弹塑性本构关系ppt

合集下载

弹塑性力学弹性与塑性应力应变关系详解课件

弹塑性力学弹性与塑性应力应变关系详解课件

有限差分法
有限差分法(Finite Difference Method,简称FDM)是一种基于差分原 理的数值模拟方法。
它通过将连续的时间和空间离散化为有限个差分节点,并利用差分近似代 替微分方程中的导数项,从而将微分方程转化为差分方程进行求解。
有限差分法适用于求解偏微分方程,尤其在求解波动问题和热传导问题方 面具
幂函数型弹塑性本构模型
该模型将应力应变关系表示为幂函数形式,适用于描述岩石等材料 的弹塑性行为。
双曲线型弹塑性本构模型
该模型将应力应变关系表示为双曲线形式,适用于描述某些复合材 料的弹塑性行为。
弹塑性本构模型的选用原则
根据材料的性质选择合适的弹塑性本 构模型,以确保能够准确描述材料的 力学行为。
在选择本构模型时,需要考虑模型的 复杂性和计算效率,以便在实际工程 中得到广泛应用。
弹塑性力学弹性与塑性应 力应变关系详解课件
目录
• 弹塑性力学基础 • 弹性应力应变关系 • 塑性应力应变关系 • 弹塑性本构模型 • 弹塑性力学的数值模拟方法
01
弹塑性力学基础
弹塑性力学定义
01
02
03
弹塑性力学
是一门研究材料在弹性与 塑性范围内应力应变关系 的学科。
弹性
材料在受到外力作用后能 够恢复到原始状态的性质 。
当外力卸载后,物体发生弹性恢复,但需要一定的时间才能完成。这种 现象称为弹性后效。弹性后效的大小与材料的性质、温度和加载速率等 因素有关。
03
塑性应力应变关系
塑性应力应变关系定义
塑性应力应变关系
01
描述材料在塑性变形阶段应力与应变之间的关系。
特点
02
当材料受到超过屈服点的外力时,会发生塑性变形,此时应力

《弹塑性力学》第四章 应力应变关系(本构方程)

《弹塑性力学》第四章 应力应变关系(本构方程)
V V
ij ij dV WdV U
V V
W ijij ——W为 ij的函数。
2019/2/4
11
§4-1 应变能、应变能密度与弹性材料的 本构关系
因为W只取决于弹性体的初始应变状态和最 终应变状态,与变形过程(加载路线)无关, 所以W 为它的全微分
本构关系
时刻达到 t +t:位移有增量
应变增量 外力功增量 :
ij ei e j
A
V
u ui ei
f udV F udS
S
8
2019/2/4
§4-1 应变能、应变能密度与弹性材料的
本构关系
A

V
V
f udV F udS
2019/2/4
22 33 23 31 12
T
17
§4-2 线弹性体的本构关系
2.1 各向异性材料
{}=[c]{}
C11 C12 C C 21 22 C C 61 C 62
2019/2/4
C16 C 26 C 66
§4-1 应变能、应变能密度与弹性材料的
本构关系
1.1 应变能U 和应变能密度 W(比能)
如果弹性体的外力的施加是缓慢进行的,物 体无动能,物体发生变形,产生变形能,也 无热能耗散,则根据能量守恒,外力实功转 化成应变能贮存在弹性体中。
2019/2/4
4
§4-1 应变能、应变能密度与弹性材料的
本构关系
由于 ij = ji ,kl = lk
2019/2/4 16
§4-2 线弹性体的本构关系

