数学建模第二章作业答案章绍辉(新)

合集下载

数学建模课后习题答案

数学建模课后习题答案

方程及方程组的求解路灯照明问题。

在一条20m 宽的道路两侧, 分别安装了一只2kw 和一只3kw 的路灯, 它们离地面的高度分别为5m 和6m 。

在漆黑的夜晚, 当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw 的路灯的高度可以在3m 到9m 之间变化, 如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m 到9m 之间变化, 结果又如何?解:根据题意, 建立如图模型P1=2kw P2=3kw S=20m 照度计算公式:2sin r p k I α= (k 为照度系数, 可取为1;P 为路灯的功率)(1)设Q(x,0)点为两盏路灯连线上的任意一点, 则两盏路灯在Q 点的照度分别为21111sin R p k I α= 22222sin R p k I α=22121x h R += 111sin R h =α22222)(x s h R -+= 222sin R h =αQ 点的照度:3232322222322111))20(36(18)25(10))((()(()(x x x s h h P x h h P x I -+++=-+++=要求最暗点和最亮点, 即为求函数I(x)的最大值和最小值, 所以应先求出函数的极值点5252522222522111'))20(36()20(54)25(30))(()(3)(3)(x x x x x s h x s h P x h x h P x I -+-++-=-+-++-=利用MATLAB 求得0)('=x I 时x 的值代码:s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1运行结果: s1 =19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1综上, x=9.33m 时, 为最暗点;x=19.97m 时, 为最亮点。

(完整版)数学模型第二章习题答案

(完整版)数学模型第二章习题答案

15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++03032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数.16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1g m l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. (三)2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周⎩⎨⎧==---22/112/112/12/1ππk g m l g tl期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022))()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的.总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b kc b b b c kbc x ββ)1(2)1()1(223221+++++=1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0 .01,1单调减少时当t i dtdis s ∴-σσ.0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s,1,10 dtdit s s σσσ从而则若 ()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 (七)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()(记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln'=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. Ex()x f3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有 ()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为nq ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n nnpq q m npqm q m于是带走产品的平均数是 ()122-+-n n npqq m m , 未带走产品的平均数是 ()()122-+--n n npqq m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111m n n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈当1 n 时,并令'1'D E -=,则 226'm n E ≈④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈ ∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.2.一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.5.某工厂生产甲、乙两种产品,生产每件产品需要原材料、能源消耗、劳动力及所获利润如下表所示:品种 原材料 能源消耗(百元)劳动力(人)利润(千元)甲 2 1 4 4 乙3625现有库存原材料1400千克;能源消耗总额不超过2400百元;全厂劳动力满员为2000人.试安排生产任务(生产甲、乙产品各多少件),使利润最大,并求出最大利润.解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S.则此问题的数学模型为Zy x y x y x y x y x t s y x S ∈≥≥≤+≤+≤++=,,0,020********6140032..54max模型的求解:用图解法.可行域为:由直线,0200024:24006:140032:3:21===+=+=+y x y x l y x l y x l 及组成的凸五边形区域.直线C y x l =+54:在此凸五边形区域内平行移动. 易知:当l 过31l l 与的交点时,S 取最大值. 由⎩⎨⎧=+=+200024140032y x y x 解得:200,400==y x260020054004max =⨯+⨯=S (千元).故安排生产甲产品400件、乙产品200件,可使利润最大,其最大利润为2600千元. 7.深水中的波速v 与波长λ、水深d 、水的密度ρ和重力加速度g 有关,试用量纲分析方法给出波速v 的表达式.解:设v ,λ,d ,ρ,g 的关系为),,,,(g d v f ρλ=0.其量纲表达式为[v ]=LM 0T -1,[λ]=LM 0T 0,[d ]=LM 0T 0,[ρ]=L -3MT 0, [g ]=LM 0T -2,其中L ,M ,T 是基本量纲.---------4分量纲矩阵为A=)()()()()()()()(200010100013111g d v T M L ρλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧===+-++02y - y -0 y 03y y 51454321y y y 的基本解为1y =),21,0,0,21,1(--2y =)0,0,1,1,0(- 由量纲i P 定理 得 ⎪⎩⎪⎨⎧==---2112121πλπλd g v∴g v λ=1π, )(21πϕπ=, λπd =2)(λϕλd g v =∴,其中ϕ是未定函数 .。

章绍辉数学建模第二章

章绍辉数学建模第二章

第二章 习题二1.(1)按照“两秒准则”表明前后车距与车速成正比,这和“一车长度准则”是类似的。

在2.2节的基础上引入下面的符号: D ~前后车距(m ) v ~车速(m/s )K ~按照“两秒准则”,D 与v 之间的比例系数(s ),在“两秒准则”中,K=2 于是“两秒准则”的数学模型为(2)D K v K =⨯=而刹车距离的数学模型为212d kv k v =+ 要考虑“两秒准则”是否安全,即要比较D 与d 的大小212d D kv k v K v -=+-⨯(1) 代入k 1=0.75v ,k 2=0.082678,K=2,所以当d>D ,即刹车距离的理论大于前后车距时,认为不够安全;当d<D ,即刹车距离的理论小于前后车距时,认为足够安全。

计算得到当速度超过15.12 m/s 时,“两秒准则”就不安全了,也就是说“两秒准则”适用于车速不是很快的情况。

另外,还可以通过绘图直观解释为什么“两秒准则”不够安全,用以下程序把刹车距离实测数据与“两秒准则”都画在同一幅图中:v=(20:5:80).*0.44704;d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,41820,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2;k1=0.75; k2=0.082678; K=2; d1=[v;v;v].*k1;d=d1+d2;plot([0,40],[0,K*40],'k')hold onplot(0:40,polyval([k2,k1,0],0:40),':k')plot([v;v;v],d,'ok')title('比较刹车距离实测数据、理论值和两秒准则')legend('两秒准则','刹车距离理论值',...'刹车距离的最小值、平均值和最大值',2)xlabel('车速v(m/s)')ylabel('距离(m)')hold off(2)“两秒准则”的不安全性在于,其刹车距离随着车速增长的速度赶不上理论刹车距离的增长速度,为此我们提出一个“t秒准则”,通过不断增加t的值使得刹车距离总是大于理论刹车距离。

科学计算与数学建模_中南大学中国大学mooc课后章节答案期末考试题库2023年

科学计算与数学建模_中南大学中国大学mooc课后章节答案期末考试题库2023年

科学计算与数学建模_中南大学中国大学mooc课后章节答案期末考试题库2023年1.若真值是10,则近似值9.9的绝对误差和相对误差分别是。

答案:0.1, 0.012.答案:0.0033.答案:4.下哪种情况在数值计算过程中可以不用避免______________.答案:大小相近的同号数相加5.n次插值多项式存在唯一的条件是 .答案:有n+1个互异节点6.答案:2.27.答案:8.答案:-4 9.答案:10.答案:0, -111.通常不用________来估计拟合函数拟合效果的好坏。

答案:偏差和12.答案:13.下面求积公式中哪一个是辛普生公式.答案:14.采用复合梯形求积公式将步长缩小到原步长一半时,新近似值的余项约为原近似值的余项的倍。

答案:1/415.有3个不同节点的高斯求积公式的代数精度是答案:516.答案:17.下列说法不正确的是____________.答案:插值多项式的阶数越高越好18.下列说法正确的是____________.答案:19.答案:减少舍入误差传播20.答案:a = 2,b = 321.求解线性方程组Ax=b的LU分解法中,A须满足的条件是答案:各阶顺序主子式均不为零22.答案:23.答案:624.下列说法不正确的是答案:25.答案:(1)Gauss-Seidel迭代法不收敛,(2) Gauss-Seidel迭代法收敛26.以下不属于用迭代法求解线性方程组的优点的是_________.答案:迭代法不用考虑收敛问题27.答案:p28.答案:29.当一致性比率CR满足_________时,通过一致性检验。

答案:CR<0.130.为比较不同性质因素的重要程度,Saaty等人提出尺度进行定性到定量的转化。

答案:1-931.舍入误差又称为凑整误差。

答案:正确grange插值法是一种非线性插值法。

答案:错误33.任意调换差商节点的次序,不影响差商的值。

答案:正确34.分段低次插值具有计算简单、稳定性好、收敛性有保证且易在计算机上实现等优点.答案:正确35.插值型求积公式是机械积分公式.答案:正确36.复合Newton-Cotes公式是Newton-Cotes公式的改进,实用价值更大。

数学建模章绍辉版作业

数学建模章绍辉版作业

数学建模章绍辉版作业 Last revised by LE LE in 2021第四章作业第二题:针对严重的交通情况,国家质量监督检验检疫局发布的国家标准,车辆驾驶人员血液中的酒精含量大于或等于20mg/100ml,小于80mg/100ml 为饮酒驾车,血液中的酒精含量大于或等于80mg/100ml 的为醉酒驾车。

