高等数学第9章试题
高等数学课后习题答案--第九章
9. 设 x n >0,
10. 讨论下列级数的收敛性(包括条件收敛与绝对收敛)
182
⑴ ⑶ ⑸ ⑺ ⑼
x sin ; n n =1 ∞ n (−1) n −1 n −1 ; ∑ 3 n =1 n +1 ∞ (−1) ( x > 0 ); ∑ n =1 n + x
∑ (−1)
∞
n +1
⑵ ⑷ ⑹ ⑻ ⑽
180
(4) (6)
∑
∞
∞
n =1 ∞
∑
n =1
ln n ln n 1 ln n 1 n 1 , = = 3 . 收敛; < 2 2 n n n n n n n2 1 1 1 , < , 收敛; n ln (n + 2) ln(n + 2) 2
n
(5)
收敛;
(7) (8) (13) (14)
∑ (
n =1
n −1
)
n
发散
由于 lim (10
a −1
1 n
n →∞
= ln a , 而 n n − 1 > n a − 1 ;
(11)
发散;
∑
n =1
∞
∞
∑
n =1
( n + 1 − n − 1 ), ( n + 1 − (2n − n + 1 − n − 1) = (n −
2 2 2 2 2
(9) 收敛;
收敛;
5.利用级数收敛的必要条件,证明: nn (1) lim = 0, (2) n →∞ ( n !) 2
∞
n →∞
lim
( 2 n) ! = 0. 2 n ( n +1)
《高等数学》同济第六版 第9章答案
1 得C = 0 , 9 1 1 故所求的特解为: y = x ln x − x 3 9
代入初始条件 y (1) = − 11.求下列微分方程的通解 (1) y′′ − 4 y′ + 3 y = 0 (3) y′′ − 4 y′ + 4 y = 0 解: (1)特征方程为 (2) y′′ − 4 y′ = 0 (4) y′′ − 4 y′ + 5 y = 0
x )dy = 0 y
解: (1)原方程可化为: 3
dy x 2 y = + , 这是齐次方程. dx y 2 x
设u
=
y dy du ,由 y = xu 得 =u + x⋅ dx dx x
3u 2 1 du = dx 代入原方程并分离变量得: 3 x 1 − 2u
两边积分得: −
3
1 ln 1 − 2u 3 = ln x + ln C1 2 1 C 3 ,即 1 − 2u = 2 , 2 2 C1 x x
3 3 ⎤ ∫ y dy ⎡ y − ∫ y dy x=e dy + C ⎥ ⎢∫ − e ⎢ ⎥ ⎣ 2 ⎦
y 1 1 y2 = y 3 ( ∫ − ⋅ 3 dy + C ) = y 3 ( + C ) = Cy 3 + 2 2 y 2y
10.求微分方程 xy′ + 2 y = x ln x 满足 y (1) = − 解:原方程化为 将 P ( x) =
有⎨
⎧ C1 = 0 解得 C1 = 0, C2 = 1 . C + 2 C = 1 ⎩ 2 1
写出由下列条件确定的曲线所满足的微分方程.
4
(1)曲线在点 ( x, y ) 处的切线斜率等于该点横坐标的 5 倍. (2) 曲线在点 ( x, y ) 处的切线斜率等于该点横坐标与纵坐标乘积的倒数. 答案.(1) y ′ = 5 x (2) y ′ =
高等数学第九章多元函数微分学试题及答案
第九章 多元函数微分学§9.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点()D y x P ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以()y x f z ,=,D 称为定义域。
二元函数()y x f z ,=的图形为空间一卦曲面,它在xy 平面上的投影区域就是定义域D 。
例如 221y x z --=,1:22≤+y x D , 此二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是 xy 平面上以原点为圆心,半径为1的闭圆。
2.三元函数与n 元函数()z y x f u ,,= ()Ω∈z y x ,,空间一个点集称为三元函数()n x x x f u ,,21 = 称为n 元函数它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。
条件极值中,可能会遇到超过三个自变量的多元函数。
二、二元函数的极限设函数),(y x f 在区域D 内有定义,),(000y x P 是D 的聚点,如果存在常数A ,对于任意给定的0>ε,总存在0>δ,当),(y x P 满足δ<-+-=<20200)()(0y y x x PP 时,恒有ε<-A y x f ),(成立。
则记以()A y x f y y x x =→→,lim 0或()()()A y x f y x y x =→,lim00,,。
称当()y x ,趋于()00,y x 时,()y x f ,的极限存在,极限值A ,否则称为极限不存在。
值得注意:这里()y x ,趋于()00,y x 是在平面范围内,可以按任何方式沿任意曲线趋于()00,y x ,所以二元函数的极限比一元函数的极限复杂;但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值,不像一元函数求极限要求掌握各种方法和技巧。
《高等数学教学课件》第9章单元测试题
题目3
计算定积分$int_{0}^{1} x^2 dx$。
难度提升解答题
02
01
03
题目4
求函数$y = x^3 - 6x^2 + 9x - 4$的单调区间。
题目5
求函数$y = ln(x^2 + 1)$的渐近线。
题目6
计算二重积分$int_{0}^{1} int_{0}^{x} x^2 y dy dx$ 。
《高等数学教学课件》第9章 单元测试题
目
CONTENCT
录
• 测试题一:选择题 • 测试题二:填空题 • 测试题三:解答题 • 测试题四:证明题 • 测试题五:计算题
01
测试题一:选择题
基础知识选择题
总结词
考察学生对基础知识的掌握程 度
详细描述
这部分选择题主要考察学生对 第9章中涉及的基本概念、定 理和公式的理解和记忆,难度 较低。
综合应用解答题
题目7
已知函数$f(x) = x^2 - 2x$,求函数在区间$( infty, a)$上的最大值和最小值。
题目8
求函数$y = frac{1}{x}$和$y = x + 1$的交点坐 标。
题目9
计算三重积分$int_{0}^{1} int_{0}^{1} int_{0}^{1} xyz dxdydz$。
4. 利用多重积分和微分几何知识 ,证明几何图形的面积和体积公 式,并解决一些几何问题
05
测试题五:计算题
基础知识计算题
总结词:考察基本概念和 运算能力
2. 计算定积分$int_{0}^{1} (x^2 + 1) dx$。
1. 求函数$f(x) = x^3 3x^2 + 2x$的单调区间。
高数答案第9章
第9章(之1) (总第44次)*1. 微分方程7359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A )解 微分方程的阶数是未知函数导数的最高阶的阶数.*2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) (A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D )解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ;(B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解;(C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了x C x C y 2sin 12cos 2++=,实质上只有一个任意常数;(D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解.*3.在曲线族 xxec e c y -+=21中,求出与直线x y =相切于坐标原点的曲线.解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由xxe c e c y -+=21, xx ec e c y --='21,可得1,02121=-=+c c c c ,故21,2121-==c c ,这样就得到所求曲线为)(21x x e e y --=,即x y sinh =.*4.证明:函数y e x x =-2333212sin 是初值问题⎪⎪⎩⎪⎪⎨⎧===++==1d d ,00d d d d 0022x x x y y y x yx y 的解.证明 '=-+--y e x e x x x 3332321212sin cos ,''=----y e x e x x x 3332321212sin cos ,代入方程得 ''+'+=y y y 0, 此外,,1)0(0)0(='=y y 故y e x x =-2333212sin 是初始值问题的解.*5.验证y e e t Ce x t xx=+⎰20d (其中C 为任意常数)是方程'-=+y ye x x 2的通解.证明 '=+⋅+⎰y ee t e e Ce xt xx x x 220d =++ye x x 2, 即 2x x e y y +=-',说明函数确实给定方程的解.另一方面函数y ee t Ce xt x x=+⎰2d 含有一任意常数C ,所以它是方程的通解.**6.求以下列函数为通解的微分方程: (1)31+=Cx y ;解 将等式31+=Cx y 改写为13+=Cx y ,再在其两边同时对x 求导,得C y y ='23,代入上式,即可得到所求之微分方程为1332-='y y xy . (2)xC x C y 21+=. 解 因为给定通解的函数式中有两个独立的任意常数,所以所求方程一定是二阶方程,在方程等式两边同时对x 求两次导数,得221x C C y -=',322xC y =''. 从以上三个式子中消去任意常数1C 和2C ,即可得到所求之微分方程为02=-'+''y y x y x .**7.建立共焦抛物线族)(42C x C y +=(其中C 为任意常数)所满足的微分方程[这里的共焦抛物线族是以x 轴为对称轴,坐标原点为焦点的抛物线].解 在方程)(42C x C y +=两边对x 求导有C y y 42=',从这两式中消去常数所求方程为)2(y y x y y '+'=.**8.求微分方程,使它的积分曲线族中的每一条曲线)(x y y =上任一点处的法线都经过坐标原点.解 任取)(x y y =上的点 ),(y x ,曲线在该点处的切线斜率为 y '=dxdy . 所以过点),(y x 的法线斜率为y '-1, 法线方程为y Y -=y '-1)(x X -, 因为法线过原点,所以=-y 0y '-1)0(x -从而可得所求微分方程为0='+y y x .第9章(之2)(总第45次)教学容:§9.2 .1可分离变量的方程; §9.2 .2一阶线性方程**1.求下列微分方程的通解:(1)21)1(x y x y +-=';解: 分离变量21d 1d x x x y y +=-,两边积分⎰⎰+=-21d 1d x xx y y , 得C x y ln )1ln(21)1ln(2-+=--,即211xC y +-=. (2)222y x e yx y -='; 解:分离变量x xe y ye x y d d 222=,两边积分就得到了通解)d (21222x e xe e x x y ⎰-=c e xe x x +-=)21(2122.(3)042)12(=-+'+y y e y e x .解: 12d 42d +-=-x xe y e y y ,C x e y ln 21)12ln(21)2ln(21++-=-, 即 ()()e x C y-+=221.**2.试用两种不同的解法求微分方程xy y x y +--='1的通解.解法一 (可分离变量方程的分离变量法)这是一个一阶可分离变量方程,同时也是一个一阶线性非齐次方程,这时一般作为可分离变量方程求解较为容易. 分离变量,)1)(1(y x y --=',x x y y d )1(1d -=-,并积分 x x y yd )1(1d -=-⎰⎰ 得c x x y +-=--221)1ln(,所求通解为 x x ce y -+=2211.解法二 (线性方程的常数变易法)将原方程改写为x y x y -=-+'1)1(,这是一个一阶线性非齐次方程.对应的齐次方程为0)1(=-+'y x y ,其通解为○1x x e C y -=221.代入原非齐次方程得x e C x x -='-1221,解得○2C eC x x +=-221,○2代入○1即可得原方程的通解xx Cey -+=2211.*3.求解下列初值问题:(1)21x yy -=',6)21(πe y -=.解:Θy '=21xy -,∴21d d xx y y -= (0≠y ), 21d d xx y y -=⎰⎰,∴C x y +=arcsin ln , ∴ x Ce y arcsin =,Θπ6)21(e y -=,∴21arcsin 6Ce e =-π,∴1-=C , ∴ x e y arcsin -=.(2)22x e xy y -=+',1)0(=y ;解: Θ22x e xy y -=+', x x p 2)(=∴,2)(x e x q -=,=∴)(x y ⎰-xx ed 2⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 222x e -=⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 2222x x Ce xe --+=, Θ 1)0(=y , 101=⇒+=∴c c , 2)1(x e x y -+=∴.(3)xex y y cos cot =+',1)2(=πy ;解: Θ xex y y cos cot =+', ∴x x P cot )(=,xex Q cos )(=.∴ ⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x C y xx x x x d e e e d cot cos d cot )d e e (e sin ln cos sin ln ⎰+=-x C x x x)d sin e (csc cos ⎰+=x x C x x x C xcsc )e(cos -=,由1)2(=πy , 可确定 2=C ,所以x y x csc )e 2(cos -=.(4)0d )12(d 2=+-+x x xy y x ,01==x y .解: 方程变形为 2112xx y x y -=+',是一阶线性非齐次方程,其通解为⎥⎦⎤⎢⎣⎡⎰-+⎰=⎰-dx ex x c e y dx x dx x 222)11( ⎥⎦⎤⎢⎣⎡-+=⎰dx x x x c x 222)11(1⎥⎦⎤⎢⎣⎡-+=x x c x22211x xc 1212-+= 由 0)1(=y , 得 21=c , 所以特解为:x xy 121212-+=.**4.求微分方程 0d )ln (d ln =-+y y x x y y 的通解(提示将x 看作是y 的函数). 解:将x 看作是y 的函数,原方程可化为yx y y dy dx 1ln 1=+,这是一阶线性方程,将其中yy Q y y y P 1)( ,ln 1)(==代入一阶线性方程求解公式,得通解 1e 1)ln(ln )ln(ln ln 1ln 1⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎰+⎰=⎰⎰--dy e y c dy ey c e x y y dy y y dy y y y y c dy y y c y ln 21ln ln ln 1+=⎥⎦⎤⎢⎣⎡+=⎰.**5.求满足关系式)(d )(22x y x u u uy x +=⎰的可导函数)(x y .解:这是一个积分方程,在方程等式两边同对x 求导,可得微分方程xy x x y x()d d =+2,即d d yxxy x -=-2,分离变量得d d y y x x -=2,积分得y Ce x =+222,在原方程两边以2=x 代入,可得初试条件22-==x y.据此可得14--=e C ,所以原方程的解为 24122+-=-x e y .**6.设降落伞自塔顶自由下落,已知阻力与速度成正比(比例系数为k ),求降落伞的下落速度与时间的函数关系. 解:根据牛顿运动第二定理有kv mg tvm -=d d .这是一个可分离变量方程,分离变量并积分得--=+1k mg kv tmC ln(). 由初始条件0)0(=v , 得)ln(1mg k C -=,即得 v mg k e kmt =-⎛⎝ ⎫⎭⎪-1.**7.求一曲线,已知曲线过点)1,0(,且其上任一点),(y x 的法线在x 轴上的截距为kx . 解:曲线在点(,)x y 处的法线斜率为y '-1,所以法线方程为Y y y X x -=-'-1().只要令0=Y ,就可以得到法线在x 轴上的截距为 y y x X '+= .据题意可得微分方程x yy kx +'=,即x k y y )1(-='.这是一个可分离变量方程,分离变量并积分得所求曲线C x k y =-+22)1(,由于曲线过点)1,0(,所以1=C ,所以所求曲线方程为 y k x 2211+-=().***8.求与抛物线族2Cx y =(C 是常数)中任一抛物线都正交的曲线(族)的方程. 解:在给定曲线2cx y =上任意一点),(y x 处切线斜率为cx y k 20='=,从上面两式中消去c 得x y y k 20='=,这样就得到了给定曲线族所满足的微分方程xyy 2='. 设所求曲线方程为 )(x y y =,在同一点),(y x 处切线斜率为y k '=,则根据正交要求有10-=k k ,这样就得到了所求曲线族应该满足的微分方程yx y 2-='. 这是一个可分离变量方程,分离变量xdx ydy -=2,积分得所求曲线族c x y +-=2221,即椭圆族c x y =+2221. ***9.作适当变换,求微分方程 1224+-='-x e y y的通解. 解 原方程可化为4122=++'y ye x y e ,在换元y e z =下方程可化为4122=++'x zz ,这是一个一阶线性方程,其通解为⎭⎬⎫⎩⎨⎧+=⎰+⎰+-⎰x eC ez x xx xd 412d 212d 2}44{1212x x C x +++=.***10.作适当变换,求微分方程 d d tan y x y x y y x =+⎛⎝ ⎫⎭⎪2122的通解.解:令ux y =2,代入方程整理得 xxu u d tan d =,积分得 Cx u =sin ,以 x y u 2= 代入上式,即得原方程的通解: Cx xy =2sin .第9章 (之3) (总第46次)教学容:§9.2 .3齐次型方程;9.2.4伯努利方程.**1.求下列微分方程的通解:(1) )ln ln 1(d d x y xyx y -+=; 解: Θ )ln ln 1(d d x y x y x y -+=, ∴ dx dy =x y (1+xyln ),这是一个一阶齐次型方程.令 xyu =,则 ux y =,即u x u y '+=',于是原方程可化为u u u x ln ='.这是一个可分离变量方程.分离变量x dx u u du =ln ,并积分⎰⎰=xdxu u du ln ,得c x u ln ln ln ln +=,即cx e u =. 以 xy u =代入,得所求的通解为cxxe y =.(2)()arctan xy y yxx '-=. 解:方程可化为xy xy y arctan1+=',这是一个一阶齐次型方程.