应用多元统计分析课后题答案
应用多元统计分析课后习题答案高惠璇
第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
应用多元统计分析课后习题答案高惠璇共174页文档
(2)证明(X1 , X2 ) 不是二元正态分布.
证明(1):任给x,当x≤-1时
P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
它的任意线性组合必为一元正态. 但Y= X1-X2 不是正态分布,故(X1 , X2 ) 不是二元正态分布.
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ ,Σ ),Σ >0,X的密度函数记为 f(x;μ ,Σ ).(1)任给a>0,试证明概率密度等高面
5
第二章 多元正态分布及参数的估计
2-3 设X(1)和X(2) 均为p维随机向量,已知
XX X((1 2))~N2p ((1 2)), 1 2 1 2,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立. (2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
故X1 +X2 和X1 - X2相互独立.
3
第二章 多元正态分布及参数的估计
或者记
Y Y Y 1 2 X X 1 1 X X2 2 1 1 1 1 X X 1 2 CX
则 Y ~ N 2 (C ,C C )
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
x14)2
2
X1~N(4,1).
类似地有
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
因2x12
2x1x2
x22
(x1,
x2
)
2 1
11
x1 x2
,
而
2 1
11 11
1011
10 BB,
令y
y1 y2
11
1 0
x1 x2
x1
x2 x1
,
则2
x12
2x1x2
x22
y12
y22
(2)第二次配方.由于
xx12
y2 y1
y2
14
第二章 多元正态分布及参数的估计
2x12 x22 2x1x2 22x1 14x2 65
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
应用多元统计分析课后习题答案高惠璇部分习题解答(00004)市公开课金奖市赛课一等奖课件
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量分子为
L(aˆ0
, ˆ 0 2
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
第5页
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
第18页 18
第四章 回归分析
第19页 19
第四章 回归分析
等号成立 C(ˆ ) 0 (CC)1C • C(ˆ ) 0 ˆ.
第20页 20
第四章 回归分析
第21页 21
第四章 回归分析
第22页 22
第四章 回归分析
见附录P394定理7.2(7.5)式
第23页 23
第四章 回归分析
证实:(1)预计向量为 Yˆ Cˆ C(CC)1CY HY
yˆ
1 n
n i 1
yˆi
1 n
1n
Yˆ
1 n
1n
HY
1 n
(H1n )Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)( yˆi yˆ ) n ( yi yˆi yˆi y)( yˆi y)
0
ln
L
2
n
2
2
1
2( 2 )2
(Y
应用多元统计分析课后题答案
c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
μ)
1 n 1
n i 1
E(Xi
-
μ)(
X i
-
μ)
nE(X
μ)(X
μ)
Σ
。
故 S 为 Σ 的无偏估计。 n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
应用多元统计分析_课后答案
图 2.1
Descriptives 对话框
2.
单击 Options 按钮,打开 Options 子对话框。在对话框中选择 Mean 复选框,即计 算样本均值向量,如图 2.2 所示。单击 Continue 按钮返回主对话框。
图 2.2 Options 子对话框 3. 单击 OK 按钮,执行操作。则在结果输出窗口中给出样本均值向量,如表 2.1,即 样本均值向量为(35.3333,12.3333,17.1667,1.5250E2) 。
2.5 解: 依据题意,X= 57000 40200 21450 21900 45000 28350
′
15 16 12 8 15 8
27000 18750 12000 13200 21000 12000
144 36 381 190 138 26
′ E(X)= ∑6 α=1 x(α) = (35650,12.33,17325,152.5) n σ1 σ2 ρ2 (x1 −μ1 )2 σ2 1
+
σ2 1
(x2 −μ2 )2 σ2 2 )2
= = [
(x1 −μ1 )2 σ2 1 ρ(x1 −μ1 ) σ1
− −
2ρ(x1 −μ1 )(x2 −μ2 ) σ1 σ2 (x2 −μ2 ) 2 ] σ2
+
E( X ) μ
n→∞
lim E(
1 1 ������) = lim E( ������) = Σ n→∞ ������ n−1
2.7 试证多元正态总体 的样本均值向量 ̅) = E ( ΣX 证明: E(������ (α) ) = E (ΣX (α) ) =
n n 1 1 nμ n 1 n2
exp[−
应用多元统计分析课后习题答案详解北大高惠璇习题解答公开课一等奖优质课大赛微课获奖课件
0 8
X (2)
X
(3)
0
X (5) CL4
第11页 11
第六章 聚类分析
② 合并{X(2),X(5)}=CL3,并类距离 D2=3.