第四章 弹塑性体的本构理论

第四章 弹塑性体的本构理论

第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。

塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。

塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。

4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。

常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。

变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。

因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。

对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。

因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。

只有当应力点再次达到该加载面时,才可能产生新的塑性变形。

第三章 塑性状态下的本构关系

第三章 塑性状态下的本构关系
⎧d ε p1 = (σ 1 − σ m ) ⋅ d λ ⎪ p ⎨d ε 2 = (σ 2 − σ m ) ⋅ d λ ⎪ p ⎩d ε 3 = (σ 3 − σ m ) ⋅ d λ
(3.26)
同济大学水利工程系
李遇春编
由(3.26)式得:
( dε
p 1
2 2 2 − d ε p 2 ) + ( d ε p1 − d ε p 3 ) + ( d ε p 2 − d ε p 3 ) = ( d λ ) ⎡ ⎣(σ 1 − σ 2 ) + (σ 1 − σ 3 ) + (σ 2 − σ 3 ) ⎤ ⎦ 2 2 2 2
复杂应力状态
同济大学水利工程系
李遇春编
′+ + σ s′− = 2σ s 单向应力状态 σ s
复杂应力状态
f * (σ ij ) − c = 0
(初始屈服面)
m ) − c = 0 (后继屈服面) f * (σ ij + σ ij
m :应力位移 σ ij
, c 不变。见图 3.9,屈服面作平移,位置改变,大小与形状不变。
N
d ε p ij
(塑性应变)
2 产生塑性变形为 d ε 过程○
p ij
,其塑性功为: (σ ij + dσ ij − σ ij )d ε
o
p ij
o = (σ ij − σ ij )d ε p ij

塑性功满足下式:
同济大学水利工程系
李遇春编
o (σ ij − σ ij )d ε p ij = dσ ij d ε p ij ≥ 0

平均弹性正应变增量
dsij deeij
= 2G

弹塑性本构模型理论课件

弹塑性本构模型理论课件


材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模

弹塑性力学第5章—塑性本构关系

弹塑性力学第5章—塑性本构关系

3 2
sij

Cdε
p ij
sij −
Cdε
p ij
−σs = 0
C表征材料强化的大小,来自单向拉伸
5.3 后继屈服条件
1、等向强化模型
单向拉伸实验曲线中三个方向的塑性主应变为
ε1p
= ε p,
ε
p 2
=
ε
p 3
= − 1ε p
2
其中ε p为单向拉伸方向的塑性应变,由此得到等效塑性应变
( ) ( ) ( ) ε p =
4 3
J

2
=
2 9
⎡ ⎢⎣
ε1p

ε
p 2
2+
ε
p 2

ε
p 3
2+
ε
p 3
最大畸变能是材料屈服的原因
J2 = k2
J 2反映了材料的畸变能( U0d
=
J2 2G

( ) J2
=
1 2
sij sij
=
1 6
(σ1 − σ2 )2 + (σ2 − σ3 )2 + (σ3 − σ1)2
k 由实验确定,根据简单拉伸实验,在材料屈服时
[ ] J2
=1 6
(σ 0 − 0)2 + 0 + (0 −σ 0 )2
−0.8
屈服条件类似,主要区别是
−1.0
混凝土的抗压强度比抗拉强
−1.2
度高得多。
5.2 常用的屈服条件
5.2.3 混凝土的莫尔-库仑屈服条件
在实验基础上,提出线性化的莫尔-库仑屈服条件,σ

0
,
σ

弹塑性力学第四章弹性本构关系资料

弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.

弹塑性力学塑性本构关系

弹塑性力学塑性本构关系

0
14
1.理想塑性材料的增量本构关系 2.硬化材料的增量塑性本构关系 3.全量塑性本构关系
15
2. 硬化材料的增量塑性本构关系
d
p ij
d
f
ij
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
H121
Cp ijkl
1
9K 2
G
H11H 22
H
2 22
对称
H11H 33
H 22H33
H
2 33
H11H12 H 22H12 H 33 H12
H122
H11H 23
H 22H 23
H 33 H12
H12H 23
H
2 23
H11H 31 H 22H31
H
33
H
31
H12H31
H12
H
0
如果hd以 d累积pf塑2ij d性d32应ijd变ijpdkfddijpkdp作32p0为d内2变hd量f ij
f
fij ij
ij
p ij
d
k k p k d2 p f f
p ij
d
d
p ij
d
f k
k
p
d
d p
f
p
ij
0
3 ij ij
2 f f
3 ij ij
h f
Cijkl
1 H
H
ij
H
kl
H