下面分别考虑大李在很短时间内和较长时间内(如2个小时)喝了三瓶啤酒,多长时间内驾车就会违反新的国家标准。

1、 问题假设大李在短时间内喝下三瓶啤酒后,酒精先从吸收室(肠胃)吸收进中心室(血液和体液),然后从中心室向体外排除,忽略喝酒的时间,根据生理学知识,假设(1) 吸收室在初始时刻t=0时,酒精量立即为032D;在任意时刻,酒精从吸收室吸收进中心室的速率(吸收室在单位时间内酒精含量的减少量)与吸收室的酒精含量成正比,比例系数为1k ;(2) 中心室的容积V 保持不变;在初始时刻t=0时,中心室的酒精含量为0;在任意时刻,酒精从中心室向体外排除的速率(中心室在单位时间内酒精含量的减少量)与中心室的酒精含量成正比,比例系数为2k ;(3) 在大李适度饮酒没有酒精中毒的前提下,假设1k 和2k 都是常量,与饮酒量无关。

2、 符号说明酒精量是指纯酒精的质量,单位是毫克;酒精含量是指纯酒精的浓度,单位是毫克/百毫升; ~t 时刻(小时);()~x t 在时刻t 吸收室(肠胃)内的酒精量(毫克);0~D 两瓶酒的酒精量(毫克);(t)~c 在时刻t 吸收室(血液和体液)的酒精含量(毫克/百毫升); 2()~c t 在时刻t 中心室(血液和体液)的酒精含量(毫克/百毫升);~V 中心室的容积(百毫升);1~k 酒精从吸收室吸收进中心室的速率系数(假设其为常数);2~k 酒精从中心室向体外排除的速率系数(假设其为常数);3~k 在短时间喝下三瓶酒的假设下是指短时间喝下的三瓶酒的酒精总量除以中心室体积,即03/2D V ;而在较长时间内(2小时内)喝下三瓶酒的假设下就特指03/4D V . 3、 模型建立和求解(1) 酒是在很短时间内喝的:记喝酒时刻为0t =(小时),设(0)0c =,可用()2113212()k t k t k k c t e e k k --=--来计算血液中的酒精含量,此时12k k 、为假设中所示的常数,而033155.792D k V ⎛⎫== ⎪⎝⎭.下面用MATLAB 程序画图展示血液中酒精含量随时间变化并且利用fzero 函数和fminbnd 函数来得到饮酒驾车醉酒驾车对应的时间段,以及血液中酒精含量最高的时刻。