0 D(3) 10
9
0 8
0
X (3)
CL4 CL3
③ 合并{CL3,CL4}=CL2,并类距离 D3=8.
D(4) 100
0
X (3) CL2
④ 所有样品合并为一类CL1,并类距离 D4=10.
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
( p) )
n2p nr2
D
2 pk
nq2 nr2
Dq2k
n p nq nr2
(X
(k)
X
( p) )'( X
(k)
X
( p)
X
( p)
X
(q) )
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
(q)
X
(q)
X
( p) )
第26页 26
故d*是一个距离.
第5页
5
第六章 聚类分析
(4) 设d (1)和d (2)是距离, 令d * d (1) • d (2).
d *虽满足前2个条件,但不一定满足三角不等式.
下面用反例来说明d *不一定是距离.
设di(j1)
d (2) ij
X (i) X ( j) (m 1), 则di*j
X (i) X ( j)
D
2 pk
nq nr
应用多元统计分析课后习题答案高惠璇三部分习题解答公开课一等奖优质课大赛微课获奖课件
max
0
L(0,0 )
max
L(
,
0
)
分子
|
1
20
|n/ 2
exp
1 2
n
( X ( )
1
0 )01( X ( )
0 )
|
1
20
|n/ 2
exp
1 2
n
tr[01
1
( X ( )
0 )( X ( )
0 )]
第17页 17
第三章 多元正态总体参数检查
Yr1
X BX
Y Γ BΓΓ
Y HY
(Yr
1
,,
Yn
)
H
22
Yn
由于Y1, …,Yr ,Yr+1 ,…,Yn互相独立,
故X′AX与X′BX互相独立.
第9页
9
第三章 多元正态总体参数检查
3-3 设X~Np(μ,Σ),Σ>0,A和B为p阶对称阵, 试证实 (X-μ)′A(X-μ)与(X-μ)′B(X-μ)互相独立
Np(μ,Σ)随机样本, X和Ax分别表示正态总体X样 本均值向量和离差阵,则由性质1有
Tx2 n(n 1)( X ) Ax1( X )
~ T 2 ( p, n 1).
令 Y(i) CX (i) d (i 1,..., n)
其中C是p p非退化常数矩阵, d是p 1常向量。
则 Y(i) ~ N p (C d,CC) (i 1,2,..., n)
max L(
, 0 )
max L(, ) ,
分子当ˆ X达最大,且最大值
L( X
, 0 )
应用多元统计分析课后习题答案详解北大高惠璇五部分习题解答公开课一等奖优质课大赛微课获奖课件
第14页 14
第五章 判别分析
(2)Bayes准则(假设1 2 解 :由定理5.2.1,只须计算
1128
1322
)
h1( X ) q2L(1| 2) f2 ( X ), h2 ( X ) q1L(2 |1) f1( X ), 并比较大小, 判X属损失最小者.考虑
h1( X ) L(1| 2) f2 ( X ) 75 • f2 ( X ) h2 ( X ) L(2 |1) f1( X ) 10 f1( X )
D22 (x) 1.5625 ln 22 2.9488,
D32 (x) 0.25 ln1 0.25,
因样品到G1广义平方距离最小,因此将样品x=2.5
判归G1.
第6页
6
第五章 判别分析
解二:利用定理5.2.1推论,计算 qt ft (x), (t 1,2,3)
当样品x=2.5时,
f1(x)
记 1 (a (1) a (2) ), (其中a 1( (1) (2) )),
2
试证明(1)E(aX | G1) ;(2)E(aX | G2 ) .
解
:
E(aX
|
G1)
a (1)
1 2
(a (1)
a (2) )
1 2
(a (1)
a (2)
)
1 ( (1) (2) )1( (1) (2) ) 0, (因 0)
h1( X (1) ) h2 ( X (1) )
7.5 exp{125} 54
75.9229
1
因h1( X ) h2 ( X ),故判X (1) G2.
当X (2)
1250 时,
h1( X (2) ) h2 ( X (2) )
应用多元统计分析课后习题答案详解北大高惠璇五部分习题解答公开课一等奖优质课大赛微课获奖课件
第21页 21
第五章 判别分析
当X
G2时,W
(X
)
~
N1
(
2
,
2 2
),
且
2
( (2)
)a
1 2
d
2
,
2 2
d2
P(1| 2)
P{W ( X )
0|
X
G2}
P{W ( X ) 2 2
0 2 } 2
P{U 1 d 2 / d} 1 (1 d ).