非线性有限元9弹塑性本构关系ppt课件

非线性有限元9弹塑性本构关系ppt课件
单轴试验下材料的弹塑性性态 (1/3)
对塑性变形基本规律的认识来自于实验: • 从实验中找出在应力超出弹性极限后材料的特性; • 将这些特性进行归纳并提出合理的假设和简化模型,
确定应力超过弹性极限后材料的本构关系; • 建立塑性力学的基本方程; 1) 求解这些方程,得到不同塑性状态下物体内的应力和
应变。
• 塑性阶段:继续加载,材料可承受 更大应力,称为材料强化,并伴随 出现塑性应变。至A点以前卸载, 路径接近直线,即处于弹性卸载状 态,其斜率等于加载斜率E。
1) 破坏点:继续加载至可承受的最大 极限应力,试件出现颈缩而破坏,
称为强度极限。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
1913年:泰勒(Taylor)的实验证明,LevyMises本构关系是真实情况的一阶近似。
1924年:提出塑性全量理论,伊柳辛(Ilyushin) 等苏联学者用来解决大量实际问题。
1930年:罗伊斯(Reuss)在普朗特(Prandtle) 的启示下,提出包括弹性应变部分的三维塑性应力 -应变关系。至此,塑性增量理论初步建立。
(屈服点),描写多维问题的屈服条件就需要应力或应变空间的一个临界曲面,该
曲面称为屈服面。
考虑到塑性变形与静
水压力无关的特点
f1,2,3C
FJ2,J3C
至今已出现许多屈服理论。俞茂宏教授在这方面做出了重要贡献。 屈服函数:
是描写屈服条件的函数。不同屈服条件,其屈服函数不尽相同。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
基本实验有两个: • 简单拉伸实验:实验表明,塑性力学研究的应力与应变

弹塑性力学-弹塑性本构关系ppt课件

弹塑性力学-弹塑性本构关系ppt课件

d
p
|
cos
0
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
工程弹塑性力学·塑性位势理论
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
p
ij
0
0 ij
WD
(ij
adij
0 ij
)d
p
ij
0
1 a 1 2

0 ij
时,略去无穷小量
ij
( ij
0 ij
)d
p ij
0

0 ij
ij时,
d
ij
d
p ij
0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
工程弹塑性力学·塑性位势理论
1 屈服曲面的外凸性
( ij
0 ij
)dijp
|
A0 A||
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
弹塑性力学本构关系
1
工程弹塑性力学·塑性位势理论
(1) 稳定材料与非稳定材料

弹塑性力学第四章 弹性本构关系

弹塑性力学第四章 弹性本构关系
E K 3(1 2 )
(4.36) (4.37) (4.38)
K称为体积弹性模量,简称体积模量。
因此
q
sm
K
,em
sm
3K
1 3 1 1 ex e x e m ( sx sm) sm sx E E 3K 2G
1 ey e y e m sy 2G
1 eij sij 2G
(4.40)
1 eij sij 2G 1 em sm 3K
(4.41)
用应变表示应力:
或:
各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
• 材料的应力与应变关系需通过实验确定的。 • 本构方程实际是应力与应变关系实验结果的数学 描述。 • 由于实验的局限性,通常由简单载荷实验获得应 力与应变关系结果,建立描述相应的数学模型, 再将数学模型用于复杂载荷情况的分析。(用一 定实验验证结果)
• 例如:材料单轴拉伸应力-应变z e m sz 2G
1 1 1 1 yz s yz exy e xy xy sxy eyz e yz 2G 2G 2G 2G
1 1 exz e xz xz sxz 2G 2G
整理以上六个式子,得 整理以上六个式子,得
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个 因此应力偏张量形式的广义虎克定律,即
物理方程:
s ij 3 1 3 e ij s ij s m ij s m ij E E 2G E