令 x y u =,则 ux y =,即u x u y '+=',于是原方程可化为ux u x arctan 1d d =,这是一个可分离变量方程.分离变量后积分得 x u Ce u u 12+=arctan .以 xy u =代入上式得原方程的通解:x y Cey x yx 22+=arctan . **2.求解下列初值问题:(1)0d )2(d 22=+-y y x x xy 满足初始条件 1)2(=y 的特解. 解: Θ 0d )2(d 22=+-y y x x xy ,dy dx =x y y x +2, 令 yxu = , 则 u u dy du yu 12+=+, u u du 1+=y dy , ∴⎰+uu du 1=⎰y dy,c y u ln ln )1ln(212+=+∴, cy u =+∴12, 即 2221y c u =+ , 代回即得22y x +1=22y c , 1)2(=y Θ, ∴52=c , 因此 22y x +=54y .(2)⎩⎨⎧==-++=.0,0d )(d )(0x y y y x x y x解:原方程可表为11d d -+=-+=x y x yx y y x x y ,令 x y u =,u x u y '+=', 代入方程,有 11-+='+u uu x u ,即 121d d 2--+=u u u x u x , 分离变量x x u uu u d 1d 2112=-+-,积分得 C x u u ln ln )21ln(212-=-+- ⇒通解 C y xy x =-+222,令 0,0==y x ,得 0=C .所以初值问题的解为 0222=-+y xy x .***3.试证明:当1221b a b a ≠时,总能找到适当的常数h ,k ,使一阶微分方程)(222111c y b x a c y b x a f y ++++='在变换k y s -=,h x t -=之下,可化为一阶齐次型方程)(d d 2211sb t a s b t a f t s++=. 并求方程 0d )32(d )12(=++++y y x x y x 的解.证明:令⎩⎨⎧+=+++=++s b t a c y b x a sb t ac y b x a 2222211111 1221b a b a ≠Θ,∴可解得:⎪⎪⎩⎪⎪⎨⎧---=---=1221122112212112b a b a c b c b x t b a b a c a c a y s 因此可取:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112212112b a b a c b c b h b a b a c a c a k解:0)32()12(=++++dy y x dx y x Θ,令⎩⎨⎧-=+=32x t y s ⎩⎨⎧==⇒x t ys d d d d[][]0)2(3)3(21)2(23=-++++-++∴ds s t dt s t ,()0)32(2=+++ds s t dt s t ,ts t sdt ds dtdst s t s 32210)32(21++-=⇒=+++⇒, 令dt dutu dt ds t s u +=⇒=, 23)1)(13(3221+++-=⇒++-=+∴u u u dt du t u u dt du t u , ⎰⎰-=⎥⎦⎤⎢⎣⎡+++∴-=+++⇒t dtdu u u t dt du u u u )13(23)1(21,)1)(13()23(, c t u u ln ln )13)(1ln(21+-=++即,c tst s t ct u u =++⇒=⋅++∴)13)(1()13)(1(,c x xy x y c x y x y x 243)3631)(321()3(22=+++⇒=-++-++-∴.**4.求下列微分方程的通解(1)0ln 2=+-'x y y y x ;解: 0ln '2=+-x y y xy Θ xxy x y y ln 1'12-=-∴-- 令x x t x dx dt y t ln 11=+⇒=-, ,ln )Q( ,1)(xx x x x P ==∴ln 1 d ln )(d 1d 1⎥⎦⎤⎢⎣⎡⋅+=⎥⎦⎤⎢⎣⎡⎰+⎰=∴⎰⎰-xdx x x C x x e x x C e x t x x x x1ln C )ln (C 11-+=-+=---x x x x x x x x , 111ln --+-=Cx x y .(2)0d d )2(=+-y x x xy y .解: Θ 0d d )2(=+-y x x xy y , x y d d +y x 1=212y x, y y '-21+211y x =x 2, 21y u =,x u d d +x 21x u 1=, ∴x x P 21)(=,xx Q 1)(.∴⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x e x C e x u x x x x d 1)(d 21d 2121-=x ⎥⎦⎤⎢⎣⎡+⎰x x x C d 121[]x C x +=-21, ∴ []x C xy +=-2121, ∴xC x y +=.(3)'=-y y xy x 3222()解一:令u y =2,原方程化为: d d u x u x u x =⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-21,解此方程得 u Ce u x =, 以u y =2代入上式,原方程通解为 y Ce y x22=.解二:原方程写成d d x y y x yx -=-2232, 令x z -=1,则方程化为:322d d yz y y z =+, 则通解 z eC y e y yy y y =+⎡⎣⎢⎢⎤⎦⎥⎥-⎰⎰⎰2322d d d ]ln 2[12y C y+= , 故原方程通解:1122x yC y =+[ln ]. **5.求下列伯努力方程满足初始条件的特解:yxy y 2-=',1)0(=y . 解:x y yy', xy y y 22'21-=-∴-=-Θ,令 x t dxdty t 42 2-=-⇒=, x x Q x P 4)( ,2)(-=-=∴, []12010211)0(1212 )]2[ d 4 d )4()(2022222222d 2d 2+=∴=⇒++⨯=∴=++=∴++=++=-=⎥⎦⎤⎢⎣⎡⎰-+⎰=∴----⎰⎰x y C Ce y Ce x y x Ce e xe C e xxe C e x e x C e x t xx x x x x x x x,Θ****6.作适当的变换求方程 12222212+⋅'=++x y y x y e x sin sin 的通解.解:原方程化为:12222212+=++x yxx y e x d sin d sin ,令z y =sin 2,得d d z x x x ze x x -+=++21122122,故 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++=⎰⎰+-+⎰+x exeC ez xx x x x x x d 1d 12212d 12222)1ln(2121222x x eCex x +++=++原方程的通解为 sin ln()221212221y Ce e x x x x =+++++.***7.已知)(2d )(1)(2202x y x y y x+='+⎰ξξξ,求y x ().解:两边关于x 求导得212yy y '-=-, 解得 y Ce x 21=+, 由yx ==00,求得C =-1,故原方程的解为:y e x21=-.***8.曲线过点(,)11,其上任一点与原点的距离平方等于该点横坐标与该点的曲线的法线在x 轴上的截距乘积的两倍,求曲线方程. 解:x y x x yy y 22211+=+'=(),(), 212yy xy x '-=- 令y z 2=,解得z y x C x ==-2()由y ()11=, 得 C =2, 曲线方程为: x y x 222+=.***9.根据托里斥利定律,液体从容器小孔中流出的速度为 gh A v 2α=,其中 g 为重力加速度,h 为液面与底部孔口之间的距离,A 为孔口面积,α为孔口收缩系数,实验确定其取值为 62.0=α.现有一直径为1m ,高为2m 的直立圆柱形容器,其中盛满的水从底部直径为1=d cm 的圆孔流出,要多长时间容器的水才会完全流尽?解:设在时刻t 时, 容器中液面高度)(t h ,则经过t ∆后液面高度为)(t t h ∆+, 于是有t t gh A t t h t h r ∆=∆+-)(2))()((2απ,即 22)()(rghA t t h t t h πα=∆-∆+-, 令0→∆t , 得⎪⎩⎪⎨⎧==-200)0(2d d 2h gh r At h πα解得 200222+=t g rAh πα, 代入0=h , 980=g , 50=r , 4π=A , 62.0=α, 得10304=t (秒).第9章 (之4)(总第47次)教学容:§9.3可降阶的高阶微分方程**1.解下列问题:(1).微分方程'+''=''y y xy 满足条件'==y y (),()2121的解是 ( ) (A )y x =-()12(B )y x =+-()122142(C )y x =-+121122() (D )y x =--()12542解:(C )(2).微分方程''-'=y yy 203满足条件'=-=y y (),()0101的解是 ( )(A )y x 3313=+(B )x y 331=- (C )y x 3313=-+(D )x y 331=-+ 解:(C )**2.求下列微分方程的通解. (1)0='+''y y x ;解: Θ 0='+''y y x 是一不显含因变量y 的二阶方程, 令 y p '= ⇒ y ''x p d d =∴0=+'p p x , ⇒p p d =xxd -,⇒⎰⎰-=x xp p d d ⇒ 1ln ln ln C x p +-= ⇒xC p 1=, ∴=xy d d x C 1, x x C y d d 1=, ⎰⎰=x x C y d d 1 ,21ln C x C y +=. (2)()1212+''+'=x y xy ; 解:''++'=+y x x y x 211122, '=++y x x C 1121(), y x C x C =+++121212ln()arctan.(3)()02='+''y y y ;解:∵()02='+''y y y , 令 y p '=, 则 yppy d d ='',代入方程有 0d d 2=+⋅⋅p ypp y , 0)d d (=+⋅⇒p ypy p , 因为求通解,所以 p 满足 0d d =+⋅p ypy . 由⎰⎰-=⇒-=y yp p y y p p d d d d , y C p C y p 11ln ln ln '=⇒+-=⇒, ⎰⎰'=⇒'=⇒'=⇒x C y y x C y y yC x y d d d d d d 111 212C x C y +=⇒. ∴ 通解:212C x C y +=. (4)()1222+''='y y yy解:令:'=''='y p y y pp (),,得()1222+⋅'=y p p p y , 即d d p p yy y =+212, 得 p C y =+121(),所以 d d yyC x 121+=,通解为:arctan y C x C =+12.第9章 (之5)(总第48次)教学容:§9 .4 .1二阶线性方程和解的存在性;§9 .4 .2二阶线性方程解的结构**1.若21,y y 是方程)()()(x R y x Q y x P y =+'+''的两个解,试证12y y - 必是其对应齐次方程0)()(=+'+''y x Q y x P y 的解.证明:因为21,y y 是方程)()()(x R y x Q y x P y =+'+''的解. 所以成立下式:)2()()()()1()()()(222111x R y x Q y x P y x R y x Q y x P y =+'+''=+'+''将 (1)、(2) 两式相减,得)3(0))(())(()(212121=-+'-'+''-''y y x Q y y x P y y(2) 式可写为0))(())(()(212121=-+'-+''-y y x Q y y x P y y ,所以 21y y - 是齐次方程 0)()(=+'+''y x Q y x P y 的解.***2.已知23211,1,1x y x y y +=+==是方程22222xy x y x y =+'-''的三个特解,问能否求出该方程得通解?若能则求出通解来.解:按(1)证明可知 21312,x y y x y y =-=- 分别是其对应齐次方程0222=+'-''y xy x y 的解,并且线性无关,所以221x C x C + 为齐次方程的通解. 所以原方程的通解可以表示为:1221++=x C x C y .*3.验证:22,t t e e -是微分方程''-'-=x tx t x 1402的两个线性无关特解,并求此方程的通解.证明:因为()()222241t t t e t e t e -'-"0421********=-⨯-+=t t t t e t te te t e ,()()2222"41t t t e t e t e ----'-=-+-⨯--=--241240222222e t e tte t e t t t t (), 故22,t t e e -是方程的解,且≠=-2222t t t e ee 常数.于是22,t t e e -是方程线性无关的解(构成基本解组),故方程的通解为2221t t e C e C x -+=,其中21,C C 为任意常数.*4.已知函数 x y e y x==21, 是方程 0)1(=-'+''-y y x y x 的两解,试求该方程满足初始条件 0)0(,1)0(='=y y 的特解.解:方程的通解为 x c e c y x21+=,将初始条件代入,有:,,0)0('1)0(21211=+=+===c c c e c y c y x解得21,c c 为: 1,121-==c c ,所以特解为:x e y x -=.**5.设x t 1()是非齐次线性方程''+'+=x t a t x t a t x t f t ()()()()()()()1211的解.x t 2()是方程''+'+=x t a t x t a t x t f t ()()()()()()()1222的解.试证明 x x t x t =+12()()是方程''+'+=+x t a t x t a t x t f t f t ()()()()()()()()12123的解.解:因为)(2),(1t x t x 分别为方程(1)和方程(2)的解,所以)1()()()()()()(112111'≡+'+''t f t x t a t x t a t x''+'+≡'x t a t x t a t x t f t 2122222()()()()()()()()()12'+'得:()()())()()()()()()()()()(2121221121t f t f t x t x t a t x t x t a t x t x +='++'++"+即 x x t x t =+12()() 是方程(3)的解.第9章 (之6)(总第49次)教学容:§9 .4 .3二阶线性常系数方程的解法**1.解下列问题:(1)方程08=+''y y 的通解为=y _______________.解:x c x c y 22sin 22cos 21+=.(2)方程025'6"=++y y y 的通解为=y _______________. 解:)4sin 4cos (213x c x c e y x+=-.(3)方程0158=+'-''y y y 的通解为=y _______________. 解:x xC C y 5231e e +=.(4)方程031525=+'+''y y y 的通解为=y _______________. 解:)(21515C x C e y x +=-.(3)方程06=+'+''py y y 的通解为)2sin 2cos (e 21x C x C y kx+=,则=p ___,=k _____. 解:11,3-.**2.求解下列初值问题:(1)0)1(,)1(,01684='==+'-''y e y y y y ;解:∵0)4(16822=-=+-λλλ, ∴421=,λ, 通解为:xe x c c y 421)(+=.将初始条件代入,有 4421)()1(e e c c y =+=,04)(4)(4)1('4424214242142=+=++=++=e e c e c c e c e x c c e c y x x得到:4521-==c c , 所以特解为:x e x y 4)45(-=.(2)3)2(,1)2(,0294='==+'+''ππy y y y y ; 解:02942=++λλ, i i5221042116164±-=±-=-±-=λ,通解为:)5sin 5cos (212x c x c ey x+=-.代入初始条件有: πππe c c ey =⇒=+=-221)0()2(,)5cos 55sin 5()5sin 5cos (2)2(212212x c x c e x c x c ey x x+-++-='--π,得:πe c -=1. 特解为:)5sin 5cos (2x x e y x+-=-π.(3)10)0(,6)0(,034='==+'+''y y y y y ;解: 0342=++λλ, 0)3)(1(=++λλ, 所以通解为 x xe c e c y 321--+=.代入初始条件有:6)0(21=+=c c y ,1033)0('21321=--=--=--c c e c e c y x x ,特解为:x xe ey 3814---=.**3.求解初值问题'++==⎧⎨⎪⎩⎪≥⎰y y y x y x x210100d ()解:将原方程对x 求导得 ''+'+=y y y 201()且有'=-=-y y ()()01201微分方程(1)的通解为:y e C x C x =+-()12,代入初始条件1)0(,1)0(-='=y y ,得1,021==C C , 故所求问题的解为:xe y -=.***4.设函数)(x ϕ二阶连续可微,且满足方程⎰-+=xu u u x x 0d )()(1)(ϕϕ,求函数ϕ()x .解:原方程关于x 求导得⎰⎰=-+='xxu u x x x x u u x 0d )()()(d )()(ϕϕϕϕϕ,0)0(='ϕ,再求导得: )()(x x ϕϕ='', 且由原方程还有:1)0(=ϕ,微分方程的通解为: xxeC e C x -+=21)(ϕ,代入条件0)0(,1)0(='=ϕϕ,得2121==C C , 故所求函数为:x e e x x x ch )(21)(=+=-ϕ.***5.长为100cm 的链条从桌面上由静止状态开始无摩擦地沿桌子边缘下滑.设运动开始时,链条已有20cm 垂于桌面下,试求链条全部从桌子边缘滑下需多少时间.解:设链条单位长度的质量为ρ,则链条的质量为ρ100.再设当时刻 t 时,链条的下端距桌面的距离为)(t x ,则根据牛顿第二定律有:gx dt x d ρρ=22100, 即 010022=-x gdtx d . 又据题意知:20)0(=x , 0)0(='x ,所以 )(t x 满足下列初值问题:⎪⎩⎪⎨⎧='==-0)0(20)0(010022x x x gdt x d , 解得方程的通解为:tg tgec ec x 102101-+=.又因为有初始条件: ()()⎩⎨⎧==⇒⎩⎨⎧==1010020021'c c x x 所以 tg t gee x 10101010-+=.又当链条全部从桌子边缘滑下时,100=x ,求解t ,得:tg tg e e 10101010100-+=,即: 510=t gch, 510arch gt =.