2
2
其中 U W ( X ) 2 ~ N (0,1). 2
D22 (x) 1.5625 ln 22 2.9488,
D32 (x) 0.25 ln1 0.25,
因样品到G1广义平方距离最小,因此将样品x=2.5
判归G1.
第6页
6
第五章 判别分析
解二:利用定理5.2.1推论,计算 qt ft (x), (t 1,2,3)
当样品x=2.5时,
f1(x)
W ( X ) ( X )1( (1) (2) ), 1 ( (1) (2) ),
2 判别准则为 判X G1 , 当W ( X ) 0,
判X G2 , 当W ( X ) 0, 试求错判概率P(2 |1)和P(1| 2).
解 : 记a 1 ( (1) (2) ),W ( X ) ( X )a是X的
其中W ( X ) a( X *)
( X * )1( (1) (2) ) ,
* 1 ( (1) (2) ).
2
第10页 10
第五章 判别分析
5-4 设有两个正态总体G1和G2,已知(m=2)
(1)
1105, (2)
应用多元统计分析课后答案
2.点击Statistics按钮,设置在结果输出窗口中给出的聚类分析统计量。我们选择Agglomeration schedule与Cluster Membership中的Range of solution 2-4,如图5.2所示,点击Continue按钮,返回主界面。
(其中,Agglomeration schedule表示在结果中给出聚类过程表,显示系统聚类的详细步骤;Proximity matrix表示输出各个体之间的距离矩阵;Cluster Membership表示在结果中输出一个表,表中显示每个个体被分配到的类别,Range of solution 2-4即将所有个体分为2至4类。)
(1)用最短距离法进行聚类分析。
采用绝对值距离,计算样品间距离阵
0
1 0
2 1 0
5 4 3 0
8 7 6 3 0
10 9 8 5 2 0
由上表易知 中最小元素是 于是将 , , 聚为一类,记为
计算距离阵
0
3 0
6 3 0
8 5 2 0
中最小元素是 =2于是将 , 聚为一类,记为
计算样本距离阵
0
3 0
a)系统聚类法:
1.在SPSS窗口中选择Analyze→Classify→HierachicalCluster,调出系统聚类分析主界面,并将变量 移入Variables框中。在Cluster栏中选择Cases单选按钮,即对样品进行聚类(若选择Variables,则对变量进行聚类)。在Display栏中选择Statistics和Plots复选框,这样在结果输出窗口中可以同时得到聚类结果统计量和统计图。
100
2.73
-12.31
-2.77
朱建平-应用多元统计分析课后答案解析
第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答省名师优质课赛课获奖课件市赛课一等奖课件
4.7067
取a 1 A1( (1) (2) )
d
1 65 1381
3323 ,
则aAa
1,
且a满足 : Ba Aa ( d 2 ).
12
第五章 鉴别分析
判别效率(a) aBa 4.7067.
aAa
Fisher线性判别函数为u( X ) aX
1 89765
(32
X1
33X
2 判别准则为 判X G1 , 当W ( X ) 0,
判X G2 , 当W ( X ) 0, 试求错判概率P(2 |1)和P(1| 2).
解 : 记a 1 ( (1) (2) ),W ( X ) ( X )a是X的
线性函数,当X
G1时,W
(
X
)
~
N1
(1,
2 1
), 且
20
第五章 鉴别分析
20 20
时,
u
(
X
(1)
)
1 89765
(32,33)
20 20
4.3390
因u( X (1) ) 4.3390 u* , 判X (1) G2.
当X (1)
15 20
时,
u
(
X
(2)
)
1 89765
(32,33)1250
3.8050
因u( X (2) ) 3.8050 u* 判X (2) G1.
其中W ( X ) a( X *)
( X * )1( (1) (2) ) ,
* 1 ( (1) (2) ).
2 10
第五章 鉴别分析
5-4 设有两个正态总体G1和G2,已知(m=2)
(1)
1105, (2)
应用多元统计分析课后习题答案详解北大高惠璇习题解答公开课一等奖优质课大赛微课获奖课件
di*k dk*j , 对一切i, k, j.
故d*=ad是一个距离.