高等数学第2章课后习题及答案

高等数学第2章课后习题及答案

-----高等数学第2章课后习题及答案习题211 设物体绕定轴旋转 在时间间隔 [0 t]内转过的角度为从而转角是 t 的函数(t) 如果旋转是匀速的 那么称为该物体旋转的角速度 如果旋转t是非匀速的 应怎样确定该物体在时刻t 0 的角速度?解 在时间间隔 [t 0 t 0t] 内的平均角速度为(t 0t ) (t 0 )tt故 t 0 时刻的角速度为l i ml i m l i m(tt) (t 0) (t )t 0t 0 tt 0t2 当物体的温度高于周围介质的温度时物体就不断冷却 若物体的温度 T与时间 t 的函数关系为 T T(t) 应怎样确定该物体在时刻t 的冷却速度?解 物体在时间间隔 [t 0 t 0t]内 温度的改变量为T T(tt) T(t)平均冷却速度为T T (t t) T(t) t t故物体在时刻 t 的冷却速度为limT lim T (t t ) T (t ) T (t) t 0t t 0 t 3 设某工厂生产 x 单位产品所花费的成本是 f(x)元 此函数 f(x)称为成本函数成本函数 f(x)的导数 f (x)在经济学中称为边际成本 试说明边际成本 f (x)的实际意义解 f(x x)f(x)表示当产量由 x 改变到 x x 时成本的改变量f (x x) f (x)表示当产量由 x 改变到 x x 时单位产量的成本xf (x)lim 0f (x x) f ( x)表示当产量为 x 时单位产量的成本x x4 设 f(x)10x 2 试按定义 求 f ( 1)解 f ( 1)limf ( 1 x) f ( 1)10( 1x)2 10( 1)2xlimxxx 010 lim0 2 xx 2 10 lim ( 2x) 20xxx 05 证明 (cos x) sin x解 (cosx) limcos(x x) cosxxx2s i nx(x) s i nxlim2 2x 0 xlim [ s i nx(x ) s i n x] s i nx 2 x 0 2x26 下列各题中均假定 f (x 0)存在 按照导数定义观察下列极限指出 A 表示什么(1) lim f ( x 0x) f ( x 0 ) A xx 解 Alim0f (x 0x) f (x 0)xxl i mf ( xx) f (x 0) f ( x 0 )x 0x(2) lim f (x)A 其中 f(0) 0 且 f (0)存在x 0 x解 Alim f ( x) lim f (0 x) f (0) f (0)x 0 x x 0x (3) lim f (x 0 h) f (x 0 h)Ah 0h解A lim f ( x 0 h 0 lim[ f (xh 0limf (xh 0h)f (x 0 h) hh) f ( x 0 )] [ f (x 0 h) f (x 0)]h h) f (x 0)limf (xh) f ( x 0 ) hh 0hf (x 0) [ f (x 0)] 2f (x 0)7 求下列函数的导数(1)y x 4(2) y 3 x 2(3) y x1 6-----(4) y1 x(5) y1x23 5 x(6) y x232(7) y x x解 (1)y (x 4) 4x 4 1 4x 322 1 2 x (2) y (3 x 2 ) ( x 3 )2x 3331 3(3)y (x 1 6) 1 6x 1 6 1 1 6x 0 61 1 x(4) y ( 1) (x 2)x21 121 x 23 2(5) y(1)( x 2 )2x 3x 23 516 16 16 116 11 (6) y (x x) (x 5)x 5 x 555(7) y ( x2 3 x21 111 x ) (x 6) 1 x 6x 5665 68 已知物体的运动规律为 s t 3(m) 求这物体在 t 2 秒 (s)时的速度解 v(s) 3t 2 v|t 2 12(米 /秒)9 如果 f(x)为偶函数且 f(0)存在 证明 f(0)证明 当 f(x)为偶函数时 f( x) f(x)所以f (0) l i mf (x)f (0) l i m f (x) f (0) l i m f ( x) f (0)x 0xx 0x 0x 0x 0从而有 2f (0) 0 即 f (0) 010 求曲线 ysin x 在具有下列横坐标的各点处切线的斜率x 解 因为 y cos x 所以斜率分别为2 1k 1 c o sk 2 cos 13 2f (0)2x311 求曲线 y cos x 上点 ( , 1) 处的切线方程和法线方程式3 2解 ysin x ysin3x3 23故在点 (, 1) 处 切线方程为 y 1 3(x)3 22 23法线方程为 y 1 2(x )23 312 求曲线 y e x在点 (0 1)处的切线方程 解 y e xy |x 0 1 故在 (0 1)处的切线方程为y 1 1 (x 0)即 y x 113 在抛物线 y x 2上取横坐标为 x 1 1 及 x 2 3 的两点 作过这两点的割线问该抛物线上哪一点的切线平行于这条割线?解 yy(3) y(1)9 1 42x 割线斜率为 k132令 2x 4 得 x 2因此抛物线 y x 2 上点 (2 4)处的切线平行于这条割线 14 讨论下列函数在 x 0 处的连续性与可导性(1)y |sin x| (2) yx 2sin 1x 0xx 0解 (1)因为y(0) 0 lim y lim |sin x | lim ( sin x) 0x 0x 0x 0 lim ylim |sin x|lim sin xx 0x 0x所以函数在 x 0 处连续又因为y (0)l i m y( x)y(0) l i m |si nx | |si n0 |l i m s i nx1x 0x 0x 0x 0x 0xy (0) lim y( x) y(0) lim |sin x | |sin0|lim s i nx 1x 0 x 0 x 0x 0 x 0 x而 y (0) y (0) 所以函数在 x 0 处不可导-----解 因为 lim y(x) lim x 2sin10 又 y(0)0 所以函数在 x 0 处连续x 0 x 0x 又因为21 0y(x) y(0)xs i n1 l i mx l i ml i mxs i n 0 x 0xx 0xx 0x所以函数在点 x 0 处可导 且 y (0) 015 设函数 f (x)x 2x 1为了使函数 f(x)在 x 1 处连续且可导a b 应取什ax b x 1么值?解 因为lim f ( x) lim x 21 limf (x) lim (ax b)a b f(1) a bx 1x 1x1x 1所以要使函数在 x1 处连续 必须 a b 1 又因为当 a b1 时f (1)x 2 12l i m1x 1 xf (1) lim ax b 1 lim a( x 1) a b 1 lim a(x 1) ax 1 x 1 x 1 x 1 x 1x 1 所以要使函数在 x 1 处可导 必须 a 2 此时 b 116已知 f (x)x 2x 0求 f (0)及 f(0) 又 f (0)是否存在?x x 0解 因为f(0) lim f (x) f (0)lim x 0x 0 x x 0x f(0) lim f (x) f (0)lim x 2 0xxx 0x 而 f (0) f (0) 所以 f (0)不存在17 已知 f(x)sin x x0 求 f (x)x x解 当 x<0 时 f(x) sin x f (x) cos x 当x>0 时 f(x) x f (x) 11因为 f (0) lim f (x) f (0) lim sin x 0 1x 0 x x 0xf (0) lim f (x)f (0) lim x 0 1所以 f (0) 1 从而x 0x x 0x f (x)cosx x1 x18 证明 双曲线 xy a 2 上任一点处的切线与两坐标轴构成的三角形的面积都等于 2a 2解 由 xy a 2得 ya 2k ya 2xx 2设 (x 0 y 0)为曲线上任一点则过该点的切线方程为y a2x 0 ) y 02 ( xx 02y x 2令 y 0并注意 x 0y 0a 解得 xx 0 2x 0为切线在 x 轴上的距 a 2令 x 0并注意 x 0y 0 a 2 解得 y a 2y 2 y0 为切线在 y 轴上的距x 0 0此切线与二坐标轴构成的三角形的面积为S1|2x 0 ||2y 0 | 2|x 0 y 0 | 2a 22习题221 推导余切函数及余割函数的导数公式(cot x)csc 2x(csc x)csc xcot x解 (cot x)(cosx )sin x sin x cosx cosxsin xsin 2 x2 21 2s i nx c o s x2 2 c s cxs i nxs i nx( c sxc) ( 1 ) c o xsc s cx c o xt s i nx 2s i n x 2 求下列函数的导数(1) y4 7 2 12x 5 x 4x-----(2) y 5x 3 2x 3e x (3) y 2tan x sec x 1 (4) y sin x cos x (5) y x 2ln x (6) y 3e x cos x(7) yln xxx(8) y e 2 ln 3x(9) y x 2ln x cos x(10) s 1 sint1 cost解 (1) y ( 4 7 2 12)(4x 5 7x 4 2x 112)x 5 x 4 x20x628x52x220282x6x5x2(2) y (5x 32x 3e x ) 15x22xln2 3ex(3) y (2tan x sec x 1)2sec x tan x sec x(2sec x tan x)2sec x (4) y (sin x cos x) (sin x) cos x sin x (cos x)cos x cos x sin x ( sin x) cos 2x(5) y (x 2ln x) 2x ln x x 21 x(2ln x 1)x(6) y (3e x cos x) 3e x cos x 3e x ( sin x) 3e x(cos x sin x)ln x1 x ln x1 ln x(7) y ( ) xx x 2 x 2(8) y ( e x ln 3) e x x 2 e x 2x e x ( x 2)x 2 x 43x(9) y221cos x x 2ln x ( sin x)(x ln x cos x) 2x ln x cos x x x2x ln x cos x x cos x x 2 ln x sin x(10) s (1sin t ) cost(1 cost) (1 sin t)( sin t)1 sin t cost1 cost(1 cost)2(1 cost)23 求下列函数在给定点处的导数(1) y sin x cos x 求 y和 yxx46(2)sin1cos 求d2d4(3) f (x)3 x 2求 f (0)和 f (2)5 x 5解 (1)ycos x sin xyc o s s i n3 1 3 1x22266 6yc o s s i n22 2x2 244 4(2)dsincos1sin1sincosd22d1s i nc o s 1 2 422(1)d4 244 4 2 22 42(3) f (x)32x f (0)3 f (2) 17(5 x)2525154 以初速 v 0 竖直上抛的物体其上升高度 s 与时间 t 的关系是 s v 0t 1gt 22求(1)该物体的速度 v(t)(2)该物体达到最高点的时刻解 (1)v(t) s (t) v 0 gt(2)令 v(t) 0 即 v 0 gt 0 得 t v 0这就是物体达到最高点的时刻g5 求曲线 y 2sin x x 2 上横坐标为 x 0 的点处的切线方程和法线方程 解 因为 y 2cos x 2x y |x 0 2又当 x 0 时 y 0 所以所求的切线方程为y 2x所求的法线方程为-----y 1x即x 2y 0 26求下列函数的导数(1)y (2x 5)4(2)y cos(4 3x)(3) y e 3x 2(4)y ln(1x2)(5)y sin2x(6) y a2x2(7)y tan(x2)(8)y arctan(e x)(9)y(arcsin x)2(10) y lncos x解 (1) y4(2x 5)4 1 (2x5) 4(2x 5)3 2 8(2x 5)3 (2)y sin(4 3x) (4 3x)sin(4 3x) ( 3) 3sin(4 3x)(3) y e 3 x2 ( 3x2 )(4)y1 (1 x2)1x2(5)y 2sin x (sin x) e 3x 2(6x)6xe 3x212x2x1 x2 1 x22sin x cos x sin 2x(6) y [( a21] 1 (a211(a2 x2 ) x2) 2x2) 221 (a2x2 )1x2 ( 2x)x2 2a2 (7) y sec2(x2) (x2)2xsec2(x2)(8) y1x2 (e x)e x2x1(e ) 1 e2 arcsin x (9) y2arcsin x (arcsin x)1x2(10) y1 (cosx)1( sin x) tan xcosx cosx 7 求下列函数的导数(1) y arcsin(1 2x)(2) y11 x 2x(3) y e 2 cos3x(4) y arccos 1x(5) y1 ln x1 ln x (6) y sin 2xx(7) y arcsin x(8) y ln(x a 2 x 2 ) (9) y ln(sec x tan x)(10) y ln(csc x cot x)解 (1) y1(1 2x)21 1 (1 2x)2x x 21 (1 2x) 2(2) y [(111 1 x 2)x 2) 2]1(1 x 2) 2(1213x(1 x 2 ) 2 ( 2x)x 22(1 x 2 ) 1xxxx) cos3xx(3) y (e 2) cos3x e 2(cos3x) e 2(e 2( sin 3x)(3x)21 e xxx2 c o 3sx 3e 2 s i n3x 1e 2( c o3sx6s i n3x)22-----(4) y1 1 (1)1 1 ( 1 )|x|1 (2 x 1 ( ) 2x2x 2x21)xx1(1 l n x) (1 ln x)12(5) yxx(1ln x) 2x(1 ln x)2(6) ycos2x 2 x sin 2x 1 2x cos2x sin2xx2x2(7) y1( x)1111 ( x)21 ( x )22 x 2 x x 2(8) y1x 2 (xa 2x 2 )1x 2 [1 1(a 2 x 2) ]xa 2x a 22 a 2 x 21[112 (2x)]1x a 2 22 a 2x a 2x 2x(9) y1(secx tan x) secxtan x(10) y1(csc x cot x)csc x cot xsecx tan x sec 2x secxsecx tan x cscx cot x csc 2 x