 ; (2)a+1a−3−a−3a+2÷a 2−6a+9a 2−4.18. (8分)解下列分式方程.(1)x−2x+2−1=3x 2−4 ; (2)xx−1−2x+1=1 .19.(8分)先化简,再求值:a−32a−4÷(5a−2−a −2) ,其中a =√3−3 .20.(8分)化简aa2−4·a+2a2−3a−12−a,并求值,其中a与2、3构成△ABC的三边,且a为整数.21.(8分)已知,点A(1,3)、B(5,3)、C(2,6),平行于x轴的直线l过点(0,m).(1)画出△ABC关于y轴的轴对称图形△A1B1C1,并直接写出A1的坐标;(2)如图,若m=1,请画出△ABC关于直线l的轴对称图形△A2B2C2;(3)若P(a,b)与P′(c,d)关于直线l对称,则a与c的数量关系为____________,b 与d的数量关系为_____________.22.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某公司在武汉市某区甲、乙两个街道社区投放一批“公租自行车”。
人教版八年级上册数学《分式》单元综合检测卷(含答案)
∴|m|=1或 ∴m= 1,m=4
∵ ∴m -1,
∴m=1或4
故答案为1或4
【点睛】此题考查了分式的值不为0的条件,以及绝对值等知识,熟练掌握相关知识是解题关键.
15.已知关于x的方程 =3的解是非负数,则m的取值范围是________.
【答案】m≥﹣9且m≠﹣6
【解析】
【分析】
12.当x_____时,分式 有意义.
【答案】≠﹣4.
【解析】
分析】
直接利用分式有意义的条件,即分母不为零,进而得出答案.
【详解】解:分式 有意义,则4+x≠0,
解得:x≠-4.
故答案为≠-4.
【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.
13.若 =3,则 的值为_____.
A.x>2B.x<2C.x≠﹣1D.x<2且x≠﹣1
【答案】B
【解析】
分析:
根据使分式值为负数的条件进行分析解答即可.
详解:
∵无论 取何值,代数式 的值都大于0,
∴要使代数式 的值为负数,需满足: ,
解得: .
故选B.
点睛:本题解题需注意两点:(1)代数式 的值恒为正数;(2)要使分式的值为负数,需满足分子和分母的值一个为正数,另一个为负数.
故答案为D
【点睛】本题考查的知识点是分式的性质,解题关键是熟记分式的性质:分式的分子分母都乘或除以同一个不为0的整式,分式的值不变.
6.化简 的结果为()
A. ﹣ B. ﹣yC. D.
【答案】D
【解析】
【分析】
先因式分解,再约分即可得.
【详解】
故选D.
【点睛】本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
【初中数学】人教版八年级上册第1课时 分式的约分(练习题)
人教版八年级上册第1课时分式的约分(378) 1.约分:(1)18a2b24a2b3c;(2) −2(a−3)2−5(3−a)5(3)x2−y2(x−y)2;(4)x2+6x+9x2−92.分式2y2x−3y中的x,y的值都扩大为原来的2倍,则分式的值()A.扩大为原来的2倍B.不变C.缩小为原来的12D.扩大为原来的4倍3.下列分式中,是最简分式的是()A.1−x2(x−1)B.x−2yx2−4y2C.x−1(x+1)(x−2)D.x+3x2x24.填空:(1)分式25x2yz315xy2z的分子、分母的系数的最大公因数是,相同字母的最低次幂是,所以公因式是,约分后为;(2)分式m2−9m2−6m+9的分子分解因式为,分母分解因式为,所以公因式为,约分后为5.化简a3a,正确的结果为()A.aB.a2C.a−1D.a−26.下列约分正确的是()A.x6x2=x3 B.x+yx+y=0 C.x+yx2+xy=1xD.2xy24x2y=127.填写下列各式中的分子或分母:m+n mn =()m2n,2m−nm2=()m2n,a2+aba2=a+b(),aa2−2a=()a−2.8.不改变分式的值,使下列分式的分子与分母都不含“−”号:(1)−2b−3a=;(2)−3m2n=;(3)−−x2y=.9.在①ab =a2ab;②ab=abb2;③ab=acbc;④ab=a(x2+1)b(x2+1)这几个等式中,从左到右的变形正确的有(只填序号).参考答案1(1)【答案】解:原式=34b2c(2)【答案】原式=−2(3−a)2−5(3−a)5=25(3−a)3(3)【答案】原式=(x+y)(x−y)(x−y)2=x+yx−y(4)【答案】原式=(x+3)2(x+3)(x−3)=x+3 x−32.【答案】:B3.【答案】:C4(1)【答案】5;xyz;5xyz;5xz23y (2)【答案】(m+3)(m−3);(m−3)2;m−3;m+3m−35.【答案】:B【解析】:a3a=a2.故选B6.【答案】:C【解析】:A、x6x2=x4,该选项错误;B、x+yx+y=1,该选项错误;C、x+yx2+xy =x+yx(x+y)=1x,该选项正确;D、2xy24x2y =y2x,该选项错误.故选C.7.【答案】:m2+mn;2mn−n2;a;18(1)【答案】2b3a(2)【答案】−3m2n(3)【答案】x2y9.【答案】:②④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021-2022学年度 秋季 八年级上学期 人教版数学八年级数学上册分式综合水平测试一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列判断中,正确的是( )A .分式的分子中一定含有字母B .当B =0时,分式B A无意义C .当A =0时,分式BA的值为0(A 、B 为整式)D .分数一定是分式3.下列各式正确的是( )A .11++=++b a x b x aB .22x y x y =C .()0,≠=a ma na m nD .am an m n --=4.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22C .2222xy y x y x ++ D .()222y x y x +- 5.化简2293m mm --的结果是( )A.3+m m B.3+-m m C.3-m m D.m m-3 6.