***6.设弹簧的上端固定,下端挂一个质量为2千克的物体,使弹簧伸长2厘米达到平衡,现将物体稍下拉,然后放手使弹簧由静止开始运动,试求由此所产生的振动的周期. 解:取物体的平衡位置为坐标原点,x 轴竖直向下,设t 时刻物体m 位于x t ()处,由牛顿第二定律:22222d d ()xtg g x gx =-+=- , 其中g =980厘米/秒2其解为:x C g t C g t =+1222cossin , 振动周期为 T g ==≈222490028ππ..第9章 (之7)(总第50次)教学容:§9.4.3二阶线性常系数方程的解法; §9.4.4高阶线性常系数微分方程 **1.微分方程x x y y sin =+''的一个特解应具有形式 ( )(A )()sin Ax B x +(B )x Ax B x x Cx D x ()sin ()cos +++ (C )x Ax B x x ()(cos sin )++ (D )x Ax B C x D x ()(sin cos )++ 解:(B )**2.设A B C D ,,,是待定常数,则微分方程''+=+y y x x cos 的一个特解应具有形式 ( )(A )Ax B C x ++cos(B )Ax B C x D x +++cos sin(C )Ax B x C x D x +++(cos sin ) (D )Ax B Cx x ++cos 答:(C )**3.求下列非齐次方程的一个解 (1)122+=-'-''x y y y ;解:∵ 022=--λλ, ∴1,22,1-=λ, 0Θ不是特征根.设 01b x b y p +=, 代入原方程,得:1222011+=---x b x b b ,有:1,010-=b b ,特解为:x y -=.(2)xey y y -=+'+''2.解: ∵ 1- 是二重特征根, ∴ 设 02b e x y xp -=, 0202b e x b xe y xxp ---=',02002022b e x b xe b e x b e y x x x x p----+--='', 代入 xe y y y -=++'2'', 解得:210=b ,特解为:xe x y -=221.**4.求微分方程''-'+=y y y xe x32满足条件y y ()()000='=的特解. 解:特征方程0232=+-r r 的根为2,121==r r ,相应齐次方程的通解为x x h e C e C y 221+=,设特解为x p e B Ax x y )(+=,代入方程得: 1,21-=-=B A . 故方程的通解为xxx e x x eC e C y ⎪⎪⎭⎫ ⎝⎛+-+=22221,代入条件0)0()0(='=y y ,得1,121=-=C C ,因此所求特解为 x xe x x ey ⎪⎪⎭⎫ ⎝⎛++-=1222.**5. 求下列非齐次方程的通解:)(2x f y y ='+''x x f e x f x x f x cos )()3,)()2,14)()12==+=;解:特征方程:022=+λλ, 特征根: 2,021-==λλ,所以方程0'2=+''y y 的通解为 xh e c c y 221-+=.1)对于方程14'2+=+''x y y , 由于0是特征方程的单根,故设其特解为:x b x b y p )(10+=,代入方程有:14242100+=++x b x b b ,解得 21110-==b b , 所以特解为:x x y p 212-=. 所以方程的通解为:x x e c c y y y xp h 212221-++=+=-.2)对于方程xe y y 2'2=+''',由于2不是特征方程的根,故设其特解为:02b e y xp =, 代入方程有:810=b , xp e y 281=, 所以方程的通解为:x xp h e ec c y y y 222181++=+=-.3)对于方程:x y y cos '2=+''',由于i ±不是特征方程的根,故设其特解为: x b x b y p sin cos 10+=, 代入方程有:x b x b y p cos sin '10+-=, x b x b y p sin cos "10--=,x x b x b x b x b cos cos sin 2sin cos 1010=+---, 得:525120=-=b b , x x y p sin 52cos 51+-=,所以方程的通解为:x x e c c y y y xp h sin 52cos 51221+-+=+=-.**6.求微分方程''-'+=y y y e x x6925sin 的通解.解:特征方程r r 2690-+=的根为r 123,=,相应齐次方程的通解为xh e x C C y 321)(+=设特解为y e A x B x p x=+(cos sin ),代入方程得:A B ==43,故方程的通解为 y C C x e e x x x x =+++()(cos sin )12343***7.已知曲线y y x x =≥()()0过原点,位于x 轴上方,且曲线上任一点),(00y x M =处切线斜率数值上等于此曲线与x 轴,直线x x =0所围成的面积与该点横坐标的和,求此曲线方程.解:由已知y ()00=,且'=+'=⎰y y x x y xd ,()000,将此方程关于x 求导得''=+y y 1其通解为: y C e C exx=+--121 ,代入初始条件y y (),()0000='=,得 C C 1212==, 故所求曲线方程为:y e e x xx =+-=--1211()ch .***8.设一物体质量为m ,以初速v 0从一斜面滑下,若斜面与水平面成θ角,斜面摩擦系数为μμθ(tan )0<<,试求物体滑下的距离与时间的关系.解:设t 时刻物体滑过的距离为S ,由牛顿第二定律m Stmg mg d d sin cos 22=-θμθ 且 S S v (),()0000='=方程的通解为S gt C t C =-++12212(sin cos )θμθ 代入初始条件得C v C 1020==,,故物体滑下的距离与时间的关系为S gt v t =-+1220(sin cos )θμθ***9.设弹簧的上端固定,下端挂一质量为m 的物体,开始时用手托住重物,使弹簧既不伸长也不缩短,然后突然放手使物体开始运动,弹簧的弹性系数为k ,求物体的运动规律.解:取物体未发生运动时的位置为坐标原点,x 轴垂直向下,设t 时刻物体位于x t ()处,由牛顿第二定律: m xtkx mg d d 22+=, 且 0)0(0)0(='=x x ,. 方程的通解为: x C k m t C k m t m kg =++12cos sin , 代入初始条件得C mkg C 120=-=,,故物体的运动规律为x mg k k m t =-⎛⎝ ⎫⎭⎪1cos.***10. 求下列方程的通解: (1)02)4(=''+'''-y y y;解: 02234=+-λλλ, 0)12(22=+-λλλ, 0)1(22=-λλ,所以通解为 x e x c c x c c y )(4321+++=.(2)0365)4(=-''+y y y.解:036524=-+λλ, 0)9)(2)(2(2=++-λλλ,所以通解为 x c x c ec e c y xx 3sin 3cos 432221+++=-.****11* 试证明,当以 x t ln =为新的自变量时,变系数线性方程(其中a,b,c 为常数,这是欧拉方程))('"2x f cy bxy y ax =++可化为常系数线性方程)()(22t e f cy dt dya b dty d a =+-+并求下列方程通解:(1)022=-''y y x ; (2)x x y y x y x ln 22=+'-''. 证明:令 x t ln =, t e x =,dtdyx dx dt dt dy dx dy 1==,⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=dt dy dt y d x dt dy dx d x dt dy x dx y d 222222111, 将y y ''',代入方程有:()()te f cy dt dy a b dt y d a cy dt dy b dt dy dt y d a cy y bx y ax =+-+=++⎪⎪⎭⎫ ⎝⎛-=+'+''22222, 得证.(1)令 x t ln =, te x =,原方程化为:0222=--y dt dydty d . 其通解为t t e c e c y -+=221.将x 代入,得:xc x c y 221+=. (2) 令 x t ln =, te x =,原方程化为:tte y dt dy dty d =+-2222, 上述方程的相应其次方程的通解为:()t c t c e y t h sin cos 21+=.令上述方程一个特解为:()10b t b e y t p +=,代入方程得:0,110==b b , 即:t e y t p =.原方程得通解为:()t t c t c e y t ++=sin cos 21,即:()()[]x x c x c x y ln ln sin ln cos 21++=.***12.一质量为m 的潜水艇在水面从静止状态开始下降,所受阻力与下降速度成正比(比例系数为k >0),浮力为常数B ,求潜水艇下降深度x 与时间t 之间的函数关系. 解: ma B F F =--阻重, a 为加速度, ma B kv mg =--, v 为下降速度,因为 22,dt x d dt dv a dt dx v ===, 所以 22dt xd m B dt dx k mg =--,即 m Bg dt dx m k dtx d -=+22 , 其特征方程为: 02=+λλmk , 解得特征根为 m k-==21,0λλ.所以对应的齐次方程的通解为:21c e c x t mkh +=-.由于0是特征方程的单根,故设其特解为:t b x 01=, 代入方程有:m B g b m k -=0, 得 kBmg b -=0. 所以微分方程的通解为:t kBmg c e c x t mk-++=-21, 因为初始位置为0,初始速度为0,所以有初始条件 ()()00,00'==x x ,代入微分方程有: ⎪⎩⎪⎨⎧=-+-=++000121k Bmg c mk c c 求得:222221,kgm Bm c k Bm g m c -=-=, 所以x 与t 的关系可表示为: t k B mg e k g m Bm x t m k-+⎪⎪⎭⎫ ⎝⎛--=-122.***13.证明:若有方程'=-f x f x ()()1,则必有''+=f x f x ()()0,并求解此方程. 证明:由于'=-f x f x ()()1,两边关于x 求导得''=-'-=---=-f x f x f x f x ()()[()]()111故得''+=f x f x ()()0(1)解方程(1)得通解为 f x C x C x ()cos sin =+12(2)'=-+f x C x C x ()sin cos 12 (3)'='=f f f f ()(),()()0110,将此代入(2),(3)得C C C C C C 1221211111cos sin sin cos +=-+=⎧⎨⎩ 解得:C C 21111=+sin cos所以原方程的解为: f x C x x ()cos sin cos sin =++⎛⎝⎫⎭⎪1111.第9章 (之8) (总第51次)教学容:§9.6 微分方程应用举例 (机动)第9章 (之9) (总第52次)教学容:§9.7 差分方程1. 已知t t e y 3=是二阶差分方程tt t e ay y =+-+11的一个特解,求a .解: )31(3e ea -=.2. 求下列差分方程的一般解: (1) 0721=+-t t y y ; 解:tt C y )27(-=(2) 431-=--t t y y ;解:23+=tt C y(3) 051021=-++t y y t t ; 解:)61(125)5(-+-=t C y tt (4) tt t y y 2124=-+; 解:144-+=t t t t C y (5) tt t t y y 21⋅=-+. 解:tt t C y 2)2(-+=3. 写出下列差分方程的一个特解形式: (1) t y y t t sin 1=-+; 解:t B t B Y t cos sin 21+=(2) t y y t t πcos 31-=++. 解:)sin cos (21t B t B t Y t ππ+=4. 设t y 为第t 期国民收入,t C 为第t 期消费,I 为每期投资(I 为常数).已知t y ,t C ,I 之间有关系 I C y t t +=,βα+=-1t t y C ,其中10<<α,0>β,试求t y ,t C . 解:t y 满足:βα+=--I y y t t 1,解得 αβα-++=1I C y tt , 从而 =-=I y C t t ααβα-++1I C t.5. 已知差分方程t t t cy y by a =++1)(,其中a ,b ,c 为正的常数.设初始条件0)0(0>=y y ,证明:(1) 对任意Λ,2,1=t ,有0>t y ;(2) 在变换tt y u 1=之下,原差分方程可化为有关t u 的线性差分方程,写出该线性差分方程并求其一般解;(3) 求方程t t t y y y =++1)21(的满足初始条件20=y 的解. 解:(1)归纳法证明. (2)令 t t y u 1=,即t t u y 1=,111++=t t u y , 则原方程化为线性差分方程 b au cu t t =-+1, 其一般解为 a c ≠时, ac bcaC u tt -+=)( ; a c =时, b C u t +=. (3)令 tt y u 1=,原方程化为 21=-+t t u u ,一般解为 2+=C u t , 所以原方程的一般解为 t t u y 1=21+=C ,代入 20=y ,得 23-=C , 所以 特解为 2=t y .。
高等数学第九章练习题
第九章 练习题1. 求11lim(1)y x y x y→-→∞+-. 2.讨论24240(,) 0 ,0x y f x y x y +≠=⎨⎪+=⎩在点(0,0)处的连续性、偏导性、可微性. 3. 设(,)z z x y =由方程2e e d 2xz t y z t x +-=⎰确定,求2z x y ∂∂∂. 4.设()232xy z x y =+,求,.z z x y∂∂∂∂ 5.设(2,)u f x y xy =+,其中f 有连续的二阶偏导数,求u x∂∂和2u x y ∂∂∂. 6.过直线1022270x y z x y z +-=⎧⎨+-=⎩作曲面222327x y z +-=的切平面,求此切平面的方程. 7. 函数()23ln u x y z =++在点()2,1,1-处沿哪一个方向可取最大方向导数,并求此方向导数值. 8.在曲线22210x y z x y ⎧++=⎨+=⎩上求一点,使之与平面342x y z ++=的距离最大.4. 在曲线22210x y z x y ⎧++=⎨+=⎩上求一点,使之与平面342x y z ++=. 分析:所求点在曲线上,服从两个约束条件,为条件极值问题.解:距离(,,)d x y z ==令222(,,,,)(1)()F x y z x y z x y λμλμ=+++-++解方程组22220202010x y z x y z x y λμλμλ+=⎪⎪++=⎪+=⎪⎪++-=+=⎩得663x y z =-==或663x y z ==-=-(,,0663d -=,d =由实际问题知,所求点为(663--.设222(,,)327F x y z x y z =+-- 6,2,2x y z F x F y F z ===-过直线的平面束方程为 102227()0x y z x y z λ+--++-=,即 (10)(2)(2)270x y z λλλ+++-+-=再设切点为000(,,)x y z ,则切平面方程为0000006()2()2()0x x x y y y z z z -+---=,即 0003270x x y y z z +--=000222000102(2)27327327x y z x y z λλλ++-+-⎧===⎪--⎨⎪+-=⎩ 得1,19λ=--所求切平面为9270x y z +--=或91717270x y z +-+=。
高等数学第9章参考答案
第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= 222{(,)|(,)R ,1};x y x y y x ∈+≠ 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0) 2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim yx yx y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x yx xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01sin lim 22)0,0(),(f yx xy y x ==+→,所以函数在(0,0)也连续。
所以函数 在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=x yx e x y + ,验证 z xy +=∂∂+∂∂yzyx z x 证明:x yx yx ye x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x 42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yx y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,y u ∂∂ ,zu ∂∂ 解:1-=∂∂y zx y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂ 5、设222z y x u ++=,证明 : u zu y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 00f y x f y x ==→→ 连续; 201sin lim )0,0(xf x x →= 不存在, 0000lim )0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件 (C )充分必要条件 (D )既非充分又非必要条件(2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在 2、求下列函数的全微分:1)x y e z = )1(2dy x dx xy e dz x y+-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz yz yln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx z z y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin )(),(2222y x y x y x y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。
高等数学第9章试题,DOC
(其中入是Δσi(i=1,2,…,n)的最大直径)存在,则称此极限值为______________的二重积分。
三、计算题(共20小题,20分)
1、计算二重积分
答()
15、二次积分 f(x,y)dy在极坐标系下先对r积分的二次积分为___________.