cscxcscx cot x8 求下列函数的导数(1) y (arcsin x )22(2) y ln tan x2(3) y 1 ln 2 x(4) y e arctan x(5) y sin nxcos nx(6) y arctanx 1x 1(7) y arcsinxarccosx(8) y=ln[ln(ln x)](9) y1x 1 x 1 x1 x(10) y arcsin1 x1 x解 (1) y2(arcsin x ) (arcsin x)2 22( a r c s xi)n 1( x)2 1 ( x )2 222( a r c s xi) n1 x 12 1 ( ) 222x2a r c s i n24 x 2(2) y1x (tan x) 1 x sec 2 x( x)tan 2 tan2 22 2(3) y(4) y1 2 x 1x s e c2 c s cxt a n 22 1 ln 2 x 2 1 (1 ln 2 x)1 ln2 x1 2ln x ( l nx)12ln x12 1 ln 2x2 1 ln 2xxln xx1 ln2 xearctan x(arctan x)e arctan x1 x) 2( x)1 (-----e a r c t axn11x e a r c t axn1( x)2 2 2 x(1 x)(5) y n sin n 1x (sin x) cos nx sin n x ( sin nx) (nx)n sin n 1x cos x cos nx sin n x ( sin nx) nn sin n 1x (cos x cos nx sin x sin nx) n sin n 1xcos(n 1)x(6) y1( x 1) 1(x 1) ( x 1)11 ( x 1) 2x 11 (x 1)2(x 1)2 1 x 2x 1x 11arccosx 1 arcsin x1 x2 1 x 2(7) y(arccos x)21 a r c c oxs a r c s ixn1 x22( ar c c ox)s2 1 x 2 ( a r c cxo)2s(8) y1 ln(ln x)1ln(ln x)[ln(ln x)] 11(ln x)ln(ln x) ln x 1 1 1 ln x x xln x l n ( lxn)(1 1 )( 1 x1 x) ( 1 x1 x)(1 1)(9) y2 1 x 2 1 x2 1 x 2 1 x( 1 x1 x)211 x 21 x2(10) y1 (1 x) 1 (1 x) (1 x)1 1 x 1 x 1 1 x(1 x)21 x1 x1(1 x) 2x(1 x)9. 设函数 f(x)和 g(x)可导且 f 2(x) g 2(x) 0 试求函数 y f 2 (x) g 2 (x) 的导数解 yf 1[ f 2(x) g2 (x)]22 (x)g 2(x)1[2 f (x) f ( x) 2g(x) g ( x)] 2f 2(x)g2(x)f (x) f (x)g(x)g (x)f 2 (x)g 2 (x)10设 f(x)可导求下列函数 y 的导数dy dx(1) y f(x2)(2)y f(sin2x) f(cos2x)解 (1) y f (x2) (x2)f(x2) 2x 2x f (x2)(2)y f(sin2x) (sin2x) f (cos2x) (cos2x)f(sin2x) 2sin x cos x f (cos2x) 2cosx ( sin x)sin 2x[f (sin2x)f(cos2x)]11求下列函数的导数(1)y ch(sh x )(2)y sh x e ch x(3)y th(ln x)(4)y sh3x ch2x(5)y th(1 x2)(6)y arch(x2 1)(7)y arch(e2x)(8)y arctan(th x)(9)y ln chx12 x 2ch(10)y ch2( x 1) x 1解 (1) y sh(sh x) (sh x) sh(sh x) ch x(2) y ch x e ch x sh x e ch x sh x e ch x(ch x sh2x)(3) y1(ln x)12 (ln x)2 (ln x)ch x ch-----(4) y3sh 2x ch x 2ch x sh x sh x ch x (3sh x 2) (5) ych 21 2 (1 x 2)2 2xx 2 )(1 x )ch (1 (6) y1 1(x 2 1)2x( x 2 1)x 4 2x 2 2(7) y1(e 2x)2e2x(e 2x )21 e 4 x 1 (8) y 1(th x) 1 1 1 1 1 (thx) 2 1 th 2 x ch 2 x 1 2 2sh x ch xch 2x 1 1ch 2 x sh 2x 1 2sh 2 x(9) y1 (ch x) 1 (ch 2x)ch x2ch 4 xsh x 1 2ch x shxch x2ch 4 xsh x shx sh x ch 2x shxch xch 3x ch 3xsh x (ch 2 x 1) sh 3x th 3xch 3xch 3x(10) y2ch(x1) [ch(x1)] 2ch(x1) sh(x1) ( x 1)x 1x 1x 1 x 1 x 1sh(2x 1(x 1) (x 1)2sh(2 x 1)(x 1)2( x 1)2 )x 1x 112 求下列函数的导数(1) y e x (x 2 2x 3)(2) y sin 2x sin(x 2) (3) y (arctan x )22(4) yln xx ne t e (5) ye t ett(6) y ln cos 1x(7) y e sin 2 1x(8) y x x(9) yxarcsinx4 x 22(10) y arcsin2t1 t 2解 (1) y e x (x 2 2x 3) e x (2x 2) ex( x 2 4x 5)(2) y2 222sin x cos x sin(x ) sin x cos(x ) 2xsin2x sin(x 2) 2x sin 2x cos(x 2)(3) y 2arctanx1 1 4 arctan x2 1 x 2 2 x 2 4 241 xnln x nxn 11 n ln x(4) yxx 2nx n 1(5) y(e te t )(e t e t ) (e t e t )(e te t )4e 2t(e t e t )2(e 2t 1) 211111 1 1(6) y sec x (cos x ) sec x ( sin x ) ( x 2 ) x 2tanx(7) y esin 21 ( sin 21) e sin 21xxx( 2sin 1) cos1( 1 ) xxx2122 1s i nx 2 s i nexx(8) y1x (x x )2 1 (1 1 ) 2 xxx2 x2 x 1 4 xxx(9) y arcsinxx1 12 1 ( 2x) arcsin x21 x2 2 4 x 2 24-----(10) y1 ( 2t ) 12 (1 t 2) 2t (2t) 1 (2t)2 1 t 21 ( 2t )2 (1 t 2) 21 t21 t21 t22(1 t 2)2(1 t 2)(1 t 2)2 (1 t 2 )2 |1 t 2 |(1 t 2 )习题231 求函数的二阶导数(1) y 2x 2ln x (2) y e2x 1(3) y xcos x (4) y e t sin t (5) y a 2 x 2 (6) y ln(1 x 2)(7) y tan x1(8) yx 3 12(9) y (1 x )arctan x(10) ye xx(11) y x 2xe(12) y ln( x 1 x 2 )解 (1) y 4x1 y4 1xx2(2) y e 2x 12 2e 2x 1y 2e2x 1 2 4e 2x 1(3) y xcos x y cos x xsin xy sin x sin x xcos x2sin x xcos x(4) ye tsin t e tcos t e t(cos t sin t)ye t (cos t sin t) e t ( sin t cos t) 2e t cos t(5) y21x2(a2x2)xx2a2a2a2x2x xa2ya2x2a2 x2(a2 x2 ) a2 x2(6) y11(1x2 )12x x2x2y 2(1x2 )2x (2x)2(1 x2)(1 x2 )2(1x2 )2(7) y sec2 xy2sec x (sec x)2sec x sec x tan x2sec2x tan x(8) y(x31)3x2 (x31) 2(x31)2y 6x ( x31)23x22( x31) 3x6x(2x3 1) (x3 1)4(x31)3(9) y2xarctanx(1x2)112xarctanx1 x2y2a r c t xa n2x1 x2(10)y e x x e x 1e x( x 1)x2x2y [e x( x 1) e x] x2 e x( x 1) 2x e x(x2 2x 2)x4x3(11)y e x 2x e x2(2x)e x2(12x2 )yx22x24xx22 e2x (12x )e2xe(32x )(12)y12( x1x2 )12(12x 2 )12x 1 x x 1 x 2 1 x 1 x y1(1 x2 )12x x1 x2 1 x22 1 x2)(1 x) 2 1 x-----2 设 f(x)(x6(2)?10)f解 f(x) 6(x5f(x)43 10)30(x 10) f (x) 120(x 10)f(2)120(210)32073603若 f (x)存在求下列函数 y 的二阶导数d2ydx2(1)y f(x2)(2)y ln[ f(x)]解 (1)y f(x2) (x2) 2xf(x2)y2f(x2)2x 2xf(x2)2f(x2) 4x2f(x2)(2) y1 f (x)f (x)f(x) f (x) f ( x) f(x)f( x) f (x)[ f ( x)] 2 y[ f ( x)]2[ f ( x)]24试从dx 1导出dy y(1) d 2 x ydy 2( y ) 3(2)d 3x3( y )2y y dy3( y )5解(1) d 2x d dx d1d1dx y1ydy2dy dy dy y dx y dy( y )2y( y )3(2) d3x d y d y dxdy3dy y 3dx y 3dyy ( y )3 y 3( y )2 y13( y )2 y y(y )6y(y )55已知物体的运动规律为s Asin t(A、是常数 )求物体运动的加速度并验证d 2s2 s 0dt 2解dsA cos t dt d2 s A 2 sin t dt 22d s就是物体运动的加速度dt2d2 s 2 s A 2 s i n t2 As i n t 0dt 2C1e x C2e x(6验证函数 y C1 C2是常数 )满足关系式y2y 0解y C1 e x C2 e xy C12e x C22e xy2y (C12e x C22e x)2(C1e x C2e x)(C12e x C22e x) (C12e x C22e x) 0 7验证函数 y e x sin x 满足关系式y2y2y 0解 y e x sin x e x cos x e x(sin x cos x)y e x(sin x cos x)e x(cos x sin x) 2e x cos xyx xcos x)x2y 2y 2e cos x2e (sin x2e sin x 2e x cos x2e x sin x2e x cos x2e x sin x 08求下列函数的 n 阶导数的一般表达式(1) y x n1n 12n 2n 1n 12n 都是常数)a x a x a x a (a a a(2)y sin2x(3)y xln x(4)y xe x解 (1) y nx n 1(n1)a1x n 2 (n2)a2x n 3a n 1y n(n1)x n 21 n 32n 4n 2 (n 1)(n2)a x(n 2)(n 3)a x ay(n) n(n 1)(n 2) 2 1x0 n!(2) y 2sin x cos x sin2xy 2c o 2sx 2s i n2(x)2-----y22 c o s2x()22 s i n2x( 2)22y(4)23 c o s2x(2) 23 s i n2(x 3 )22y(n)2n 1s i n2x[ (n 1)]2(3)y ln x 1y 1 x1xy ( 1)x 2y(4) ( 1)( 2)x 3y(n)(1)( 2)( 3) ( n 2)x n 1( 1)n 2(n 2)!( 1)n (n 2)!x n 1x n 1(4) y e x xe xy e x e x xe x 2e x xe xy 2e x e x xe x 3e x xe xy(n) ne x xe x e x(n x)9求下列函数所指定的阶的导数(1)y e x cos x 求 y(4)(2)y xsh x 求 y(100)(3) y x2sin 2x求y(50) .xv cos x有解 (1)令 u eu u u u(4)e xv sin x v cos x v sin x v(4) cos x所以y(4)u(4) v4u v6u v4u v u v(4)e x[cos x4(sin x)6(cos x)4sin x cos x] 4e x cos x(2)令 u x v sh x则有u 1 u0v ch x v sh x v(99)ch x v(100) sh x所以y(100)u(100)v C1 u(99) v C2u(98) v C 98 u v(98) C99 u v(99)u v(100)100100100100100ch x xsh x(3)令 u x2 v sin 2x则有u2x u 2 u0v(48)248 sin(2x48)248 s i n2x2v(49)249cos 2x v(50)250sin 2x所以y(50)u(50)v C1501u(49) v C502u(48) v C5048u v(48) C5049u v(49) u v(50)C5048u v(48)C5049u v(49) u v(50)50 492 228 sin 2x50 2x 249 c o 2sx x2 (250 s i n2x)250x2sin 2x50xc o 2sx12252 (s i n2x)2习题231求函数的二阶导数(1)y 2x2 ln x(2)y e2x 1(3)y xcos x(4)y e t sin t(5)y a2 x2(6)y ln(1 x2)(7)y tan x1(8) yx3 1(9) y (1 x2)arctan x(10) y e xx-----(11) y xe x2(12) y ln( x1x2 )解 (1) y4x1y41x x2(2) y e2x 1 2 2e2x 1y2e2x 1 2 4e2x 1(3) y xcos x y cos x xsin xy sin x sin x xcos x2sin x xcos x(4) y e t sin t e t cos t e t (cos t sin t)y e t(cos t sin t) e t (sin t cos t)2e t cos t(5) y21x2(a2x2)xx2a2a2a2x2x xx2a2ya2a2 x2(a2 x2 ) a2 x2(6) y11(1x2 )12x x2x2y 2(1x2 )2x (2x)2(1x2)(1 x2 )2(1x2 )2(7) y sec2 xy2sec x (sec x)2sec x sec x tan x2sec2x tan x(8) y(x31)3x2 (x31) 2(x31)2y 6x ( x31)23x22( x31) 3x 6x(2x3 1) (x31)4(x31)3(9) y2xarctanx(1x2)112xarctanx1 x2y2a r c t xa n 2x21 x(10)y e x x e x1 e x( x 1)x2x2y[e x ( x 1) e x ] x 2 e x ( x 1) 2x e x (x 2 2x 2)x4x3(11) ye x 2 x e x 2 (2x) e x 2 (1 2x 2 )yx 22x (1 2x 2x22e 2x ) e4x 2xe (3 2x )(12) y1( x1x 2 ) 1 (1 2x ) 1x 1 x 2x 1 x 22 1 x 21 x 2y1(1 x 2) 12xx1 x21 x 22 1 x 2)(1 x) 21 x2 设 f(x) (x 10)6f (2) ?