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .9448448=-++x xB .9448448=-++x x C .9448=+x D .9496496=-++x x人教版数学8.已知230.5x y z==,则32x y z x y z +--+的值是( )A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则 11. 12.人教版八年级数学上册必须要记、背的知识点第十一章 三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高. 4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线. 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P(,).x yx y关于x轴对称的点的坐标为'P(,)②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y . ⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念: 1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()nm mn a a =⑶积的乘方:()nn n ab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式. 5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解. 6.因式分解方法: ⑴提公因式法:找出最大公因式.⑵公式法:习①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念: 1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).13.a ba b+-的值为( )A .2B .2±C .2D .2±二、填空题:(每小题2分,共16分)11.分式392--x x 当x _________时分式的值为零,当x ________时,分式xx 2121-+有意义.12.利用分式的基本性质填空: (1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =__________. 15.计算:=+-+3932a a a __________. 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 17.若分式231-+x x 的值为负数,则x 的取值范围是__________.18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:(共64分) 19.计算:(6分)(1)11123x x x++ (2)3xy 2÷x y 2620. 计算:(3分) ()3322232n mn m --⋅21. 计算(8分)(1)168422+--x x x x (2)mn nn m m m n n m -+-+--222.(7分) 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 解下列分式方程.(8分) (1)xx 3121=- (2)1412112-=-++x x x24. 计算:(8分)(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111xx x x ++++++-25.(8分)已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.(6分)先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.(10分)某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?答案一、选择题 1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A 二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a -16. 17.-1<x <23 18.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分) 19.(1)原式=632666x x x ++=116x(2)原式=2236x xyy =212x 20.原式=243343m n m n -=1712m n - 21.(1)原式=2(4)(4)x x x --=4xx - (2)原式=2m n m n m n m n m n-++----=2m n m n m n -++--=mm n -- 22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭=1111x x x x -+--=11x x x x--=1 (2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=224224111x x x++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+ =2222422224(1)(1)1x x x x x ++-+-++=444411x x+-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++- =4484(1)4(1)1x x x ++--=881x- 25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++- 2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数, ∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件.。