16、 =___________________。
17、设平面薄片占有平面区域D,其上点(x,y)处的面密度为μ(x,y),如果μ(x,y)在D上连续,则薄片的质量m=__________________.
(A)f(x,y,z)在Ω上可积(B)f(x,y,z)在Ω上不一定可积
(C)因为f有界,所以I=0(D)f(x,y,z)在Ω上必不可积
答()
6、由x2+y2+z2≤2z,z≤x2+y2所确定的立体的体积是
(A) (B)
(C) (D)
答()
7、设Ω为球体x2+y2+z2≤1,f(x,y,z)在Ω上连续,I= x2yzf(x,y2,z3),则I=
I= f(x,y,z)dv= f(x,y,z)dv+_____________________________________。
12、设Ω为空间有界闭区域,其上各点的体密度为该点到平面Ax+By+Cz+D=0的距离。则Ω关于直线 的转动惯量的三重积分公式为_________________.
13、设D:x2+y2≤4,y≥0,则二重积分
16、设Ω是由曲面(a1x+b1y+c1z)2+(a2x+b2y+c2z)2+(a3x+b3y+c3z)2=1所围的有界闭区域,
高等数学习题详解-第9章 无穷级数
习题9-11. 判定下列级数的收敛性:(1) 1n ∞=∑; (2) 113n n ∞=+∑; (3)1ln 1n n n ∞=+∑; (4) 1(1)2nn ∞=-∑;(5) 11n n n ∞=+∑; (6) 0(1)21n n nn ∞=-⋅+∑. 解:(1)11n n k S ===∑,则lim lim(11)nnnS n ,级数发散。
(2)由于14113n n nn,因此原级数是调和级数去掉前面三项所得的级数,而在一个级数中增加或删去有限项不改变级数的敛散性,所以原级数发散。
(3)11ln[ln ln(1)]ln1ln(1)ln(1)1nnnk k n S n n n n n ,则lim lim[ln(1)]nnnS n ,级数发散。
(4) 2 , 21, 1,2,3,; 0 , 2nn k S k nk因而lim n nS 不存在,级数发散。
(5)级数通项为1nn u n ,由于1lim10nn n,不满足级数收敛的必要条件,原级数发散。
(6)级数通项为(1)21n nnu n ,而lim n n S 不存在,级数发散。
2. 判别下列级数的收敛性,若收敛则求其和: (1) 11123n nn ∞=⎛⎫+ ⎪⎝⎭∑; (2) 11(1)(2)n n n n ∞=++∑; (3) 1πsin 2n n n ∞=⋅∑; (4)πcos 2n n ∞=∑.解:(1)因为111111111131111(1).23232232223nn n nk kkk n n n nk k k S 所以该级数的和为31113lim lim(),22232nn nnnSS 即1113.232nnk(2)由于1111[](1)(2)2(1)(1)(2)n n nn n n n,则111111111[][](1)(2)2(1)(1)(2)22(1)(2)nnnk kS k k kk kk kn n所以该级数的和为 1111limlim [],22(1)(2)4nnn SS n n即111.(1)(2)4n n n n(3)级数的通项为sin2nu n n,由于sin2lim sinlim()02222nnnn nn,不满足级数收敛的必要条件,所以原级数发散。
高等数学第九章 重积分
第9章 重积分典型例题一、二重积分的概念、性质 1、二重积分的概念:d 01(,)lim(,)niiii Df x y f λσξησ→==∆∑⎰⎰其中:D :平面有界闭区域,λ:D 中最大的小区域的直径(直径:小区域上任意两点间距离的最大值者),i σ∆:D 中第i 个小区域的面积2、几何意义:当(,)0f x y ≥时,d (,)Df x y σ⎰⎰表示以曲面(,)z f x y =为曲顶,D 为底的曲顶柱体的体积。
所以d 1Dσ⎰⎰表示区域D 的面积。
3、性质(与定积分类似)::线性性、对积分区域的可加性、比较性质、估值性质、二重积分中值定理二、二重积分的计算1、在直角坐标系下计算二重积分(1) 若D 为X 型积分区域:12,()()a x b y x y y x ≤≤≤≤,则21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰(2)若D 为Y 型积分区域:12,()()c y d x y x x y ≤≤≤≤,则21()()(,)(,)dx y cx yf x y dxdy dy f x y dx =⎰⎰(3X -型或者Y -型区域之和,如图,则123(,)(,)(,)(,)D D D f x y d x d y f x y d x d y f x y d x d y f x y d x d=++⎰⎰⎰⎰⎰⎰⎰(4(5)对称性的应用1(,)2(,),(,)0(,)DD f x y dxdy f x y dxdy f x y y D x f x y y ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数1(,)2(,),(,)0(,)D D f x y dxdy f x y dxdy f x y x D y f x y x ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数(6)积分顺序的合理选择:不仅涉及到计算繁简问题,而且又是能否进行计算的问题。
高等数学第九章练习题答案
第九章 练习题一、填空 第一节1、 22222)1ln(),(y x y x y x f --+-+=的定义域是2122≤+<y x .2、 2222911),(y x y x y x f --+-+=的定义域是9122≤+<y x .3、 2222001sin)(lim yx y x y x ++→→= 0 . 4、=+-→→xyxy y x 93lim0 16- .5、、函数y x z -=的定义域是 (){}y x y x y x ≥≥≥2,0,0/,6、函数()12ln 2+-=x y z 的定义域是 0122>+-x y7、()()=+-→11lim0,0,xy xy y x 2-. 19. ()()=-+→xyxy y x 24lim0,0,41. 8、求极限()()()yxy y x tan lim0,2,→= 29、 2210ln()lim y x y x e x y →→++= ln 2 . 第二节1、设z =zx ∂∂2、设z arctan(xy )=,则zx∂=∂ ,z y ∂=∂ .22,1()1()y x xy xy ++ 3、 设223z x xy y =++,则(1,2)zx ∂∂= 8 ,(1,2)z y ∂∂= 7 .4、设y x e z 2-=,而t x sin =,3t y =,则=dtdz()22sin 6cos 3t t e t t -- 5、设y x z =,而te x =,12-=t e y ,则=dt dz ()2231-+-t t t e e e6、 设(1)y z xy =+,则zx∂∂= 21(1)y y xy -+ 7、设(1)xy z x =+,则zy∂∂=(1)ln(1)xy x x x ++ 8、设y x z y3⋅=,求=∂∂∂y x z 2 ⎪⎪⎭⎫ ⎝⎛-y y y 13ln 3 。
9、函数222234x y z x ++=,则z x ∂=∂ 23z x x z∂-=∂,z y ∂=∂ 。
高数第九章习题
高数第九章习题第一节多元函数的基本概念一填空题:一填空题: x,z,z,z,lntan,则________; _________. 1设,x22y,y,xf(x,y)xyxytanf(tx,ty),,,1若,则=______. y,z,zxy,2设_______;________. z,e(x,y),则,22x,y,y,x,f(x,y)f(2,,3),2 若,则__________; y2xy,u,uz,3设则__________;__________;u,x,,y,y,x________________. f(1,),x,u____________. ,22x,yy,z3 若,则f(x)=________. f(),(y,0)22,zy,zxy,,4设则________;_______;z,arctan,22y,y,xx224 若,则f(x,y)=_________.函数f(x,y,),x,y2x,z,____________. 24x,y,x,yz,的定义域是__________.222ln(1,x,y)x,uz,u,()5、设,则__________. ,z,yy6、函数的定义域是______________. z,x,y二求下列函数的偏导数: yy7、函数z,arcsin的定义域是_______________.1、; z,(1,xy)xz2、. u,arctan(x,y)2y,2x22z,8、函数的间断点是________________. 2,x,yy,2xz,,三曲线,在点(2,4,5)处的切线与正向x4,二求下列各极限: ,y,4,2,xy,4lim1 ; 轴所成的倾角是多少? x,0xyy,0222,z,z,zx,.和四设,求 z,yxysin222 ; lim,x,y,x,yx,0x33y,0,z,z22z,xln(xy)五、设,求和. 221,cos(x,y),x,y,x,ylim3 . 2222x,0(x,y)xy六验证:y,011,(,)xy,z,z22xy4 证明:. lim,0x,y,2z1、,满足; z,e22x,0,x,yxy,y,0222,r,r,rz22211xy,,,,,r,x,y,z2、满足. 222lim5证明极限不存在 . ,x,y,zrx,0x,yy,0七、设答案 yx,222xyxyarctan,arctan,,0,1,y1,x1322xyfxy(,), f(x,y)x1 ;2, ;3;4; tf(x,y),,x1,y12,0,xy,0,222,,(x,y)0,x,y,1,y,4x5、; 求f,f. xxy2,,(x,y)x,0,y,0,x,y6、; 答案22x2x2x,,(x,y)x,0,,x,y,x7、 csc,csc,一、1、;2yyyy,,,(x,y)x,0,x,y,,x ; xy2xy22、,; e(xy,x,1)e(xy,y,1)2,,(x,y)y,2x,08、. yyy,1y1yzzzx,xlnx,xlnx3、, ; 12zzz二、1、; 2、0; 3、. ,,,4第二节偏导数122332xy2xyy,x(1.02),(1.97)的近似值. 6计算,,,4、; 222222222(x,y)(x,y)(x,y)七、求函数x1zx1z,2222,()(,ln)5、. (,)sin,,,0xyxy,22yyyy,,xy f(x,y) ,,二、22,0,,,0xy,zy2,1,,,y(1,xy),,x的偏导数,并研究在点(0,0)处偏导数的连续性及 1 函数f(x,y)的可微性. ,,zxy,y(1xy)ln(1xy),,,,,,答案 ,y1,xy,,yyyy11yz1,,z1xxx,uz(x,y),u,zx,y(),e,e,,e(dx,dy)一、1、; 2,,,2、 ,xxxx2z2z,x1,(x,y),y1,(x,y)2(xdx,ydy,zdz)2、; 3、-0.119,-0.125; ,u(x,y)ln(x,y)222, . x,y,z2z,z1,(x,y)11(y,),x,y,4、. ,三、. yy412223,z,z二、. 三、2.95. 四、. dx,dy55.3cmx2x,2四、 ,ylny,,x(x1,)y,3322,x,y22五、 2128m,27.6m,1.30%.2,zx,1,,七、在(0,0)处均不连续, f(x,y)在点f(x,y),f(x,y)xy,y(xlny,1) . ,x,y(0,0)处可微. 33第四节多元复合函数的求导法则 ,z,z1,0,,,五、. 222一填空题:y,x,y,x,yy,2xarctan,y,xy,0xcosy,z,z,z,,1设,则_______;________. ,xycosx,y,x,2f,,y,x,0,y,0,xln(3x,2y),z,z七、, xz,,2设,则_____;______. ,2,y,y,x0,x,y,0;x,0,y,0,3dzsint,2t3设,则_______. ,z,e,dt,1,x,0,v,22,z,z22u二、设,而,求 . u,x,y,v,xyz,ue,xy,,f,,xy,0 . ,x,y,xy22x,y,dzxz,arctan(xy),三、设,而,求.y,e1,x,0,y,0,dx第三节全微分 22xyz,f(x,y,e),四、设(其中f具有一阶连续偏导一填空题:y,z,zx,,z,z1设,则__________;____________; ,z,e,数),求. ,y,x,x,ydz,____________. u,f(x,xy,xyz)五、设,(其中f具有一阶连续偏导 2222 若,则du,______________. u,ln(x,y,z),u,u,u,,.数),求yx,2,y,1,x,0.1,,y,,0.2z,3若函数,当,时,,x,y,zxx,z,函数的全增量_______;全微分dz=________. z,f(x,)六、设,(其中f具有二阶连续偏导数),求 yxz,xy,4若函数,则z对x的偏增量222,z,z,zy,, . 22,x,x,y,yz,x______;lim,________. ,z,xy,,x0x,z,,七、设其中为可导函数, 2222fx,y()5求函数当x=1,y=2时的全微分. z,ln(1,x,y)21,z1,zz,z,zxz,验证:,,. ,则_________,_________. 2设,z,y2,yx,xy,yy,x 2sin(x,2y,3z),x,2y,3z,二设八、设具有二阶导数,求 z,,[x,,(x,y),y],其中,,,22,z,z,z,z,,1.证明: ,. 22,x,ycosy(cosx,xsinx),x,y,三如果函数f(x,y,z)对任何恒满足关系式t答案 2kycosx,则称函数f(x,y,z)为 f(tx,ty,tz),tf(x,y,z)k次齐次函数,试证:k次齐次函数满足方程xcosx(ysiny,cosy)一、1、; ,f,f,f . x,y,z,kf(x,y,z),,x,y,z22ycosx2,z23323xxz,3xyz,a,求.四、设 ln(32),x,y,2、 ,x,y22y(3x,2y)y五、求由下列方程组所确定的函数的导数或偏导数:222x2x22,z,x,y ,ln(3x,2y),dydz,321设 ,求 ,.y(3x,2y)y,222dxdx,x,2y,3z,20,23(1,4t)3、. ,(,,)ufuxvy,,u,v322设,求1,(3t,4t),.,2,x,xv,g(u,x,vy),二、(其中f,g具有一阶连续偏导数)xy222z2xy,,xyu,f(x,y),[2xy]e,,,,222x,(x,y)y,六设函数u(x)由方程组所确定, g(x,y,z),0,xy2,22,z2yx(x,y)h(x,z),0,[2yx]e,,,22y(xy),,,g,hdu,0,,0,求.且 (f,g,h均可微) xdze(1,x),y,zdx,三、. 