解 f (x) 6(x 10)5 f (x) 30(x 10)4f (x) 120(x 10)3f(2) 120(2 10)3 2073603 若 f (x)存在 求下列函数(1) y f(x 2)(2) y ln[ f(x)]解 (1)yf(x 2) (x 2) 2xf (x 2) y 2f(x 2) 2x 2xf (x 2) (2) y1 f (x)f (x)f (x) f (x) f( x) f (x) y2[ f ( x)]4 试从dx 1导出dy y(1) d 2xydy 2( y ) 3(2)d 3x 3( y )2 y ydy3( y )5解 (1) d 2xd dxd 1dy2dy dydyyd 2 yy的二阶导数d x 22f (x 2) 4x 2f (x 2)f ( x) f (x) [ f ( x)] 2[ f ( x)]2d1dx y 1y dx y dy( y )2 y( y )3(2) d3x d y d y dxdy3dy y 3dx y 3dyy ( y )3 y 3( y )2 y13( y )2 y y(y )6y(y )55已知物体的运动规律为s Asin t(A、是常数 )求物体运动的加速度并验证d 2s2s 0dt 2解dsA cos t dt d2 s A 2 sin t dt 22d s就是物体运动的加速度dt2d2 s 2 s A 2 s i n t2 As i n t 0dt 2C1e x C2e x(6验证函数 y C1 C2是常数 )满足关系式y2y 0解y C1 e x C2 e xy C12e x C22e xy212e x C22x21x2e x)y (C e ) (C e C(C12e x C22e x) (C12e x C22e x) 0 7验证函数 y e x sin x 满足关系式y2y2y 0解 y e x sin x e x cos x e x(sin x cos x)y e x(sin x cos x)e x(cos x sin x) 2e x cos xyx xcos x)x2y 2y 2e cos x2e (sin x2e sin x 2e x cos x2e x sin x2e x cos x2e x sin x 08求下列函数的 n 阶导数的一般表达式(1) y x n1n 12n 2n 1n 12n 都是常数)a x a x a x a (a a a(2) y sin2x-----(3)y xln x(4)y xe x解 (1) y n 11n 2(n2 n 3n 1nx(n 1)a x2)a x ay n(n1)x n 2 (n1)(n2)a1x n 3(n 2)(n 3)a2x n 4a n 2y(n) n(n 1)(n 2) 2 1x0 n!(2) y2sin x cos x sin2xy2c o 2sx 2s i n2(x)2y22 c o s2x() 22 s i n2x( 2)22y(4) 23 cos(2x2) 23 sin(2x 3 )22(n)n 1y 2 s i n2x[ (n 1)](3)y ln x 1y 1x 1 xy ( 1)x 2y(4) ( 1)( 2)x 3(n)( 1)( 2)( 3)( n 2)x n 1( 1)n 2 (n 2)!( 1)n (n 2)!y x n 1x n 1 (4)y e x xe xy e x e x xe x 2e x xe xy 2e x e x xe x 3e x xe xy(n) ne x xe x e x(n x)9求下列函数所指定的阶的导数(1)y e x cos x 求 y(4)(2)y xsh x 求 y(100)(3)y x2sin 2x 求 y(50) .所以所以xv cos x有解 (1)令 u eu u u u(4)e xv sin x v cos x v sin x v(4)cos xy(4)u(4) v4u v6u v4u v u v(4)e x[cos x4(sin x)6(cos x)4sin x cos x] 4e x cos x(2)令 u x v sh x则有u 1 u0v ch x v sh x(99)ch x(100)sh xv vy(100) u(100) v C1 u(99)v C2u(98)v C 98 u v(98)C99 u v(99)u v(100) 100100100100(3)令 u x2u 2xv(48)100ch x xsh xv sin 2x 则有u 2 u0248 sin(2x 48 )248 s i n2x2v(49)249cos 2x v(50)250sin 2x所以y(50)u(50)v C1501u(49) v C502u(48) v C5048u v(48) C5049u v(49) u v(50) C5048u v(48) C5049u v(49) u v(50)50 492 228 sin 2x50 2x 249 c o 2sx x2 (250 s i n2x)250x 2sin 2x50xc o 2sx1 2 2 52 (2s i n2x)习题241求由下列方程所确定的隐函数 y 的导数dydx(1)y2 2x y 9 0(2)x3 y3 3axy 0(3)xy e x y(4)y 1 xe y解 (1)方程两边求导数得-----2y y 2y 2x y 0于是(y x)y yyyy x(2)方程两边求导数得3x 2 3y 2y 2ay 3axy 0于是(y 2 ax)y ayx 2yay x 2y2ax(3)方程两边求导数得y xy e x y (1 y )于是(x e x y )y e x y ye x yyyx e x y(4)方程两边求导数得y e y xe yy于是(1 xe y )y e yyey1 xey222在点 ( 2a, 2a) 处的切线方程和法线方程2 求曲线 x3y 3a34 4解 方程两边求导数得 2 x31 13 2y 3 y 031于是yx31y3在点 (2a,2a) 处 y 144所求切线方程为y2a ( x2a) 即 x y 2 a442所求法线方程为y2a (x2a) 即 x y 04423 求由下列方程所确定的隐函数 y 的二阶导数d ydx22 2(1) x y 1(2) b 2x 2 a 2y 2 a 2b 2 (3) y tan(x y)(4) y 1 xe y解 (1)方程两边求导数得2x 2yy 0yx yy ( x)y xxy xy y y 2x 21yy 2y 2y 3 y 3(2)方程两边求导数得2b 2 x 2a 2 yy 0yb 2 xa2yy x( b 2 x)b 2 y xy b 2 a 2 y ya2y2a2y 2b 2 a 2 y 2 b 2 x 2b 4a2a 2 y3a 2 y3(3)方程两边求导数得y sec 2(x y) (1 y )2y)1y s e c( x2y) 2y) 11 s e c(xc o s( x2y)21s i n(xc o s(x y)12y)y 2s i n( xy23 y23( 112 )2(1 y 2 )y 5yyy(4)方程两边求导数得yyy e xe y-----yeyeyey1 xe y1 (y 1)2 yye y y (2 y) e y ( y ) e y (3 y) y e 2 y (3 y)(2 y)2(2 y)2(2 y)34 用对数求导法求下列函数的导数(1) y ( x )x1 x (2) y5x 525 x2(3) yx 2(3 x)4( x 1)5(4) y xsin x 1e x解 (1)两边取对数得ln y xln|x| xln|1 x|,两边求导得1 y ln x x 1 l n1( x) x 1y x 1 x 于是y ( x)x[ l nx1 ]1 x 1 x 1x(2)两边取对数得ln y1ln |x 5|1l nx(22)两边求导得5251 y1 1 12x2y5 x 525 x 2于是y 1 5x 5[11 2x ]5 5 x 2 2x 5 5 x 2 2(3)两边取对数得ln y1l nx( 2) 4 l n3( x) 5l n x( 1)2两边求导得1 y 1 3 45y 2(x 2)x x 1于是yx 2(3x)4 [ 12)4 5 ](x 1)52(x x 3 x 1(4)两边取对数得ln y1ln x1ln s i nx1l n1( e x )两边求导得22 41 y1 1 c o xte xy 2x24(1 e x )于是yxs i nx 1 e x[11c o xte x]2x 2 4(1 e x )1 x 22c o tx e x ]4 xs i nx 1 e [ x e x1 dy5求下列参数方程所确定的函数的导数dxx at 2(1)y bt2x (1 sin ) (2)ycos解 (1)dyy t 3bt 2 3b tdxx t 2at 2ady ycos sin(2) dx x 1 sincos6 已知xe tsin t, 求当 t 3 时 dy的值y e tcost. dx解dy y te t cost e t sin t costsin t dxx t e tsin t e tcost sintcostdy 1 3 1 3 当 t 时 2 2 3 2dx 1 3 1 3 32 27 写出下列曲线在所给参数值相应的点处的切线方程和法线方程(1)x sin t在 t处y cos2t4x3at (2)1 t 2在 t=2 处y 3at 21 t 2解 (1) dyy t2sin 2tdxx tcost-----dy 2sin(2)当 t时42 2 2 x02y0 0 dx4cos2242所求切线方程为y 2 2(x2) 即2 2x y 2 0 2所求法线方程为y1(x 2 )即 2x 4y1222(2) y t 6at (1t2 )3at 2 2t6at(1t 2 )2(1t 2 )2x t 3a(1t 2)3at2t3a3at 2 (1t 2 )2(1t 2)2dy y t6at2tdx x t3a3at 21t 2当 t 2 时dy 2 24x 6a ydx1223050所求切线方程为012a 5y12 a 4(x6a)即 4x 3y 12a 0535所求法线方程为y12 a3(x 6a)即 3x 4y 6a 0545d 2 y8求下列参数方程所确定的函数的二阶导数dx2 x t 2(1)2y 1 t. xacost(2)y bsin t(3)x3e t y2e t(4)x f t (t )设 f(t)存在且不为零y tf t (t) f (t)dy y t1 d 2 y(y x)t1解 (1)t 21 dx x t t dx2x t t t3(2) dy y tbcostbcot tdx x t asin t ab 2 d 2 y (y x )t a csc t b dx 2 x t asin ta 2 sin 3 tdy y t 2e t22t(3) dx x t3e t3ed 2y( y x )t2 2t3 2e4 3tdx 2x t3e te9 (4) dy y t f (t) tf (t) f (t)dx x tf (t)td 2 y ( y x )t 1dx 2x tf (t)9 求下列参数方程所确定的函数的三阶导数(1) x 1 t 2y t t3(2)x ln(1 t 2) y t arctan t解 (1)dy (t t 3)1 3t2dx (1 t 2 )2t1 3t 2d 2y ( 2t )1 ( 1 3) dx 22t4 t 3 t1 1 3d 3y 4 ( t 3t )3(1 t 2)dx 32t8t 5dy (t arctan t)11(2)1 t 21 tdx [ln(1 t 2)]2t 21 t21d 2 y ( 2t) 1 t 2 dx 22t 4t1 t 23d y-----1 t 2d 3 y ( 4t ) t 4 1dx 3 2t 8t 31t 210 落在平静水面上的石头 产生同心波纹 若最外一圈波半径的增大率总是6m/s 问在 2 秒末扰动水面面积的增大率为多少?解 设波的半径为 r 对应圆面积为 S 则 S r 2 两边同时对 t 求导得S t 2 rr当 t 2 时 r 6 2 12 r t 6故 S t t 22 126 144( 米 2 秒)| 其速率为 4m 2/min11 注水入深 8m 上顶直径 8m 的正圆锥形容器中 当水深为 5m 时 其表面上升的速度为多少?解水深为 h 时 水面半径为 r1 h 水面面积为 S 1 h 21hS 1 h 1 h 224水的体积为 Vh 33 34 12dV 12 3h 2dh dh 4 dVdt dt dt h 2 dt已知 h 5(m), dV 4 (m 3/min) 因此 dh 4 dV 4 4 16(m/min)dtdt h 2 dt252512 溶液自深 18cm 直径 12cm 的正圆锥形漏斗中漏入一直径为 10cm 的圆柱形筒中 开始时漏斗中盛满了溶液 已知当溶液在漏斗中深为 12cm 时 其表面下 降的速率为 1cm/min 问此时圆柱形筒中溶液表面上升的速率为多少?解 设在 t 时刻漏斗在的水深为 y 圆柱形筒中水深为 h 于是有1 62 18 1r 2 y 52hy 3y3由 r得 r 代入上式得 6 18 31 62 18 1 ( y ) 2 y 23 3 3 5 h即162 18 1y 3 52 h 两边对 t 3 33求导得1 y2 y 52 h32t当 y 12 时 y t1 代入上式得1 122( 1) 16h t32 52 0.64 (cm/min).25。