第十一章塑性本构关系

第十一章塑性本构关系

其中:k

E
31 2


0

2 3

-体积模量
§11-2 加卸载判别准则
一、理想弹塑性材料
屈服面
当 d ij 与屈服面相切时,为加载,这时可发生 任意的塑性变形。当d ij 指向屈服面内时,则 为卸载,此时不产生新的塑性变形。
f ij 0, f ij dij 0 加载

,


E
2 1

8
当ξβ固定时,(3)式
11

1 E
11

22
33 ,23

1
E

23

化为应力率与应变率之 间的弹性关系:
11

1 E
22

33
11 ,31

1
E
31
rp
s
0 r rp
s rp r R
卸去的应力: (按弹性计算) e M pr
Mp

2R3 s
3

1
1 4

rp R

I
3
p

4r s
3R

1
ijp ,相应的应力为

3
ij


2
ij
ij
。最后,
再通过某一弹性卸载路径使应力由

3回到初值
ij

4
ij


1
ij
,此段材料未产
生新的塑性变形。
得不等式:

2
ij

弹塑性力学PPT课件精选全文

弹塑性力学PPT课件精选全文
◆ 体力分量指向同坐标轴正向一致取正,反之负。
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.

第三章弹塑性本构关系

第三章弹塑性本构关系

O
张量(应力偏张量)的主方向保持不变,
这种加载方式称为简单加载或比例加载。 后继屈服曲面
在简单加载过程中,一点的应力状态在
(加载曲面)
应力空间中将沿矢径 移动,如图所示。
在复杂加载时,一点的应力张量各
分量不按比例增加, 在改变,应力张量
和应力偏张量的主方向也随之改变。一
点应力状态在应力空间中的运动轨迹就
第三章 弹塑性本构关系
3.1塑性位势理论 3.2硬化规律 3.3 弹塑性本构关系
3.1 塑性位势理论流动法则
模型三要素
屈服条件 流动法则
硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
本节内容
3.1.1 加载与卸载准则
1 加载曲面(后继屈服面)


0 ij
)d

e
ij
0

0 ij
于是有:
WD WDp
( ij


0 ij
)d

p
ij

0

0 ij
(3) 德鲁克塑性公设的重要推论
WD WDp
( ij


0 ij
)d

p
ij
化时,称之为卸载过程,如果用φ (σij,Hα)=0表示后继屈服
条件,则:
卸载:ddH
0 0


ij
d ij

0

d
n

0
中性变载:ddH0 0 ijd ij

0

d
n

弹塑性力学-弹塑性本构关系ppt课件

弹塑性力学-弹塑性本构关系ppt课件
续应加 变d载ε到ijpσ,ij+最dσ后ij,应在力这又一卸阶回段到,σij将0。产若生整塑个性
应力循环过程中,附加应力dσij所作的塑性 功不小于零,即附加应力的塑性功不出现负 值,则这种材料就是稳定的,这就是德鲁克 公设。
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
屈服面 势面线
(5)金属材料的塑性势面与 屈服面基本一致。
附加应力功为非负的条件
3.1.3 依留申塑性公设的表述
依留申塑性公设:在弹塑性材料的一个应变循环内, 外部作用做功是非负的,如果做功是正的,表示有塑性变 形,如果做功为零,只有弹性变形发生。
设材料单元体经历任意应力
历即史初后始,的在应应变力εσij0ij在0下加处载于面平内衡,,然
(应变硬化和理想塑性材料)
(应变软化材料)
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。
设材料单元体经历任意应力历史后, 在应力σij0下处于平衡,即开始应力σij0在加 载面内,然后在单元体上缓慢地施加一个附 加力,使σij0达到σij,刚好在屈服面上,再继
后在单元体上缓慢地施加荷载,使
εij达到屈服面,再继续加载达到 应变变dε点ijpε。ij+然d后ε卸ij,载此使时应产变生又塑回性到应 原先的应变状态εij0,并产生了与