22xdx1,xey,f(x,t),F(x,y,t),0七设而t是由方程所确定的zz,,xyxydy,u,,,,2xfyef,2yfxef.,,,,,四、 1212x,y的函数,求 .,xy,,,f(1,y,yz),dx,xxzF(x,,y,)八设z=z(x,y)由方程=0所确定, yx五、 ,u,u,z,z,,,f(x,xz),,xyf.x,y,z,xy证明:. ,x,y,y,z2答案 ,z21,,,,,,,f,f,f,六、xz,111122222x,y,zlnzzy,xyy一、1、;2、;3、.x,1zx,1z2xz,ylnyxz,ylnyx,y,zx11,,,,, ,,(f,f),f,242221222222,zz(z,2xyz,xy),x,yyyy,四、. 2322,x,y(z,xy),z2xx,,,,f,f. 222234dy,x(6z,1)dzx,yyy,,,五、1、; 2dx2y(3z,1)dx3z,1,z2,,,八、,(1,),,, ,,,,,,,,uf(2yvg,1),f,g,u11112212,2、, ,x2,,,,,x(xf,1)(2yv g,1),f,g1221,z2,,,,,,,(,),,,,,,,,,,, ,,,111212122,vg(xf,uf,1)2111,y, . ,,,,,x(xf,1)(2yvg,1),f,g1221第五节隐函数的求导法则一填空题: ,,,f,g,h,,f,gduyzxxx,六、 ,f,,xdyy22,,,dxgg,hyyz1设,,,则,_____________. lnxyarctanxdx3,,,,,,,,,1fgh,fgh,fghxyzxxzyzxx, . ,y,2z,12,,gh; 一、1、,,,2x,8y,16z,1,0yz1,48,,,,dyF,f,F,ftxxt,七、. x,2y,1,,,,dxF,F,f,,tyt2、x,2y,4,0,. 12,第六节多元函数的极值 ,z,0,一填空题:221111函数在_______点取得极f(x,y),(6x,x)(4y,y)二、. P(,1,1,,1)及P(,,,,)123927_________值为___________.y,1x,1z,22函数z=xy在附加条件x+y=1下的极______值为,,_____________. 1,10222三、. z,f(x,y)3方程所确定的函数x,y,z,2x,4y,6z,2,0x,y,2,0,或,的极大值是___________,极小值是_____________. z,2,0,二在平面xoy上求一点,使它到x=0,y=0及11x,2y,16,0三直线的距离平方之和为最小. x,y,2z,,四、. 三求内接于半径为a的球且有最大体积的长方体. 2222第八节方向导数与梯度四在第一卦限内作球面的切平面,使得x,y,z,1 填空题: 切平面与三坐标面所围的四面体的体积最小,求切点的22函数在点(1,2)处沿从点(1,2)到点 z,x,y坐标.答案的方向的方向导数为_____________. (2,2,3)一、1、(3,2),大,36; 2、大,1/4; 3、7,-1. 2222、设则f(x,y,z),x,2y,3z,xy,3x,2y,6z816二、. (,)gradf(0,0,0),__________________. 55222xyz2a3、已知场uxyz,,,则u沿场的梯度方(,,),三、当长,宽,高都是时,可得最大的体积. 222abc3向的方向导数是__________________. 111,,(,,).四、、称向量场4为有势场,是指向量与某个函数 aa333U(x,y,z)的梯度有关系__________________. 第七节微分法在几何上的应用22一填空题: xyabz,,,(,)1()二、求函数在点处沿曲线 22t1,t2ab221曲线再对应于t=1的点处切x,,y,,z,t221,ttxy,,1线方程为________________; 在这点的内法线方向的方向导数. 22ab法平面方程为________________. 设u,v 都是x,y,z的函数,u,v的各偏导数都存在且连z(2,1,0)在点处的切平面方程为2曲面e,z,xy,3grad(uv),vgradu,ugradv续,证明: __________________; 222xyz 法线方程为__________________. u,,,求在点处沿点的向径M(x,y,z)r000022223abc二求出曲线上的点,使在该点的切线x,t,y,t,z,t 的方向导数,问a,b,c具有什么关系时此方向导数等于梯x,2y,z,4平行于平面. 度的模?答案 22222,,,三求球面与抛物面的交线x,y,z,6z,x,y一、1、; 2、;1,233i,2j,6k在(1,1,2)处的切线方程 .2222x2y2z222四求椭球面上平行于平面 x,2y,z,1(),(),(),gradu3、; 222abcx,y,2z,0 的切平面方程. ,x,y,z,a(a,0)五试证曲面上任何点处的 4、. a,gradu切平面在各坐标轴上的截距之和等于a. 122二、. 2(a,b)答案 ab ,u2u(x,y,z)000四、 ,;a,b,cM222,rx,y,z00004。
上海财经大学《高等数学》第九章习题及解答
第九章习题解答1.设xoy 平面上的一块平面薄片D ,薄片上分布有密度为),(y x u 的电荷,且),(y x u 在D 上连续,请给出薄片上电荷Q 的二重积分表达式.[解] 板上的全部电荷应等于电荷的面密度(,)u x y 在该板所占闭区域D 上的二重积分, 即=(,)DQ u x y d σ⎰⎰.2.由平面1342=++z y x ,0=x , 0=y ,0=z 围成的四面体的体积为V ,试用二重积分表示V . [解] 4(1)23Dx yV dxdy =--⎰⎰. 3.比较大小 (1) σ⎰⎰+D d y x 2)( 与σ⎰⎰+Dd y x 3)(,其中D 是x 轴、y 轴与直线1=+y x 所围成.(2)σ⎰⎰+Dd y x 2)(与σ⎰⎰+Dd y x 3)(,其中D 是由圆2)1()2(22=-+-y x 所围成. [解] (1) 由0x 1y ≤+≤,得32()x y ≤+(x+y), 由二重积分的性质可得23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 由积分区域D 位于+1x y ≥的半平面内,所以D 内有23()()x y x y +≤+, 由二重积分的性质可得23()()DDx y d x y d σσ+≤+⎰⎰⎰⎰. 4.估计: (1) I=σ⎰⎰+Dd y x xy )(,其中D 是矩形区域:0≤x ≤1,0≤y ≤1;(2) I=σ⎰⎰++Dd y x )1(,其中D 是矩形区域:0≤x ≤1,0≤y ≤2;(3) I=σ⎰⎰++Dd y x )9(22,其中D 是圆形区域:422≤+y x . [解] (1) 因为在区域D 上有01,0y 1x ≤≤≤≤,所以01,02,xy x y ≤≤≤+≤故0()2xy x y ≤+≤,所以0()22,DDDd xy x y d d D σσσ≤+≤=⎰⎰⎰⎰⎰⎰上海财经大学《高等数学》第九章习题及解答即()2Dxy x y d σ≤+≤⎰⎰0.(2)因为在区域D 上01,02x y ≤≤≤≤,所以114x y ≤++≤,故()=x 14=4DDDD d y d d D σσσ≤++≤⎰⎰⎰⎰⎰⎰,即()218Dx y d σ≤++≤⎰⎰.(3) 因为2222x 494()925,y x y ≤++≤++≤9,所以25D I D ≤≤9,即36100I ππ≤≤.5.由二重积分的几何意义计算⎰⎰--Dd y x R σ222,222:R y x D ≤+.[解] 令2222z x y z R =++=,所以z Dd σ⎰⎰为上半球体的体积, 于是有314=23DR σπ⋅⎰⎰.6.求下列二重积分 1)σ⎰⎰+D d y x)(22,其中D 是矩形区域:|x|≤1, |y|≤1;2)σ⎰⎰+Dd y x )23(,其中D 是x 轴、y 轴与直线2=+y x 所围成闭区域;3)σ⎰⎰++Dd y y x x )3(322,其中D 是矩形闭区域:0≤x ≤1,0≤y ≤1; 4)σ⎰⎰+Dd y x x )cos(, 其中D 是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域; 5)σ⎰⎰Dy x d e),max{22,其中D 是矩形闭区域:0≤x ≤1,0≤y ≤1.[解] (1) 1112222211128233Dx y d x y dxdy x dx σ---+=+=+=⎰⎰⎰⎰⎰()()(). (2)22-003232xDx y d dx x y dy σ+=+⎰⎰⎰⎰()()22224)xx dx =++⎰(-3220220(4)33x x x =-++=.(3) 11323323033Dx x y y d dy xx y y dx σ++=++⎰⎰⎰⎰()()42131001()()14424y y y y y dy =++=++=⎰.(4)coscos()xDx x y d xdx x y dy πσ+=+⎰⎰⎰⎰()001(sin 2sin )(cos 2cos )2x x x dx xd x x ππ=-=--⎰⎰00113(cos 2-cos )cos 2-cos 222x x x x x dx πππ=-+=-⎰(). (5) 因{}222222111max ,100001111(1)2222x x y x x x xD e d dx e dy e xdx e dx e e σ=====-⎰⎰⎰⎰⎰⎰, 所以 {}22max ,(1)x y Ded e σ=-⎰⎰.7. 画出积分区域,计算积分: 1) σ⎰⎰Dd y x ,其中D 是由两条抛物线2x y =, x y =所围成闭区域, 2) σ⎰⎰Dd xy2,其中D 是由圆周422=+y x 及y 轴所围成右半闭区域,3) σ⎰⎰+D yx d e, 其中D 是由1≤+y x 所确定的闭区域,4)σ⎰⎰-+Dd x y x )(22, 其中D 是由直线x y y ==,2 及x y 2=所围成的闭区域. [解] (1)图略.27114400226()3355xDdx x x dx σ==-=⎰⎰⎰⎰(2)图略.222352222164();31015Dxy d dy dx y y σ--==-=⎰⎰⎰ (3)图略.1111101x x x y x y x y x x De d e dx e dy e dx e dy σ+-++----=+⎰⎰⎰⎰⎰⎰1211211()()x x ee dx e e dx +---=-+-⎰⎰21021111111()()22x x e x ex e e e e +---=-+-=-.(4) 图略.2222202()()yy Dxy x dy x y x dx +-=+-⎰⎰⎰⎰2330193()248y y dy =-⎰ 4321911()2448y y =⋅- 136=. 8. 交换下列的积分顺序 1) ⎰⎰--22221),(x x xdy y x f dx ,2) ⎰⎰--aax a dy y x f dx 220),(3)⎰⎰-xx dy y x f dx sin 2sin 0),(π;4)⎰⎰--2ln 1),(2y e dx y x f dy ⎰⎰-++2)1(2112),(y dx y x f dy ;5)⎰⎰⎰⎰-+31301020),(),(yy dx y x f dy dx y x f dy ;6)⎰⎰--2ln 1),(2ye dx y xf dy ⎰⎰-++2)1(2112),(y dx y x f dy .[解] (1) 图略.2111202(,)(,)xydx f x y dy dy f x y dx--=⎰⎰⎰(2) 图略.(,)(,)aaadx f x y dy dy f x y dx-=⎰⎰(3) 图略.sin 01arcsin 0sin12arcsin 0arcsin 2(,)(,)(,)xyx yydx f x y dy dy f x y dx dy f x y dxπππ----=+⎰⎰⎰⎰⎰⎰(4) 图略. 因{}{}22ln =1,2(,)111)2D y e y x x y y y x -≤≤-≤≤⋃≤≤-≤≤(x,y ),因此积分区域还可以表示为212,02,1x D x y x e y x -⎧⎫⎪⎪=≤≤≤≤+⎨⎬⎪⎪⎩⎭(),所以 1222212221(101)1 (,)(,)(,)x x eIn y yedy f x y dx f x y dx dx f x y dy --+--+=⎰⎰⎰⎰⎰⎰.(5) 图略. 由3x y =-和=2=1x y ,,得123323012(,)(,)=(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+⎰⎰⎰⎰⎰⎰.9.计算下列二重积分: ⑴⎰⎰+Dy x d e σ23.2||,2||:≤≤y x D ⑵⎰⎰+Dd y xσ)(22.1||||:≤+y x D .⑶⎰⎰+Ddxdy y x 221.10,10:≤≤≤≤y x D . ⑷⎰⎰--Ddxdy y x )2(21.2,:x y x y D ==. [解] 223232322266442222111(1)()()326x y x y x y De d e dx e dy e e e e e e σ+------==+=--⎰⎰⎰⎰. (2)3111222100()()3xxy dx x y dy dx x y --+=+⎰⎰⎰3120(1)(1)3x x x dx ⎡⎤-=-+⎢⎥⎣⎦⎰ 12463=⨯=. (3) 23112110220011arctan 1133412Dx x dxdy x dx dy yy y ππ===⋅=++⎰⎰⎰⎰. (4)21011(2)(2)22x x Dx y dxdy dx x y --=--⎰⎰⎰⎰ 22101(2)22xx y dx y xy =--⎰2412230122222x x x x x x dx ⎡⎤⎛⎫⎛⎫=-----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎰1711(1)26410=-++ 11120=.10.利用极坐标求下列积分 1)⎰⎰+Dd y x σ)(22其中D 是由直线x y =, )0(3,,>==+=a a y a y a x y 所围成的区域. 2)⎰⎰+Ddxdy y x 22.1:22≤+y x D .3)⎰⎰--D d y x R σ222,其中D 是由圆周Rx y x =+22所围成的区域.4) ⎰⎰+Ddxdy y x)(22.y y x D 6:22≤+.5)⎰⎰-+Dd y x σ222,其中D :322≤+y x . 6)σ⎰⎰++Dd y x )1ln(22,其中D 是由圆周122=+y x 及坐标轴所围成的第一象限内 的闭区域; 7)计算dxdy y x D)(22⎰⎰+,其 D 为由圆 y y x 222=+,y y x 422=+及直线y x 3-0=, 03=-x y 所围成的平面闭区域8) 计算二重积分⎰⎰++Ddxdyyx y x 2222)sin(π,其中积分区域为22{(,)|14}D x y x y =≤+≤;9)σ⎰⎰++--Dd yx y x 222211,其中D 是由圆周122=+y x 及坐标轴所围成的第一象限内的闭区域. 10)⎰⎰++Dd y xσ)1ln(22.4:22≤+y x D ,0≥x ,0≥y .