数学建模第一章作业(章绍辉)

数学建模第一章作业(章绍辉)
中心极限定理:当 n 时,随机变量


X 1 X 2 X n nP nP(1 P)
的分布趋向于标准正态分布 (也就是说, 当 n 充分大的时候, 随机变量 ( X1 X 2 X n ) n 的分布近似于均值为 P、方差 为 P(1 P) n 的正态分布). 用循环语句实现以下计算:考虑试验次数 n=100、400、y Nhomakorabea0
0.1
0.2
0.3
0.4
0.5 x
0.6
0.7
0.8
0.9
1
3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌 掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次 掷出 3 或 11 点,打赌者赢;如果第一次掷出 2、7 或 12 点, 打赌者输;如果第一次掷出 4,5,6,8,9 或 10 点,记住这个点 数, 继续掷骰子, 如果不能在掷出 7 点之前再次掷出该点数, 则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估 计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概 率吗?请问随着试验次数的增加,这些概率收敛吗? 解答 (一)算法 输入 模拟试验的次数 n; 输出 打赌者赢的概率 p. 第 1 步 初始化计数器 k=0; 第 2 步 对 i=1,2,…,n,循环进行第 3~7 步; 第 3 步 产生两个在 1~6 这 6 个整数中机会均等地取 值的随机数, 并把这两个随机数之和赋值给 x; 第 4 步 如果 x 是 3 或 11,那么 k 加 1,进入下一步循 环;否则,做第 5 步; 第 5 步 如果 x 不是 2、7 和 12,那么做第 6~8 步;否 则,直接进入下一步循环; 第 6 步 产生两个在 1~6 这 6 个整数中机会均等地取 值的随机数, 并把这两个随机数之和赋值给 y; 第 7 步 如果 y 不等于 x,也不等于 7,重复第 6 步所 做的; 第 8 步 如果 y 等于 7,那么 k 加 1,进入下一步循环; 否则,直接进入下一步循环; 第 9 步 计算概率 p=k./n .

华东师大数模第2章答案02~ch2_solutions

华东师大数模第2章答案02~ch2_solutions

> > > > >
dxdK1:=diff(x,K1): dydK1:=diff(y,K1): assign(K1=150000); sxK1:=dxdK1*(K1/x); syK1:=dydK1*(K1/y); sxK1 := 1.001502253 syK1 := -.01760602687
Then S(x, K_1) = +1.0015 and S(y, K_1) = -0.0176 so that if the carrying capacity for Blue whales increases by 10% then the optimal population for Blue whales increases by about 10% and the optimal population for Fin whales stays about the same. Now compute that > restart: > z:=0.05*x*(1 - x / 150000) - 10^(-8)* x* y + 0.08* y* (1 - y / K2) - 10^(-8)* x*y; 1 1 y z := .05 x x x y + .08 y 1 − − 1 − 150000 50000000 K2 > dzdx:=diff(z,x); > dzdy:=diff(z,y); dzdx := .05 − .6666666666 10-6 x − dzdy := − 1 x + .08 − 1 50000000 .16 y K2 y
{ y = 196544.8172, x = 69103.65549 }

数学建模课后习题第二章参考答案

数学建模课后习题第二章参考答案

数学建模第二章课后习题第5题参考答案5.(1)at m me w w w w w t w --+=)()(000,要使,只需。

联系:在目前的情况下,当时,两个模型中猪的体重的变化都一样,当时,新的假设中猪的体重增长的比较快,当时,新的假设猪的体重增长的比较慢。

因为,所以函数为增函数,即当t 增大时,猪的体重会随着增加,这与原来的假设是一致的。

两个假设都满足'(0)w r =,在最佳出售时机附近误差微小。

区别:150200250300当a=1/60时两个假设模型的比较由图可知,新假设是阻滞增长模型,体重w 是t 的增函数,体重增加的速率先快后慢,时间充分长后,体重趋于w m 。