(3) 设d为一个距离,c>0为常数,显然有
①
d
* ij
dij dij c
0,且仅当X (i)
ห้องสมุดไป่ตู้
X ( j)时di*j
0;
②
d
* ij
dij dij
c
d
d ji ji
c
d
* ji
,
对一切i,
j;
第4页
4
第六章 聚类分析
DL
D ( L 1) pq
且新类Gr与其它类Gk距离由递推公式可知
D(L) rk
min(
D(L pk
1)
,
D(L qk
1)
)
D ( L 1) pq
D( L )
(k p, q)
设第L+1步从类间距离矩阵 D(L)
D(L) ij
出发,
第20页 20
第六章 聚类分析
因
D(L) rk
D ( L 1) pq
证实:设第L次合并Gp和Gq为新类Gr后,并类距离DL =Dpq,且必有Dpq2≤Dij2 . 新类Gr与其它类Gk距离平方递 推公式 ,当γ=0,αp≥0,αq≥0, αp+αq+ β ≥1 时
Dk2r
p Dp2k
q Dq2k
Dp2q
( p
q
)Dp2q
D
2 pq
这表明新距离矩阵中类间距离均≥ Dpq = DL ,故有
(a c) [n (a c)] 1 (a c)(b d )
n
n
故二值变量相关系数为:
应用多元统计分析课后习题答案高惠璇(第六章习题解答)
0,
第六章 聚类分析
6-5 试从定义直接证明最长和最短距离法的单调性. 证明:先考虑最短距离法: ( L1) ( L1) D D 设第L步从类间距离矩阵 ij
D
( L1) pq
min D
( L1) pq
( L1) ij
故合并Gp和Gq为一新类Gr,这时第L步的并类距离:
0, p (1 )
0, q (1 ) np nr (1 ) nq nr
nq nr
0, ( 1)
p q (1 )
11
18
故可变类平均法具有单调性。
第六章 聚类分析
对于可变法,因
1 1 0, p 0, q 0, ( 1) 2 2 1 1 p q 11 2 2
证明 : (1)设d 和d 为距离, 令d d
(1) ( 2)
(1)
d .
( 2)
2
以下来验证d满足作为距离所要求的3个条件.
第六章 聚类分析
① ② ③
(2) 设d是距离,a >0为正常数.令d*=ad,显然有
① ②
d cd ij 0, 且仅当X (i ) X ( j )时d 0;
应用多元统计分析
第六章部分习题解答
第六章 聚类分析
6-1 证明下列结论: (1) 两个距离的和所组成的函数仍是距离; (2) 一个正常数乘上一个距离所组成的函数 仍是距离; (3)设d为一个距离,c>0为常数,则 d * d d c 仍是一个距离; (4) 两个距离的乘积所组成的函数不一定是 距离;
(6.2.2)
9
第六章 聚类分析
应用多元统计分析课后答案_暴强整理40页
第二章2.1 试述多元联合分布和边缘分布之间的关系。
设,是p维随机向量,称由它的q(<p)个分量组成的子向量,的分布为的边缘分布,相对地把的分布称为联合分布。
当的分布函数为F,时,的分布函数即边缘分布函数为F,=P()= F,当X有分布密度f(,)则也有分布密度,即边缘密度函数为:f(,)=(,)2.2 设随机向量服从二元正态分布,写出其联合分布密度函数和各自的边缘密度函数。
联合分布密度函数,0 , 其他==()所以指数部分变为令t== exp[] exp[] ,=0 ,其他 同理,exp[] ,=0 ,其他2.3 已知随机向量 的联合分布密度函数为,其中, 。
求:(1) 随机变量各自的边缘密度函数、均值与方差。
解:==同理,==同理可得()22dc x E +=同理可得()()1222d c x D -=(2)随机变量的协方差和相关系数。
E(==E(==E(==E(=D(E(D(E(Cov E(E(=.===(3)判断是否独立。
不相互独立。
2.4设随机向量,服从正态分布,已知其协差阵为对角阵,证明的分量是相互独立的随机变量。
Σ= ΣΣΣΣ与不相关又 ,服从正态分布与 相互独立。
( , , , , , ) 2.5解: 依据题意,X=E(X)=D(X)=注:利用 11p n n ⨯'=1X X , S 1()n n n n''=-11X I X 其中 1001n ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦I 在SPSS 中求样本均值向量的操作步骤如下:1. 选择菜单项Analyze →Descriptive Statistics →Descriptives ,打开Descriptives 对话框。
将待估计的四个变量移入右边的Variables 列表框中,如图2.1。
图2.1 Descriptives 对话框2. 单击Options 按钮,打开Options 子对话框。
在对话框中选择Mean 复选框,即计算样本均值向量,如图2.2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以 (1 2 n ) 独立同正态分布 。且有
Ζ n
1 n
n
Χ i i 1
, E(Ζn )
1 n
n
E(Χi )
i 1
nμ ,Var(Zn ) Σ 。
n
E(Ζa ) E( raj Χ j ) j 1
(a 1, 2,3,, n 1)
n
(c d )(b a) 36
cov(x1, x2 ) 1
x1 x2
3
(3)解:判断 X1 和 X 2 是否相互独立。 X1 和 X 2 由于 f (x1, x2 ) fx1 (x1) fx2 (x2 ) ,所以不独立。
2.4 设 X ( X1, X 2 , X p ) 服从正态分布,已知其协方差矩阵为对角阵,证明其分量是相
n i 1
Σ
n
Σ n
1 (n n 1
1)Σ
Σ
。
n
方法 2: S
(Xi
-
X)(X i
-
X )
i 1
n
Xi
-
μ
(X
μ)
X i
-
μ
(X
μ)
i 1
n
n
(Xi
-
μ)(
X i
-
μ)
2
(Xi - μ)(X - μ) n(X μ)(Xμ Xμ)
c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
2 p
1
2 1
1
Σ1
2 2
1
2 p
则 f (x1,..., xp )
1
2 1
1 p 2
Σ
12
2 2
2 p
1/ 2
exp
1 2
(x
μ)Σ1
2.