[解] (1) 32222414ayay a Dx y d dy x y dx a σ-+=+=⎰⎰⎰⎰()().(2)2120012233Dd r dr πθππ==⋅=⎰⎰.(3)cos 202R Dd rdr πθπθ-=⎰⎰cos 202R d rdr πθθ=⎰⎰33320112(sin )33R R d πθθ=-⎰34()33R π=-. (4)设cos ,sin x r y r θθ==, 则006sin r θπθ≤≤≤≤,.22=Dx y dxdy +⎰⎰原式()6sin 3444000136sin 6432d r dr d πθπθθθπ==⨯=⎰⎰⎰.2222222000442230(5)22)2)55((24442D x y d d rdr d r rdr r rdr r r d r r πππσθθθππ⎡⎤+-=-=-+-⎢⎥⎣⎦⎡=--=⋅=⎢⎣⎰⎰⎰⎰⎰(6)积分区域D 的极坐标表达式0,012r πθ≤≤≤≤,则12222+x (1)(221)4DInd In r rdr In ππσ=+=-⎰⎰⎰⎰(1+y ).(7)内边界22sin 2sin r r r θθ=⇒=, 外边界24sin 4sin r r r θθ=⇒=,则,2sin 4sin 63r ππθθθ≤≤≤≤,所以原式=4sin 2224332sin 6660sin 15(48Ddxdy d r rdr d ππθππθπθθθ=⋅==-⎰⎰⎰⎰⎰(x +y )(8)cos ,sin x r y r θθ==,则02,12r θπ≤≤≤≤,原式221=sin 4Dd rdr πθπ==-⎰⎰.(9)采用极坐标计算200(2)8Dd ππθπ==-⎰⎰. (10) 积分区域D 的极坐标表达式为022r πθ≤≤≤≤0,,则22222+(1)(554)4DInd d In r rdr In ππσθ=+=-⎰⎰⎰⎰(1x +y ).11. 将三次积分⎰⎰⎰yxxdz z y x f dy dx ),,(110改换积分次序为z y x →→.[解] 110(,,)(,,)xy yy x xxD I dx dy f x y z dz d f x y z dz σ==⎰⎰⎰⎰⎰⎰,现改为先y 后x 的顺序:11(,,)(,,)yyxDxzI dy dx f x y z dz dy f x y z d σ==⎰⎰⎰⎰⎰⎰现改为先x 后z 的顺序:10(,,)(,,)yzy z zD I dy dz f x y z dx d f x y z dx σ==⎰⎰⎰⎰⎰⎰现改为先y 后z 的顺序:110(,,)zzI dz dy f x y z dx =⎰⎰⎰.12.将三次积分⎰⎰⎰+10122),,(y x dz z y x f dy dx 改变成按x z y ,,的次序积分.[解] 1()(,,)(,,)D x I f x y z dV dx f x y z Ω==⎰⎰⎰⎰⎰⎰,其中22.Dy ≤≤≤≤+(x ):0y 1,0z x 现改为先y 后z 的顺序,将D (x )分成两部分: 2,01;y ≤≤≤≤0z x2211x z x y ≤≤+≤≤,所以:222111110=x x xI dx dz dy dx dz ++⎰⎰⎰⎰⎰.13..求下列给定区域的体积 1)求由曲面222y xz +=及2226y x z --=,所围成的立体的体积;2)求由下列曲面所围成的立体体积,y x z+=,xy z =,1=+y x ,0=x ,0=y .[解] 1) 222226(2)z x y x y =+=-+, {22(,)|2},D x y x y =+≤ 于是2222(62)(2)DV z y x y dxdy =---+⎰⎰2263()D xy dxdy =-+⎰⎰2203)6r rdrd πθπ=-=⎰. 2) []111107()24xx y xx y z x xyV d d d d x y xydy -+-==+-=⎰⎰⎰⎰⎰. 14.作适当的变换,计算下列二重积分:1)⎰⎰Ddxdy y x22,其中D 是由两条双曲线1=xy 和2=xy ,直线x y =和xy 4=所围成的在第Ⅰ象限的闭区域. 2)⎰⎰+Ddxdy y x )(22,其中D 是椭圆区域:1422≤+y x . [解] 1) (,)(,)1,2,(,)(,)22u xyu v x y v yx y u v v v =⎧∂∂⎪==⎨∂∂=⎪⎩, {}'(,)|12,14D u v u v =≤≤≤≤, 于是,2422221117ln 2223x y u v u v D D u x y d d u d d d d v v =⋅==⎰⎰⎰⎰⎰⎰. 2) cos 1sin 2x r y r θθ=⎧⎪⎨=⎪⎩, {}'(,)|01,02D r r θθπ=≤≤≤≤, 于是 ,,222221()(cos sin )42D Dr x y dxdy r drd θθθ+=+⎰⎰⎰⎰ 123001535(cos 2)28832r drd πθθπ=+=⎰⎰.15. 计算dxdydz z xy V42⎰⎰⎰.31,20,10:≤≤≤≤≤≤z y x V .[解]1232424213230010111196823515Vxy z dxdydz xdx y dy z dz x y z ==⋅⋅=⎰⎰⎰⎰⎰⎰. 16.计算dxdydz z y x V⎰⎰⎰++)sin(.V 由平面0=x ,0=y ,0=z ,2π=++z y x 围成.[解]222sin()sin()x yx y z dxdydz dx dy x y z dz πππ--Ω++=++⎰⎰⎰⎰⎰⎰22200cos()|x ydx x y z dy πππ--=-++⎰⎰22sin()|xx y dx ππ-=+⎰12π=-.17.在柱面坐标系下计算三重积分dxdydz y xV⎰⎰⎰+)(22,其中V 由旋转抛物面)(2122y x z +=及平面2=z 所围成的立体. [解] 令cos sin x r y r θθ=⎧⎨=⎩, {}'02,02V r z θπ=≤≤≤≤≤≤, 于是,222223016()3x y z r z r z VVx y d d d r rd d d d d d πθθπ+=⋅==⎰⎰⎰⎰⎰⎰⎰⎰. 18.设有物体占有空间V: 0≤x ≤1, 0≤y ≤1,0≤z ≤1,在点()z y x ,,的密度是()z y x z y x ++=,,ρ,求该物质量.[解] (,,)()M x y z dxdydz x y z dxdydz ρΩΩ==++⎰⎰⎰⎰⎰⎰1113()2dx dy x y z dz =++=⎰⎰⎰. 19.计算⎰⎰⎰Vdxdydz z xy32,其中V 是曲面xy z =与平面1,==x x y 和0=z 所围成的闭区域.[解] Ω在xOy 面上的投影区域Dxy 由,1,0y x x y ===所围成,则11232312001128364xxyxyz dxdydz xdx y dy z dz x dx Ω===⎰⎰⎰⎰⎰⎰⎰. 20.计算⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是平面1,0,0,0=++===z y x z y x 所围成的四面体.[解] 令1x y z ++=中的0z =,得1x y +=,Ω在xOy 面上的投影区域Dxy 由0,0,1x y x y ==+=所围成, 所以111330001(1)(1)x x y dxdydz dx dy dz x y z x y z ---Ω=++++++⎰⎰⎰⎰⎰⎰ 1120011115()(ln 2)24(1)28x x y d d x y -=--=--++⎰⎰. 21. 计算⎰⎰⎰Vxyzdxdydz ,其中V 是球面1222=++z y x 及坐标面所围成的第一卦限内的闭区域.[解] 令2221x y z ++=中z=0得221y +=x ,故Ω在xOy 面上的投影区域Dxy 由221,0,0x y x y +===所围成,故1xyzdxdydz dx xyzdz Ω=⎰⎰⎰⎰1122220001111(1)(1)22448xdx y x y dy x x dx ⎡⎤=--=-=⎢⎥⎣⎦⎰⎰. 22. 计算⎰⎰⎰Vxyzdxdydz ,其中V 是平面1,,0===y y z z 以及抛物柱面2x y =所围成的闭区域.[解] (1)故Ω在xOy 面上的投影区域Dxy 由1y =,2y x =所围成, 所以2111yxxzdxdydz dx dy xzdz -Ω=⎰⎰⎰⎰⎰⎰21121102x xdx y dy -==⎰⎰. (2)Ω在z 轴上的投影区域为[]0,h ,过[]0h ,内的任一点做垂直于z 轴的平面截Ω得截面为一圆域Dz ,其半径为R z h,所以Dz 为:22222R x y z h +=,面积为222R z h π, 所以222224hhDzR R h zdxdydz zdz dxdy zz dz h ππΩ===⎰⎰⎰⎰⎰⎰⎰.23. 计算⎰⎰⎰Vzdxdydz , 其中V 是曲面222y x z --=及22y x z +=所围成的闭区域. [解]联立z =及22z x y =+,22=1x y +,故Ω在xOy 面上的投影区域为221x y +≤ ,用柱坐标得2242121027()2212rr r zdv d rdr d r dr ππθπθΩ-==-=⎰⎰⎰⎰⎰⎰⎰.24. 计算⎰⎰⎰+Vdv y x )(22,其中V 是z y x 222=+及平面2=z 所围成的闭区域. [解] 联立222x y z +=及2z =得224x y +=,故Ω在xOy 面上的投影区域为224x y +≤,所以2222223216()3r x y dv d r dr dz ππθΩ+==⎰⎰⎰⎰⎰⎰. 25. 计算⎰⎰⎰++Vdv z y x )(222,其中V 是球面1222=++z y x 所围成的闭区域. [解]2122240004()sin 5x y z dv d d r dr ππϕπθϕΩ++==⎰⎰⎰⎰⎰⎰. 26. 计算⎰⎰⎰Vzdv ,其中V 是由不等式()2222a a z y x ≤-++, 222z y x ≤+所围成的闭区域.[解] 在球面坐标系中,2222()y z a a ++-≤x ,即为2222cos ,r a x y z ϕ≤+≤,即4πϕ≤,所以22cos 2344440sin cos 2sin 2cos a zdv d d r dr ad d πππϕπϕϕϕϕϕθϕθΩ==⎰⎰⎰⎰⎰⎰⎰⎰245440074cos (cos )6ad d a ππθϕϕπ=-=⎰⎰.27. 用三重积分计算下面所围体的体积:(1) 226y x z --=及22y x z +=(2) az z y x 2222=++及222z y x =+(含z 轴部分).[解] (1) 226z x y =--可变为26z r =-, z =变为z r =, 则22262230322(6)3r rV dv rdrd dz d rdr dz r r r dr r πθθπ-ΩΩ====--=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰. (2) 222x y z +=的球面坐标方程为=4πϕ, 2222x y z az ++=的球面坐标方程为2cos r a ϕ=, 则22cos 22340sin sin a V dv r drd d d d r dr a ππϕϕϕϕθπθϕΩΩ====⎰⎰⎰⎰⎰⎰⎰⎰⎰.28. 求球面2222a z y x=++,含在圆柱体ax y x =+22内部的那部分面积.[解]上半球面方程为1D 为曲面在第一象限的投影:22,0x y ax y +≤≥,14D A =14D =cos 204a d πθθ=⎰⎰204(sin )a a a d πθθ=-⎰22(2)a π=-.29. 求锥面22y x z +=被柱面x z 22=所截得部分的曲面面积.[解] 由2222,2z x y z x =+=得222x y x +=,故所求曲面在xOy 的投影区域D 为222y x +≤x ,于是DA =D=⎰⎰Ddxdy ==.30. 求圆柱面222x y R +=将球面22224x y z R ++=截下部分的面积.[解] 由对称性,只考虑z =D :222x y R +≤, 于是x z =,y z =,==.因此,2S σ=⎰⎰4R d σ=⎰⎰4R θ=⎰⎰204R Rd πθ=⎰⎰0142(2RR π=⋅⋅-⋅28(2R π=.31. 求圆柱面222x y R +=,222x z R +=所围成的立体的表面积.[解] 由对称性,只考虑z =,D :222x y R +≤. 于是,==, 因此所求的表面积为16S σ=⎰⎰16σ=⎰⎰16R Rdx =⎰201616RR dx R ==⎰.32. 已知A 球的半径为R , B 球的半径为h 且球心在A 球的表面上, 求夹在A 球内部的B球的部分面积(02h R ≤≤).[解] 建立坐标系可设球A :2222x y z R ++=,球B :2222()x y z R h ++-=,则两球面的交线在xOy 面的投影区域为D :222222(4)4h x y R h R+=-,在A 球内部的B球面为:z R =A 球内部的B 球的表面积()S h σ=⎰⎰σ=⎰⎰θ=⎰⎰20hd πθ=⎰322h h Rππ=-.33. 求均匀半球体0,2222≥≤++z r z y x 的质心.[解]),0,0(r34. 求下列均匀的平面薄板重心:(1) 半椭圆;0,12222≥≤+y by a x (2) 高为h ,底分别为a 和b 的等腰梯形.[解] (1)设重心位置在),(y x ,由对称性0=x ,现求y .⎰⎰⎰⎰⎰⎰==DDDydxdy ab dxdyydxdyy πμμ2dr r ab d ab θθππsin 22120⎰⎰=π34b =. (2)设等腰梯形在直角坐标系中位置如图,其重心位置为),(y x , 对称性可得0=x ,并且有⎰⎰⎰⎰⎰⎰+==D DD ydxdy h b a dxdy ydxdyy )(2μμ⎰⎰--+=h y L y L dx ydy h b a 0)()(1211)(2 =⎰+--+h ydy a h y h b a h b a 0])([)(2=h b a ab )(32++, 其中,12():()2h a L x y x h b a =++-, 22():()2h aL x y x h a b =-+-. 35. 由直线2,2,2===+y x y x 所围成的质量分布均匀 (设面密度为μ)的平面薄板,关于x 轴的转动惯量xI .[解] 2222024x y x yDI y d y d d σμμμ-===⎰⎰⎰⎰.36. 求边长为密度均匀的立方体关于其任一棱边的转动惯量.[解] 设方体的密度为ρ, 则22()z VI x y dxdydz ρ=+⎰⎰⎰2250002()3aaadx dy x y dz a ρρ=+=⎰⎰⎰.37. 求半径为a ,高为h 的圆柱体对于过其中心并且平行于母线的轴的转动惯量(假设密度1ρ=).[解] 建立坐标系,过中心且平行于母线的轴即为z 轴, 于是 22()(,,)z I x y x y z dv ρΩ=+⎰⎰⎰22()x y dv Ω=+⎰⎰⎰3r drd dz θΩ=⎰⎰⎰23ahd r dr dz πθ=⎰⎰⎰424a h π=⋅⋅412a h π=.38. 求抛物线2y x =,直线1y =所围成的均匀薄片对于直线1y =-的转动惯量.[解] 21(1)y DI y d ρσ=-=+⎰⎰21121(1)xdx y dy ρ-=+⎰⎰1231{8(1)}3x dx ρ-=-+⎰12302{8(1)}3x dx ρ=-+⎰164202{733}3x x x dx ρ=---⎰ 213368{71}375105ρρ=---=. 39. 求密度为ρ的均匀半球体对于在其中心的一单位质量的质点的引力.[解] 设球半径为R ,建立坐标系如图,由对称性,0x y F F ==;02222dv mdMdF kk r x y zρ==++, cos z dF dF γ={,,}n x y z =,02211,,}||n n x y z n x y ==+,故cos γ=;cos z dF dF γ=320222()zk dv x y z ρ=++,从而32222()z zdvF k x y z ρΩ=++⎰⎰⎰203cos sin r k r drd d rϕρϕθϕΩ=⎰⎰⎰0cos sin k drd d ρϕϕθϕΩ=⎰⎰⎰220000cos sin Rk d d dr ππρθϕϕϕ=⎰⎰⎰001{2}2k R k R ρπρπ=⋅⋅=.40. 求均匀薄片R y x ≤+22,0=z 对于轴上一点),0,0(c )0(>c 处的单位质量的引力;[解] 由对称性,引力方向必在z 轴方向上,因此0=x F ,0=y F ,且dxdy z y x ck F R y x x ⎰⎰≤+++=22223222)(μdr c r r d c k R⎰⎰+=0232220)(πθμ]1[222cR c k +-=πμ.故},0,0{Z F F =.41.求均匀柱体222a y x ≤+,h z ≤≤0对于点),0,0(c P )(h c >处的单位质量的引力.[解] 设物体密度为μ,由对称性0=x F ,0=y F . 进一步32222[()]z Vz cF k dxdydz x y z c μ-=++-⎰⎰⎰dz c z r c z dr r d k ha ⎰⎰⎰-+-=032220]])([[πθμ2]h k πμ=,故{0,0,2]}F h k πμ=, 其中k 为引力系数.。