而原假设w(t)=0w +rt 只假设体重匀速增加。

从长时间来看,新假设比原假设更符合实际。

(2) 则t 天之后比现在出售多赚的纯利润为:0000((0))()()()()(0)(0)(0)()matm p gt w w Q t p t w t C t p w ct p w w w w e--=--=--+- 其中p(0)=12,g=0.08, 900=w ,270=m w ,,c=3.2,代入数据并用matlab 中的fminbnd 函数运算得到: 在t=14.4336时,纯利润到达最大值:Qm =12.1513。

代码如下:Q=@(t)((12-0.08*t)*90.*270)./(90+(270-90).*exp(-(1/60)*t))-3.2*t-12*90;nQ=@(t)-Q(t);[t,Q1]=fminbnd(nQ,0,100), Qm=-Q1 t = 14.4336 Q1 = -12.1513 Qm =12.1513 (3)所以,如果生猪体重wm 增加1%,灵敏度S(tm,dwm)= 3.7669,最佳出售时间tm 就推迟0.038%。

灵敏度比较小,所以wm 对tm 不灵敏。

程序如下:Q=@(t,wm)((12-0.08*t)*90.*wm)./(90+(wm-90).*exp(-(1/60)*t))-3.2*t-12*90;数值计算W m 对t m 的灵敏度(W m =270,t m =14.4336)m m w w +∆ ()/%m m w w ∆ m m t t +∆ ()/%m m t t ∆ (,)m m S w t272.70001.000014.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.46010.34833.4825数值计算W m 对Q m 的灵敏度(W m =270,Q m =12.1513) m m w w +∆ ()/%m m w w ∆ m m Q Q +∆ ()/%m m Q Q ∆ (,)m m S w Q272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794 297.0000 10.0000 22.47540.84968.4963d=[.01;.05;.1];dwm=d*270;Q1=@(t)-Q(t,270+dwm(1));[t1,Q1]=fminbnd(Q1,0,30);Q2=@(t)-Q(t,270+dwm(2));[t2,Q2]=fminbnd(Q2,0,30);Q3=@(t)-Q(t,270+dwm(3));[t3,Q3]=fminbnd(Q3,0,30);Qm1=-Q1;Qm2=-Q2;Qm3=-Q3;tm=14.4336;Qm=12.1513;Sw_t=@(t,w)((t-tm)/tm)./(w/270);Sw_Q=@(Q,w)((Q-Qm)/Qm)./(w/270);t=[t1;t2;t3],Q=[Qm1;Qm2;Qm3],a=[270+d.*270,d.*100,t,(t-tm)./tm,Sw_t(t,d.*270)],b=[270+d.*270,d.*100,Q,(Q-Qm)./Qm,Sw_Q(Q,d.*270)], t =14.977317.056519.4601Q =13.107817.120822.4754a =272.7000 1.0000 14.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.4601 0.3483 3.4825b =272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794297.0000 10.0000 22.4754 0.8496 8.4963 (4)由图可知,新假设模型是一个阻滞增长模型,比原来的模型更符合实际,可以在较长时间内使用。

《数学建模》(章绍辉-著)参考解答

《数学建模》(章绍辉-著)参考解答

习题3参考解答4. 某成功人士向学院捐献20万元设立优秀本科生奖学金,学院领导打算将这笔捐款以整存整取一年定期的形式存入银行,第二年一到期就支取,取出一部分作为当年的奖学金,剩下的继续以整存整取一年定期的形式存入银行……请你研究这个问题,并向学院领导写一份报告.解答 假设整存整取一年定期的年利率保持不变,记为r ,假设一到期就支取,取出b 元作为当年的奖学金,剩下的继续以整存整取一年定期的形式存入银行……记捐款存入银行之后第k 年一年定期到期日奖学金捐款账户余额为k x 万元,0x =20万元,则列式得1(1), 0,1,2,k k x r x b k +=+-=⋅⋅⋅.其解为()0(1), 0,1,2,k k x r x b r b r k =+-+=⋅⋅⋅ 平衡点为x b r =.因为r >0,所以如果0x b r >,即00b rx <<,k x 就会单调增加趋于无穷大,并且增加得越来越快;如果0x b r <,即0b rx >,k x 就会单调衰减(到零为止),并且减少得越来越快;如果0x b r =,即0b rx =,k x 就会保持不变,即0k x x ≡.如果取r =0.025,则b 的临界值为00.025200.5rx =⨯=(万元). 进一步,可编程分别计算当b =0.4、0.5、0.6、1以及2万元时账户总额k x 的具体变化过程,并绘图.程序:r=0.025; x=[20,20,20,20,20];b=[.4,.5,.6,1,2]; n=20;for k=1:nx(k+1,:)=x(k,:).*(1+r)-b;endplot(0:n,x(:,1),'k.',0:n,x(:,2),'kx',...0:n,x(:,3),'k^',0:n,x(:,4),'ks',0:n,x(:,5),'kp')axis([-1,n+1,0,25])legend('每年用0.4万元','每年用0.5万元',...'每年用0.6万元','每年用1万元','每年用2万元',3)title('奖学金捐款账户余额的演变,年利率2.5%')xlabel('第 k 年'), ylabel('账户余额(万元)')绘得的图形:第 k 年账户余额(万元)奖学金捐款账户余额的演变,年利率2.5%(略去给学院领导的报告,该报告要用非数学语言陈述上述分析)5. 有一位老人60岁时将养老金10万元以整存零取方式(指本金一次存入,分次支取本金的一种储蓄)存入,从第一个月开始每月支取1000元,银行每月初按月利率0.3%把上月结余额孳生的利息自动存入养老金. 请你计算老人多少岁时将把养老金用完?如果想用到80岁,问60岁时应存入多少钱?解答 假设月利率保持不变,记为r ,记养老金存入银行之后第k 月末账户总额为k x 元,从第一个月开始每月支取b 元. 则列式得1(1), 0,1,2,k k x r x b k +=+-=⋅⋅⋅.解得()0(1), 0,1,2,k k x r x b r b r k =+-+=⋅⋅⋅依题意有r =0.003,b =1000,0x =100000. 因为r >0,且0x b r <,所以k x 就会单调衰减(到零为止),并且减少得越来越快;若要0k x ≤,可以解得只需要()()()0log log log 1b r b r x k r --≥+ 所以令()(){}()0log log log 1K b r b r x r ⎡⎤=--+⎢⎥(上取整),则养老金在第K 个月恰好用完. 把具体数据代入,执行以下程序,算得K =120,即10万养老金恰好10年用:x=100000; r=0.003; b=1000;K=ceil((log(b/r)-log(b/r-x))/log(1+r))也可以用条件循环语句按差分方程迭代计算,直到0k x ≤停止. 程序如下:x=100000; r=0.003; b=1000; n=0;while x(n+1)>0n=n+1;x(n+1)=(1+r).*x(n)-b;endn如果养老金想用到80岁,即240x =0,那么()()()2400240111709081b r x r r +-==+.。

数学建模第二次作业(章绍辉版)

数学建模第二次作业(章绍辉版)

数学建模第二次作业1.在“两秒准则”的建议下,前后车距D(m)与车速v(m/s)成正比例关系。

设K为按照“两秒准则”,D与v之间的比例系数。

则:D=Kv,K=2s。

而在“一车长度准则”下,考虑家庭用的小型汽车,D=1.1185v。

显然,“两秒准则”和“一车长度准则”是不一致的。

“两秒准则”的数学模型为:D=Kv,K=2s汽车刹车距离的理论值为:由得:当时,“两秒准则”足够安全。

输入代码:v=(20:5:80).*0.44704;d2=[18, 25, 36, 47, 64, 82, 105, 132, 162, 196, 237, 283, 33422, 31, 45, 58, 80, 103, 131,165, 202, 245, 295, 353, 41820,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376].*0.3048; K=2;K1=1.1185; k1=0.75; k2=0.082678; d=d2+[v;v;v].*k1;vi=0:40;plot([0,40],[0,K1.*40],'--k',[0,40],[0,K*40],'k',vi,k1.*vi+k2.*vi.*vi,':k',[v;v;v],d,'ok','MarkerSize',2)title('比较一车长度准则、两秒准则、理论值和刹车距离实测数据')legend('一车长度准则','两秒准则','刹车距离理论值','刹车距离最小值、平均值和最大值',2)xlabel('车速v(m/s)'), ylabel('距离(m)')得到:由上图也可以看出当车速超过15米每秒时,“两秒准则”不安全。