塑性力学第五章本构关系ppt课件

塑性力学第五章本构关系ppt课件

(5-2)
将三个正应变相加,得:
kk
kk
2G
3
E
mkk
1 2
E
kk
记:平均正应变
m
1 3
kk
体积弹性模量 K E / 3(1 2 )
则平均正应力与平均正应变的关系:
m 3K m
(5-4)
(5-2)式用可用应力偏量 sij 和应变偏量 eij 表示为
1 eij 2G sij
(5-5)
包含5个独立方程
利用Mises屈服条件
J 2
2 s
2 s
3,
可以得到
本构关系
d dijdij d 3d
2 J 2
2 s 2 s
将(5-41)式代回(5-39)式,可求出
(5-41)
sij
d ij d
2 sdij d
2 sdij 3d
(5-44)
在(5-39)式中,给定 sij 后不能确定 dij ,但反之却可由 dij
确定 sij 如下:
J 2
1 2
sij sij
1
2(d)2
dijdij ,
将(5-38)式与(5-41)式加以比较就发现:
dW p s d s d
(5-45)
对于刚塑性材料 dW dW p
3、实验验证
本构关系
理想塑性材料与Mises条件相关连的流动法则:
d
p ij
d sij
对应于π平面上,d与p 二S 向量在由坐标原点发出的同一条射线上。
sij
(5-5)
We
1 2G
J 2
1
2
1 G 2
2
1
2
1

弹塑性本构关系

弹塑性本构关系
பைடு நூலகம்
F p d kk 3d S;deijp d ij e p p d d G K kk ij 2G eij kk mn 2 mn Sij k
(2) Druker-Prager 模型
Druker-Prager模型采用广义的 Mises屈服函数,其表达式为:

m
3K
ij
弹性变形 + 塑性变形 又可写成:
ij Sij m ij K kk ij 2G eij d d d d e d e
K kk d kk ij 2G eij eijp p d d d F F K kk ij 2G eij d 3K ij 2G d d kk Sij
F σ ij J 2 I1 k 0 +

F kk
F Sij 2 Sij J2
得 d ij dSij d m ij d F 2G 3K

F ij Sij kk
Sij m Sij d d d ij 2G 3K ij 2 J2
2G
m为对应于 m体应变
拉梅常数 E (1 )(1 2 )
xy
2
x 3 m 2G x y 3 m 2G y z 3 m 2G z xy 2G xy G xy
yz zx
2 2
2G
G
E 2(1 )
2G
基本方程 yz 2G yz G yz zx 2G zx G zx
张量形式
张量形式
ij ij

第5章 弹塑性本构模型理论

第5章 弹塑性本构模型理论
?r3321??????232221??????op表示p点应力矢量的大小p为应力空间上一点代表某一应力状态过p点作与等倾线相垂直的面即为平面???32131???????oq??321321313?????????????rr由mioqr?331????平面上法向应力即为令????m3?????23212322212231??????????????oqoppq??????2222323122132231qj??????????????平面上的剪应力为令???qj3222??应力洛德角1?2?3?p?qr洛德参数313122???????????毕肖甫常数3132???????b洛德角??312332tan31312???????b????????洛德角与偏应力不变量之间的关系23232333sinjj????应变与应变增量ji??333231232221131211??????????????????zzyzxyzyyxxzxyx??????????????????212121212121??????????321??????应变状态体积应变增量321???????????v偏差应变增量????????3vijijijee?????应变张量不变量3211???????i偏差应变不变量3231212??????????i3211?????i01??j??232221121eeej??????????1233123213222271?????????????????j体积应变321???????v广义剪应变????????2123223122132?????????????应变洛德角??3131232tan???????????2增量弹塑性理论?弹性增量理论?以弹性模型与泊桑比表达????????????????????????????????????????????????????????????????????????????????????????zxyzxyzyxzxyzxyzyxvvvvvvvvvvvvvvvvvvvvve????????????????????????1221000000122100000012210000001110001110001112111?以剪切模型与体积模量表达?????????????????????????????????????????????????????????
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 屈服曲面的外凸性
0 ( ij ij )d ijp | A0 A || d p | cos 0
ij
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向 与塑性应变向量之间所成的夹角不应 该大于90° 稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
0 ij
d d p 0 d d p 0