单击 Options 按钮,打开 Options 子对话框。选择
Cross-product deviations and covariances 复选框,即计算样本离差阵和样本协差
阵,如图 2.4。单击 Continue 按钮,返回主对话框。
图 2.4 Options 子对话框
3.
单击 OK 按钮,执行操作。则在结果输出窗口中给
i 1
i 1
n
(
X i
-
μ)(
X i
-
μ)
2n(X
μ)(X
μ)
n(X
μ)(X
μ )
i 1
n
(
X i
-
μ)(
X i
-
μ)
n(X
μ)(X
μ )
i 1
S
E( ) n 1
1 n 1
E
n i 1
(Xi
-
μ)(
X i- μ)Fra bibliotekn(X
μ)(X
n
X jXj nXX j 1
因为
nXX
n
n
1 n
n i 1
Xi
n
1 n
n i 1
Xi
ZnZn
又因为
n
X jXj X1
j1
X2
X
n
X1 X2
Xn
X1
X1
出相关分析表,见表 2.2。表中 Covariance 给出样本协差阵。(另外,Pearson
Correlation 为皮尔逊相关系数矩阵,Sum of Squares and Cross-products 为样本离
差阵。)
2.6 渐近无偏性、有效性和一致性;
2.7 设总体服从正态分布, X ~ N p (μ, Σ) ,有样本 X1, X2 ,..., Xn 。由于 X 是相互独立的正
X2
Xn
ΓΓ
X2
Xn
Z1
Z1
Z2
Zn
Z2
Zn
n
n
所以原式 X j Xj ZnZn Z j Z j ZnZn
j1
j1
Z Z 11
Z Z 22
...
83722500.00 16710.00
36573750.00 -199875.00
-736800.00
-35.80
-199875.00
16695.10
注:利用
X
p1
1 n
X
1n
,
S
X (In
1 n
1 1 nn
)
X
1
0
其中
In
0
1
在 SPSS 中求样本均值向量的操作步骤如下:
n raj
j 1
1μ n
n
nμ rajrnj 0 i 1
n
Var(Ζa ) Var( raj Χ j ) j 1
n
n
ra2jVar Χ j Σ ra2j Σ
j 1
j 1
所以 Ζ1 Ζ2 Ζn1 独立同 N (0, Σ) 分布。
n
又因为 S (X j X)(X j X) i 1
第二章
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况, X ( X1, X 2 , X p ) 的 联合分布密度函数是一个 p 维的函数,而边际分布讨论是 X ( X1, X 2 , X p ) 的子向量的
概率分布,其概率密度函数的维数小于 p。
12
(2)解:随机变量 X1 和 X 2 的协方差和相关系数;
cov(x1, x2 )
d c
b a
x1
a
2
b
x2
d
2
c
2[(d
c)(
x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2(
x1
a)(
x2
c)] dx1dx2
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
0
(b a)2 (d c)2
c
2(d c)(x1 a)x2 d [(b a)t 2 2(x1 a)t2 ] dc 1
互独立的随机变量。
解: 因为 X ( X1, X 2 , X p ) 的密度函数为
f
(
x1
,
...,
x
p
)
1 2
p
Σ
1/
2
exp
1
(x
μ)Σ1
(x
μ)
2
12
又由于
Σ
2 2
2 p
Σ
12
2 2
2.8
方法 1:
Σˆ
1 n 1
n i 1
(Xi
X)(Xi
X )
1 n 1
n i 1
Xi Xi
nXX
E(Σˆ )
1 n 1
E(
n i 1
Xi Xi
nXX)
1 n 1
n i 1
E
XiXi
nE
XX