(完整版)高等数学第九章课外习题
第九章习题A 组1. xyy x y x 1sin)(lim 2200+→→是( ) (A )∞;(B )1;(C )0;(D )振荡地不存在 2.xzy u =,则xu∂∂=( ) (A )12-x zy x z ;(B )121--x zy x;(C )y y x z x zln 2-;(D )y y x x zln 12- 3.设(,)()(,)w f x y g x h x y =+,其中,,f g h 均为可微函数,则xw∂∂=( ) (A )x h g f +'⋅;(B )x x h g f +⋅;(C )x x h g f +'⋅;(D )x x h g f g f +'⋅+⋅ 4.设(,)z f x y =,()x y y ϕ=+,其中,f ϕ是可微函数,则dzdx=( ) (A )()yf x ϕ++'11;(B )()y f f y x ϕ'+'+'1;(C )()[]y f x ϕ'++'1;(D )()[]y f f y x ϕ'+'+'15.设()22ln z x y =+,则)1,1(|dz =( ) (A )dx dy +;(B )1()2dx dy +;(C )22y x dydx ++;(D )06.若z xy e z-=,则yz∂∂=( ) (A )zxe-;(B )()zex --1;(C )1+ze x ;(D )ze -1 7.曲线t z t y t x cos ,sin ,sin 2===在相应于4π=t 的点处一个切线向量与z 轴正方向成锐角,则此向量与y 轴正向的夹角余弦为( ) (A )21-;(B )21;(C )22-;(D )228.曲面22y x z +=在点(1,2,5)处的切平面方程为( )(A )2411x y z ++=;(B )245x y z --+=-;(C )2415x y z --=-;(D )245x y z -+=-9.函数223246u x y y x z =-++在原点沿(2,3,1)OA =u u r的方向导数为( )(A )148-;(B )148;(C )68-;(D )6810.设22z xy u -=,则u 在点(2,1,1)-处的方向导数的最大值为( ) (A )62;(B )4;(C )22;(D )24 11.若yxy x y x f arcsin)1(),(2-+=,则)1,2(x f = 12.函数)ln(1xy z -=的定义域为 13.设tanxy yz e x=,则z y ∂=∂ ________ 14.设()1x y z f x =+,其中()f u 可导,则z x ∂=∂15.设xy z =,而)(x y φ=是可导的正值函数,则=dxdz16.设yx ez 23+=,而t x cos =,2t y =,则dtdz=17.设()z f u =,yu xy x=+,()f u 可导,则y z ∂∂=18.设2y xu =,则du =19.已知sin(21)xyu e x y =++,则du =________20.设函数()zu xy =,则(1,2,1)du =21.设()xyey x f z ,22-=,则dz =22.已知(,)z z x y =是由0zx y z e +++=所确定,则z x∂∂=23.设),(z y x x =由方程1)arctan(=+zz ye xe 确定,则=∂∂zx24.由方程xyz +=所确定的函数(),z z x y =在点()1,0,1-处的全微分()1,0,1________dz -=25.设023=+-y xz z 确定了),(y x z z =,则)1,1,0(-dz = 26.曲线2,sin ,cos3x t y t z t ===在()0,0,1处切线的方程为________27.曲线t e x t cos = t e y tsin = te z 2= 在相应于t =0点处的切线方程为28.曲线22x y z x ⎧=⎨=⎩上点()1,1,1-处的法平面方程是 29.曲线⎩⎨⎧==)()(x z z x y y 由方程组⎩⎨⎧=-+=++46222222z y x z y x 所确定,则此曲线在点(2,1,1)处的切线方程为_______________30.曲面2222312x y z ++=在点()1,2,1处的切平面方程为31.曲面arctanyz x=在点(1,1,)4P π处的切平面方程为32.曲面2132222=++z y x ,在点(1,2,2)-处的法线方程为 33.曲面32=+-xy e z z在点()0,2,1处的切平面与平面1342=+-z y x 的相互关系为34.已知曲面224z x y =--上的点P 处的切平面平行于平面2210x y z ++-=,则点P 的坐标是________35.设(1,1,2)-是曲面(,)z f x y =上一点,若3)1,1(=-x f ,在任一点(,)x y 有),(),(),(y x f y x yf y x xf y x =+,则曲面在这一点的切平面方程是________________36.曲面222()ax by cz f x y z ++=++在点000(,,)M x y z 处的法向量是_____ 37.arctan yx u z =在点()1,0,1A 处沿点A 指向点()3,2,2B -方向的方向导数为____________38.函数xyz u =在点M (5,1,2)处沿点(5,1,2)到点()9,4,14的方向的方向导数为____________ 39.设222lnz y x u ++=,则grad u =__________40.z y x xy z y x u 42432222-+-+++=在点(1,2,3)A 处的梯度是______ 41.若函数y xy ax x y x f 22),(22+++=在点(1,1-)取得极值,则常数=a42.判断点(1,0)P 是否函数y x y xy x z +-+-=222的极值点______ B 组 1.设zy xu =,则=∂∂)2,2,3(yu( ) (A )3ln 4;(B )3ln 8;(C )3ln 324;(D )3ln 162 2.若曲线cos x t t =+,1y t =+,1sin z t =-在02t π≤≤上的对应P 点处的切线向量与三个坐标轴正向的夹角相等,则P 点对应的t 值为( ) (A )0; (B )2π; (C )2π; (D )π 3.曲线sin x t =,2cos y t =,sin cos x t t =在对应于π=t 那点处的切线与xoy 面的夹角是( ) (A )2π;(B )4π;(C )3π;(D )31arccos 4.函数223333y x y x z --+=的极小值点是( ) (A )(0,0);(B )(2,2);(C )(0,2);(D )(2,0)5.设()(),,y x g y x y x f -++=若()20,x x f =,则()y x f ,=6.由曲线2232120x y z ⎧+=⎨=⎩绕y 轴旋转一周得到的旋转曲面在点处指向外侧的单位法向量为____________.7.设)(x y xy f z +=,其中f 可导,求yx zx z ∂∂∂∂∂2,.8.设(),f u v 二阶偏导数连续,()sin ,x z f e y x y =-,求2z x y∂∂∂.9.设2(2,)y z xf x x =,f 具有二阶连续的偏导数,求2z x y ∂∂∂.10.设22(,)z f x y xy =-,f 有二阶连续偏导,求x z∂∂,y x z ∂∂∂2.11.已知(2,)w f x y xy =+,f 有二阶连续偏导,求2w x y∂∂∂. 12.,ϕψ有连续二阶导数, ()()()1122y axy ax z y ax y ax t dt ϕϕψ+-=++-+⎡⎤⎣⎦⎰, 证明:222220z z a x y∂∂-=∂∂. 13.设)()(x y xg y x yf u +=,其中g f ,二阶连续可导,求yuy x u x 2222∂∂+∂∂.14.设),(v u f 可微,0),32(=-+xyz z y x f 确定了),(y x z z =,求y zx z ∂∂∂∂,. 15.设方程0),,(=+xz z y xy F 确定),(y x z z =,其中F 可微,求yz x z ∂∂∂∂,. 16.设0),(=--z y z x ϕ确定),(y x z z =,其中),(v u ϕ可微,求yzx z ∂∂+∂∂. 17. .,,2yx z x z z xy e z∂∂∂∂∂-=求若 18.设由()ln 2xyz yz -=-确定(),z f x y =,求()01y z ',,()0,1yx z ''. 19.设(),z z x y =是由222()yx y z xf x++=确定的隐函数,f 可微,求z x∂∂.20.设函数),(y x z z =是由0)sin(2=+-z x eyx 所确定,求dz .21.设()y x f z ,=是由方程yx z xex y z -++-=所确定,求dz .22.设函数),(y x z z =由)(z y x f z ++=所确定,f 可导,1≠'f 求dz . 23.),(y x z z =由),(zy z x g z =确定,),(v u g 具有连续偏导数,求dz .24.设3,xu e yz =其中(),z z x y =是由方程230zx y e xyz +-+=所确定的隐函数,求()1,1,0x u .25.求曲线⎪⎩⎪⎨⎧===t z t y t x cos sin 2 )20(π≤≤t 平行于平面1y z +=的切线方程.26.求曲线2226x y z x y z ⎧++=⎨++=⎩在点()01,2,1M -处的切线与法平面方程.27.在第一卦限内求曲面z xy =上一点,使过该点的切平面垂直于平面230x y z ++=,且与三个坐标面所围立体的体积为61.28.平面λ=-+z By Ax 是曲面2232y x z +=在点115(,,)224处的切平面,求λ.29.设平面123=-+z y x λ与曲面1222=-++xz z y x在点(0,22处的切平面垂直,求λ. 30.设方程2222=+++z y x xyz 确定了),(y x z z =,求曲面),(y x z z =在点()1,0,1-处的法线方程.31.过直线⎩⎨⎧=-+=-+0272210z y x z y x 作曲面273222=-+z y x 的切平面,求此切平面的方程.32.证明:曲面1=xyz 上任一点处的切平面与三个坐标面所形成的四面体体积为常数. 33.证明:锥面322++=y x z 的所有切平面都通过锥面的顶点.34.证明:曲面,0y b x a f z c z c -⎛⎫-= ⎪--⎝⎭的切平面总通过一定点(其中(),f u v 可微分,,,a b c 均为常数).35.设),,(000z y x M 是曲面)(xyxf z =上任一点,试证明在这点处曲面的法线垂直于向径OM ,其中(),f u v 是可导函数.36.设曲面方程为0)((≠++=a cz by f ax z 、c 、b 都是常数),)(u f 可微.证明该曲面的任一切平面都与一常向量(,,)b c b a=-A 平行.37.设曲面方程为0),(=--by z ax z F ,(b a ,为正常数)。
高等数学第9章试题
高等数学院系_______学号_______班级________________得分_______总分题号选择题填空题计算题证明题其它题型题分20 20 20 20 20 核分人得分复查人一、选择题(共 20 小题,20 分)1、设Ω是由z≥与x2+y2+z2≤1所确定的区域,用不等号表达I1,I2,I3三者大小关系是A. I1>I2>I3;B. I1>I3>I2;C. I2>I1>I3;D. I3>I2>I1.答 ( )2、设f(x,y)为连续函数,则积分可交换积分次序为答 ( )3、设Ω是由曲面z=x2+y2,y=x,y=0,z=1所围第一卦限部分的有界闭区域,且f(x,y,z)在Ω上连续,则等于(A) (B)(C) (D)答 ( )4、设u=f(t)是(-∞,+∞)上严格单调减少的奇函数,Ω是立方体:|x|≤1;|y|≤1;|z|≤1.I=a,b,c为常数,则(A) I>0 (B) I<0(C) I=0 (D) I的符号由a,b,c确定答 ( )5、设Ω为正方体0≤x≤1;0≤y≤1;0≤z≤1.f(x,y,z)为Ω上有界函数。
若,则(A) f(x,y,z)在Ω上可积 (B) f(x,y,z)在Ω上不一定可积(C) 因为f有界,所以I=0 (D) f(x,y,z)在Ω上必不可积答 ( )6、由x2+y2+z2≤2z,z≤x2+y2所确定的立体的体积是(A) (B)(C) (D)答 ( )7、设Ω为球体x2+y2+z2≤1,f(x,y,z)在Ω上连续,I=x2yzf(x,y2,z3),则I=(A) 4x2yzf(x,y2z3)d v (B) 4x2yzf(x,y2,z3)d v (C) 2x2yzf(x,y2,z3)d v (D) 0答 ( )8、函数f(x,y)在有界闭域D上有界是二重积分存在的(A)充分必要条件; (B)充分条件,但非必要条件;(C)必要条件,但非充分条件; (D)既非分条件,也非必要条件。
复旦高数第9章习题(最新整理)
在 t 处切向量为T
1 cos t,sin t, 2 cos t
,
2
已知平面的法向量为 n 1,1,
2 .