d 0
B
C
D
A

d 0 d 0
0 WI ( ij ij d ij )d ijp
1
2
WD d ij d ijp WD 0
2
1
① ②
0 ij ij 0时, 0 ( ij ij )d ijp 0
在应力循环中,外载所作的 功为:
W 0 ij d ij 0
ij
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
0 W 0 ij ij d ij 0
0 0 当 ij ij时 ( ij ij )d ijp 0 0 WD ( ij ij )d ijp 0
由图(a)可知,对于弹性性质不随加载面改变的非耦合情况,外 部作用在应变循环内做功WI和应力循环所作的外部功之间仅差 一个正的附加项: 1 p p
2 d d
(应变硬化和理想塑性材料) (应变软化材料)
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。 设材料单元体经历任意应力历史后, 在应力σij0下处于平衡,即开始应力σij0在加 载面内,然后在单元体上缓慢地施加一个附 加力,使σij0达到σij,刚好在屈服面上,再继 续加载到σij+dσij,在这一阶段,将产生塑性 应变dεijp,最后应力又卸回到σij0。若整个 应力循环过程中,附加应力dσij所作的塑性 功不小于零,即附加应力的塑性功不出现负 值,则这种材料就是稳定的,这就是德鲁克 公设。
在应变空间,流动规则可用下式表示:
d d ij
p ij
d 和 d 都为非负的比例系数。
3.2 硬化规律
塑性模型三要素
屈服条件 流动法则 硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
• 硬化规律:加载面在应力空间中的位置、大小和 形状的变化规律。(确定加载面依据哪些具体的 硬化参量而产生硬化的规律称为硬化定律) • 硬化模型:实际土体硬化规律+简化假设(如采用 等值面硬化理论,主应力方向不旋转,加载面形 状不变等)
3.2.3 混合强化模型
运动硬化和等向硬化的组合,可以构成更一般的 硬化模型,称为混合强化模型
( ij , H ) F ( ij c ijp ) K 0
这时,后继屈服面既有位置的改变,也产生均匀的膨 胀。 等向强化 混合强化 随动强化(运动强化) 初始屈服面
3.2.4 加工硬化规律
因此可将应变循环所作的外部功,写成
1 1 0 WI WD d ij d ijp ( ij ij d ij )d ijp 0 2 2
上式表明,如果德鲁克塑性公设成立,WD≥0,则依留申塑性公 设也一定成立,反之,依留申塑性公设成立,并不要求WD≥0, 也就是说,德鲁克塑性公设是依留申塑性公设的充分条件,而 不是必要条件。 d 0 当应力点由A到B时, dσ<0,但dσp>0,塑性变形 dεp>0,总变形dε>0

0 ij
ij
0 ij d ij 0
ቤተ መጻሕፍቲ ባይዱ

应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件: ①ij0在塑性势面与屈服面 之内时,德鲁克公设成立; ②ij0在塑性势面与屈服面 之间时,德鲁克公设不成立;
势面线
屈服面
(5)金属材料的塑性势面与 屈服面基本一致。 附加应力功为非负的条件
d ij d ijp 0 dσ n 0
加载准则
意义:只有当应力增量指向加载面的外部时才能产生塑性变形。
3德鲁克塑性公设的评述
德鲁克公设的适用条件:
(1)应力循环中外载所作 的真实功与ij0起点无关;

p ij
ij d ij 0
(2)附加应力功不符合功的 定义,并非真实功
3.2.2 随动强化模型
图中OABCDE代表随动强化 模型,弹性卸载区间是衬始屈服 应力σs的两倍。根据这种模型, 材料的弹性区间保持不变,但是 由于拉伸时的强化而使压缩屈服 应力幅值减小。 与等向强化模型不同,随动 强化模型是考虑包辛格效应的。 在单向拉压情况下,随动强化模 型可以用下式表示:
s s 2 s
常用模型 金属材料:采用等向强化和随动强化; 岩土材料:静力问题采用等向强化;循环荷载 和动力问题采用随动强化或混合强化
3.2.1 等向强化模型
这种模型无论在哪个方向加载拉 伸和压缩强化总是相等地产生和 开展;在复杂加载条件下,即表 示应力空间中作形状相似的扩大, 如图中OABDD'E'代表等向强化, 图中B与D'点所对应的应力值均 为σ's(指绝对值),在这种情况下, 压缩屈服应力和弹性区间都随着 材料强化而增大。
( ij , H ) F ( I1 , J 2 , J 3 ) K 0 初始屈服面 硬化系数
tresca、von mises、M-C K H ( dW p )或H ( d p )
dW
p
ij d
p ij
d
p