且T
∥n
1
,故
cos t
sin t
2 cos
t 2
1
1
2
解得 t
π 2
,相应点的坐标为
π 2
1,1, 2
2
.且
T
1,1,
2
故切线方程为
x
π 2
1
y 1
z2
2.
1
1
2
法平面方程为
Π
上,而平面
Π
与曲面
z
x2
y2
相切于点
1,
2,
5
,
求 a,b 之值.
习题 9-3
1. 求函数 u xy2 z3 xyz 在点 1,1,2 处沿方向角为 π , π , π 的方向的方向导
3 43 数.
解: u u cos u cos u cos
l x (1,1,2)
y (1,1,2)
42
2
法线方程为
x 1 1
y 1 1
zπ 4
1
.
22
3. 证明:曲面 xyz a3 上任一点的切平面与坐标平面围成的四面体体积一定.
证明:设
F(x,y,z)=xyz-a3.
因为
Fx=yz,Fy=xz,Fz=xy,
所以曲面在任一点 M0(x0,y0,z0)处的切平面方程为
y0z0(x-x0)+x0z0(y-y0)+x0y0(z-z0)=0.
2
将它们代入原方程,解得 x 2, x 16 . 7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学院系_______学号_______班级_______姓名_________得分_______总分题号选择题填空题计算题证明题其它题型题分2020202020核分人得分复查人一、选择题(共 20 小题,20 分)1、设Ω是由z ≥及x2+y2+z2≤1所确定的区域,用不等号表达I1,I2,I3三者大小关系是A. I1>I2>I3;B. I1>I3>I2;C. I2>I1>I3;D. I3>I2>I1.答 ( )2、设f(x,y)为连续函数,则积分可交换积分次序为答 ( )3、设Ω是由曲面z=x2+y2,y=x,y=0,z=1所围第一卦限部分的有界闭区域,且f(x,y,z)在Ω上连续,则等于(A) (B)(C) (D)答 ( ) 4、设u=f(t)是(-∞,+∞)上严格单调减少的奇函数,Ω是立方体:|x|≤1;|y|≤1;|z|≤1.I=a,b,c为常数,则(A) I>0 (B) I<0(C) I=0 (D) I的符号由a,b,c确定答 ( )5、设Ω为正方体0≤x≤1;0≤y≤1;0≤z≤(x,y,z)为Ω上有界函数。
若,则(A) f(x,y,z)在Ω上可积 (B) f(x,y,z)在Ω上不一定可积(C) 因为f有界,所以I=0 (D) f(x,y,z)在Ω上必不可积答 ( )6、由x2+y2+z2≤2z,z≤x2+y2所确定的立体的体积是(A) (B)(C) (D)答 ( )7、设Ω为球体x2+y2+z2≤1,f(x,y,z)在Ω上连续,I=x2yzf(x,y2,z3),则I=(A) 4x2yzf(x,y2z3)d v (B) 4x2yzf(x,y2,z3)d v(C) 2x2yzf(x,y2,z3)d v (D) 0答 ( )8、函数f(x,y)在有界闭域D 上有界是二重积分存在的(A)充分必要条件; (B)充分条件,但非必要条件;(C)必要条件,但非充分条件; (D)既非分条件,也非必要条件。
答 ( )9、设Ω是由3x2+y2=z,z=1-x2所围的有界闭区域,且f(x,y,z)在Ω上连续,则等于(A)(B)(C) (D)答 ( )10、设f(x,y)是连续函数,交换二次积分的积分次序后的结果为答 ( ) 11、设Ω1,Ω2是空间有界闭区域,Ω3=Ω1∪Ω2,Ω4=Ω1∩Ω2,f(x,y,z)在Ω3上可积,则的充要条件是(A) f(x,y,z)在Ω4上是奇函数 (B) f(x,y,z)≡0, (x,y,z)∈Ω4(C) Ω4=空集 (D)答 ( )12、设Ω1:x2+y2+z2≤R2;z≥0.Ω2:x2+y2+z2≤R2;x≥0;y≥0;z≥0.则(A) z99d v =4x99d v . (B) y99d v =4z99d v .(C) x99d v =4y99d v . (D) (xyz)99d v=4(xyz)99d v.答 ( )13、设Ω为正方体0≤x≤1;0≤y≤1;0≤z≤(x,y,z)在Ω上可积,试问下面各式中哪一式为f(x,y,z)在Ω上的三重积分的值。
(A) (B)n i nfininin n→∞=⋅∑lim(,,)11(C) (D)答 ( )14、设,则I满足答 ( )15、函数f(x,y)在有界闭域D上连续是二重积分存在的(A)充分必要条件; (B)充分条件,但非必要条件;(C)必要条件,但非充分条件; (D)既非充分条件,又非必要条件。
答 ( )16、若区域D为|x|≤1,|y|≤1,则(A) e; (B) e-1; (C) 0; (D)π.答 ( )17、二重积分(其中D:0≤y≤x2,0≤x≤1)的值为答 ( )18、设有界闭域D1与D2关于oy轴对称,且D1∩D2=,f(x,y)是定义在D1∪D2上的连续函数,则二重积分答 ( )19、设Ω为单位球体x2+y2+z2≤1,Ω1是Ω位于z≥0部分的半球体,I=(x+y+z)f(x2+y2+z2)d v,则(A) I>0 (B) I<0(C) I=0 (D) I=2(x+y+z)f(x2+y2+z2)d v答 ( )20、设Ω为一空间有界闭区域,f(x,y,z)是一全空间的连续函数,由中值定理而V为Ω的体积,则:(A) 若f(x,y,z)分别关于x,y,z为奇函数时f(ξ,η,ζ)=0(B) 必f(ξ,η,ζ)≠0(C) 若Ω为球体x2+y2+z2≤1时f(ξ,η,ζ)=f(0,0,0)(D) f(ξ,η,ζ)的正负与x,y,z的奇偶性无必然联系答 ( )二、填空题(共 20 小题,20 分)1、根据二重积分的几何意义=___________. 其中D:x2+y2≤1.2、设Ω是一空间有界闭区域,其上各点体密度为该点到平面Ax+By+Cz=D的距离平方。
则Ω质量的三重积分公式为________________.3、设D:x2+y2≤2x,由二重积分的几何意义知=________.4、设函数f(x,y)在有界闭区域D上连续,且f(x,y)>0,则的几何意义是__________________.5、二次积分f(x,y)d y在极坐标系下先对r积分的二次积分为____________.6、设积分区域D的面积为S,(r,e)为D中点的极坐标,则_________.7、根据二重积分的几何意义其中D:x2+y2≤a2,y≥0,a>0. 8、设函数f(x,y)在有界闭区域D上有界,把D任意分成几个小区域Δσi=1,2,…,n),在每一个小区域Δσi上任取一点(ξi,ηi),如果极限存i(在(其中入是___________________),则称此极限值为函数f(x,y)在D上的二重积分,记作9、设积分区域D的面积为S,则10、设f(t)为连续函数,则由平面z=0,柱面x2+y2=1和曲面z=[f(xy)]2所围立体的体积可用二重积分表示为___________________________________________.11、设f(x,y,z)在有界闭区域Ω上可积,Ω=Ω1∪Ω2,,则I=f(x,y,z)d v=f(x,y,z)d v+________________________________ _____。
12、设Ω为空间有界闭区域,其上各点的体密度为该点到平面Ax+By+Cz+D=0的距离。
则Ω关于直线的转动惯量的三重积分公式为_________________.13、设D:x2+y2≤4,y≥0,则二重积分14、设Ω1:x2+y2+z2≤R2,Ω2:x2+y2+z2≤R2;x≥0;y≥0;z≥=f(t)是(-∞,+∞)上的偶函数,且在(0,+∞)上严格单调增加,则(A) xf(x)d v=4xf(x)d v (B) f(x+z)dv=4f(x+z)dv(C) f(x+y)d v=4f(x+y)d v (D) f(xyz)d v=4f(xyz)d v答()15、 二次积分f (x ,y )d y 在极坐标系下先对r 积分的二次积分为___________.16、 =___________________。
17、 设平面薄片占有平面区域D ,其上点(x ,y )处的面密度为μ(x ,y ),如果μ(x ,y )在D 上连续,则薄片的质量m =__________________.18、 设区域D 是x 2+y 2≤1与x 2+y 2≤2x 的公共部分,试写出在极坐标系下先对r 积分的累次积分_________________.19、 设Ω为一有界闭区域,其上各点的体密度为ρ(x ,y ,z ).设M 为其质量,而( x ,y , z )为其重心,Ω关于xoy 平面的静矩定义为:M xy= x M , M xy的三重积分计算式为________________.20、 设函数f (x ,y )在有界闭区域D 上有界,把D 任意分成n 个小区域Δσi(i =1,2,…,n ),在每一个小区域Δσi 任意选取一点(ξi ,ηi ),如果极限(其中入是Δσi (i =1,2,…,n )的最大直径)存在,则称此极限值为______________的二重积分。
三、计算题(共 20 小题,20 分)1、 计算二重积分其中2、 设Ω是由x =0,y =0,z =0,x =1-y 2及所围的有界闭区域。
计算I =.3、 设D 是由直线x +y =a ,x +y =b ,y =αx ,y =βx 所围的有界闭区域(0<a <b ;0<α<β),试计算ex y x y D()d d .+⎰⎰24、 设Ω是由x 2+y 2=R 2;z =0;z =1;y =x ;y =所围恰好位于第一卦限部分的一立体。
试求积分I=.5、设Ω是由曲面x2+y2=1,z=0,z=1所围的有界闭区域,计算.6、设Ω是由bz≤x2+y2+z2≤az (a>b>0)所确定的闭区域。
试计算7、计算二重积分其中D:0≤y≤sin x, .8、计算二重积分其中D是由抛物线y2=2px和直线x=p(p>0)所围成的区域。
9、设Ω是由曲面z=x2+y2,z=2(x2+y2),xy=1,xy=2,y=2x及x=2y所围位于x≥0及y≥0部分的闭区域。
试计算I=10、计算三重积分I=,其中Ω是由所围位于部分的立体11、设Ω是由a2≤x2+y2≤2a2 (a>0),y≥0,z≤0以及所确定的闭区域。
试计算12、计算二重积分其中D:x2+y2≤1.13、由二重积分的几何意义,求14、计算二重积分其中积分区域D是x2+y2≤a2(a>0).15、设Ω是由以及0≤z≤sin(x+y)所确定的立体。
试计算16、计算二次积分17、计算二重积分其中18、计算二重积分其中D:x≤y≤,0≤x≤1.19、设Ω是由,y=0,z=0及所围的有界闭区域。
试计算.20、计算二重积分其中D是由直线x=-2,y=0,y=2及左半圆x=所围成的区域。
四、证明题(共 20 小题,20 分)1、试证:在平面薄片关于所有平行于oy轴的轴的转动惯量中,对于穿过重心的轴所得的转动惯量最小。
2、设f(t)是连续函数,证明3、锥面x2+y2-z2=0将闭区域x2+y2+z2≤2az(a>0)分割成两部分,试证其两部分体积的大小之比为3:1.4、设函数f(x,y)在有界闭域D上连续,且D可以分为两个闭域D1和D2,证明5、设f(u)为可微函数,且f(0)=0,证明6、设函数f(x,y)在有界闭域D上连续,且M,m分别是f(x,y)在D上的最大值与最小值,证明:其中σ是D的面积。
7、设Ω为单位球体x2+y2+z2≤1,试证可选择适当的坐标变换,使得(a2+b2+c2=1)8、 设f (x ,y )为区域D :上的连续函数,试证9、 设函数f (x ,y )和g (x ,y )在D 上连续,且f (x ,y )≤g (x ,y ),(x ,y )D ,利用二重积分定义证明:10、 设f (x )是[a ,b ]上的连续正值函数,试证不等式:其中D :a ≤x ≤b ,a ≤y ≤b .11、 设f (u )为连续函数,试证12、 设Ω是上半单位球体x 2+y 2=z 2≤1,z ≥0,f (x ,y ,z )在Ω上连续,试利用球面坐标积分方法证明∃(ξ,η,ζ)∈Ω使得f x y z v f (,,)d (,,)()().Ω⎰⎰⎰=+++⋅ξηζξηξηζπ222222 13、 设p (x )是[a ,b ]上的非负连续函数,f (x ),g (x )是[a ,b ]上的连续单增函数,证明14、 设f (x )是[0,1]上的连续单增函数,求证:15、 设Ω为由≤1所确定的立体(0<a ≤b ≤c ),其密度函数ρ=ρ(z )为关于z 的偶函数。