2 deijp deijp 3
应变空间加 载面外凸
0 ij ij时, 塑性势面与屈服面相同 d ij d ijp 0

加载准则(取大于号表示 有新的塑性变形发生)
根据 d ijp 关于 0 的正交法则,可得:
d ijp d ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得: D ij ij 结合
3.1.3 依留申塑性公设的表述
依留申塑性公设:在弹塑性材料的一个应变循环内, 外部作用做功是非负的,如果做功是正的,表示有塑性变 形,如果做功为零,只有弹性变形发生。 设材料单元体经历任意应力 历史后,在应力σij0下处于平衡, 即初始的应变εij0在加载面内,然 后在单元体上缓慢地施加荷载,使 εij达到屈服面,再继续加载达到 应变点εij+dεij,此时产生塑性应 变dεijp 。然后卸载使应变又回到 原先的应变状态εij0,并产生了与 塑性变量所对应的残余应力增量 dσijp。
加工硬化规律是决定一个给定的应力增量引起的 塑性应变增量的一条规则,在流动规律中,dλ这个因 素可以假定为:
(b) 不满足稳定 材料的屈服面
/2
2 塑性应变增量向量与屈服面法向平行
p d 必与加载面的外法线 重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
d d ij
p ij
切平面
标量dλ,称 为塑性因子
加载面
表明,塑性应变分量σij之间的比例可由在 加载面上Φ的位置确定。
( ij , H ) F ( ij ij ) 0 F ( ij ) 0为初始屈服面
tresca、von mises、M-C
移动张量
常用线形随动强化 ij c ijp
mises :
3 ( Sij c ijp )( Sij c ijp ) s (c可据简单拉伸试验确定) 2
g I1 , J 2 , J 3 , H 0
g ij , H 0

式中, H 为硬化参数。 塑性应变增量可以用塑性位势函数对应力微分的表达 式来表示,即: g p
d ij d ij
d ijp d
g ij
上式就称为塑性位势理论。它表明一点的塑性应变 增量与通过该点的塑性势面存在着正交关系,这就确 定了应变增量的方向,也就确定了塑性应变增量各分 量的比值。 流动规则也称为正交定律,是确定塑性应变增量 各分量的比值,也即塑性增量方向的一条规定。上式 是流动规则的一种表示形式,另外还有另一种表示形 式:
mises : q s H ( dW p )[或H ( d p )] 0 tresca : max s H ( dW p )[或H ( d p )] 0
在应力空间中,这种后 继屈服面的大小 只与最大 的应力状态有关,而与中 间的加载路径无关。在右 图中,路径1与路径2的最 终应力 状态都刚好对应于 加载过程中最大应力状态, 因此两者的最终后继屈服 是一样的;而路径3的最 终后继屈服面由加载路径 中最大应力状态来定。
0 ij
0 WD ( ij ad ij ij )d ijp 0
1 a
1 2
0 当 ij ij时,略去无穷小量
( ij )d 0
0 ij p ij
0 当 ij ij时, d ij d ijp 0
屈服面的外凸性 塑性应变增量方向 与加载曲面正交
弹塑性力学本构关系
讲的挺好的
(1) 稳定材料与非稳定材料
德鲁克公设和依留申公设是传统塑性力学的基础,它把塑性势函 数与屈服函数紧密联系在一起。德鲁克公设只适用于稳定材料, 而依留申既适用于稳定材料,又适用于不稳定材料。
相关文档
最新文档