数学建模II第2章4-7

数学建模II第2章4-7

艇长l (米) 7.93 9.76 11.75 18.28
艇宽b (米) 0.293 0.356 0.574 0.610
l/b 27.0 27.4 21.0 30.0
空艇重w0(kg) 浆手数n 16.3 13.6 18.1 14.7
可以看出,当浆手数增加时,艇的尺寸、艇重 都随之增加,但比值l /b, w0/n 变化不大,如果假 定l /b是常数,即各种艇的形状一样,则可以得到 艇浸没面积与排水体积的关系,若假定w0/n 是常 数,则可以得到艇和浆手的总重量与浆手数之间的 关系。
乙的无差别曲线族 g(x,y)=c2具有相同性质
y
g(x,y)=c2 c2
O
x
为得到双方满意的交换方案,将双方的无 差别曲线族画在一起,其中乙的无差别曲线 族圆点在O/,且x、y轴均反向,于是当乙的 满意度c2增加时无差别曲线向下移动。
双方的交换路径 甲的无差别曲线族 f=c1 乙的无差别曲线族 g=c2 (坐标系x’O’y’, 且反向)
等价交换准则是指:两种物品用同一货币 衡量其价值,进行等价交换。
设交换前甲占有物品X(数量为x0)与乙占 有物品Y(数量为y0)具有相同的价值,则等价 交换原则下交换路径为(x0,0), (0,y0) 两点的 连线CD,于是双方满意的交换方案为CD与AB 的交点p。
y yo
.
D
B
p
0
A
.
C
xo x
实例: 设玉米的价格为每千克p元,山羊的价格 为每只q元,则有交换前甲方拥有玉米的价 值为pX, 乙方拥有山羊的价值为qY。若交换 前甲乙拥有物品的价值相同,即pX=qY。
则交换发生后,甲方拥有玉米和山羊的价 值为px+qy, 乙方拥有玉米和山羊的价值为 p(X-x)+q(Y-y),按按等价交换的原则应该有 px+qy=p(X-x)+q(Y-y)。利用关系pX=qY, 可以得出实际交换的点(x,y)满足关系式: x/X+y/Y = 1 此曲线是一条直线,在交换路径坐标系中 画出此曲线与AB相交,就得到实际交换发生 的点。

数学建模章绍辉答案

数学建模章绍辉答案

数学建模章绍辉答案【篇一:第三次数学建模作业】数科院105 刘镜韶 20102201092 数科院105 蔡秋荣 20102201166 数科院104 梁浩坤 201022011004、不妨令第k年取出奖学金后,继续存在银行的捐款余额为xk,且银行的整存整取的利率为r,奖学金的金额为d万元,则由已知可得:xk+1 =(1+r)xk-d 故:其解为数列:xk =(x0-d/r)+d/r,且x0=20万元;①奖学金金额d0.6万元,让存在银行的捐款余额每年逐步增加;②奖学金金额d=0.6万元,让存在银行的捐款余额每年保持不变;③奖学金金额d0.6万元,让存在银行的捐款余额每年逐步减少;故对于不同的情况,不妨通过编程对比xk的变化趋势;程序:n=20;r=[0.03,0.03,0.03];x=[20,20,20];d=[0.45,0.6,0.75]; fork=1:nx(k+1,:)=x(k,:).*(1+r)-d; enddisp(本金为20万时不同的奖学金下余额的变化)disp(年 0.45万元0.6万元0.75万元) disp([(0:n),x]);plot(0:n,x(:,1),k^,0:n,x(:,2),ko,0:n,x(:,3),kv) axis([-1,n+1,14,25]) legend(d=0.45,d=0.6,d=0.75,2)title(本金为20万时不同的奖学金下余额的变化) xlabel(第k年),ylabel(余额) 其命令窗口显示结果为:年 0.45万元0.6万元0.75万元 020.000020.000020.00001.000020.150020.000019.85002.000020.304520.000019.69553.000020.463620.000019.53644.000020.627520.000019.37255.000020.796420.000019.20366.000020.970320.000019.02977.000021.149420.000018.8506 8.000021.333920.000018.66619.000021.523920.000018.4761本金为20万时不同的奖学金下余额的变化10.000021.719620.000018.2804 11.000021.921220.000018.078812.000022.128820.000017.871213.000022.342720.000017.657314.000022.562920.000017.4371 15.000022.789820.000017.210216.000023.023520.000016.976517.000023.264220.000016.735818.000023.512220.000016.4878 19.000023.767520.000016.2325 第k年20.000024.030620.000015.9694当利率r=3%时,且以整存整取一年定期的形式来存入银行时;由上述图像可知:①奖学金金额d≤0.6万元时,可以永久持续下去,实现可持续发展,即用20万元本金所得的利息作为奖学金。

数学建模第二次作业(3)(精编文档).doc

数学建模第二次作业(3)(精编文档).doc

【最新整理,下载后即可编辑】数学建模任意两个城市之间的最廉价路线参与人员信息:2012 年 6 月 6 日一、问题提出某公司在六个城市C1、C2、C3、C4、C5、C6中都有分公司,从Ci到Cj的直达航班票价由下述矩阵的第i行、第j列元素给出(∞表示无直达航班),该公司想算出一张任意两个城市之间最廉价路线表,试做出这样的表来。

0 50 ∞40 25 1050 0 15 20 ∞25∞15 0 10 20 ∞40 20 10 0 10 2525 ∞20 10 0 5510 25 ∞25 55 0二、问题分析若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。

最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。

最短路问题,我们通常归属为三类:单源最短路径问题、确定起点终点的最短路径问题、全局最短路径问题———求图中所有的最短路径。

题中要求算出一张任意城市间的最廉价路线表,属于全局最短路问题,并且使得该公司总经理能够与各个子公司之间自由往返。

(此两点为主要约束条件)Floyd 算法,具体原理如下:(1) 我们确定本题为全局最短路问题,并采用求距离矩阵的方法根据路线及票价表建立带权矩阵W ,并把带权邻接矩阵我w 作为距离矩阵的初始值,即(0)(0)()ij v v D d W ⨯==(2)求路径矩阵的方法在建立距离矩阵的同时可建立路径矩阵R ,()ij v v R r ⨯=,ij r 的含义是从i v 到j v 的最短路径要经过点号为ij r 的点。

(3)查找最短路径的方法若()1v ij r p =,则点1p 是点i 到j 的最短距离的中间点,然后用同样的方法再分头查找。

三、 模型假设: 1.各城市间的飞机线路固定不变2.各城市间飞机线路的票价不改变3.忽略乘客除票价以外的各项开销费用4.不考虑雷雨云、低云、大风、雷暴、冰雹等主要天气因素对飞行的影响。

章绍辉数学建模第二章第四题解析

章绍辉数学建模第二章第四题解析

4.继续考虑2.3节的“生猪出手时机”案例,假设在第t 天的生猪出售的市场价格(元/公斤)为2)0()(ht gt p t p +-= (1)其中h 为价格的平稳率,取0002.0=h .其他模型假设和参数取值保持不变. (1)试比较(1)式与(2.3.1)式,解释新的假设和原来的假设的区别与联系; (2)在新的假设下求解最佳出售时机和多赚的纯利润;(3)作灵敏度分析,分别考虑h 对最佳出售时机和多赚的纯利润的影响; (4)讨论模型关于价格假设的强健性. 解:(1)两个假设的区别与联系 由课本的内容,我们有()1.3.2)0()(ΛΛgt p t p -=()1)0()(2ΛΛht gt p t p +-=这两个式子的区别与联系如下: ①区别 i )(2.3.1)式所表示的是递减的一次函数,而(1)式所表示的则是一个开口向上的二次函数,如图1. 绘图程序:p=@(t)12-0.08*t+0.0002*t.^2; t=input('请输入t 值')plot([0,t],[12,12-0.08*t],'k:',0:.1:t,p(0:.1:t),'k') axis([0,t,0,20])title('模型假设(1)式与(2.3.1)式的比较') legend('p(0)-gt (2.3.1)式','p(0)-gt+ht^2 (1)式') xlabel('时间t (天)'),ylabel('市场价格p(元/公斤)') 图像t=400 图1ii )(2.3.1)式表示价格匀速下降,(1)式表示价格先下降到一定程度再增加,故(2.3.1)更加符合实际的情况,如图1.iii )(2.3.1)式中,市场价格降低的幅度为g t p -=)('错误!未找到引用源。

,而(1)式中,市场价格的降低值为ht g t p 2)('+-=错误!未找到引用源。

数学建模习题解答 杨启帆

数学建模习题解答 杨启帆

部分数学建模习题解答【杨启帆主编】第一章第5题一个男孩和一个女孩分别在离家2km和1km且方向相反的两所学校里上学,每天同时放学后分别以2km/h和1km/h的速度步行回家。

一只小狗以6km/h的速度由男孩奔向女孩,又从女孩处跑向跑回男孩处,如此往返的奔跑,直至回到家中。

问小狗总共奔波了多少路程?解:由于男孩、女孩与小狗跑的时间一样,所以把时间设为t,则有2t+1t=3,得到t=1h。

所以小狗跑了6km/h*1h=6km。

第一章10题一位探险家必须穿过一片宽度为800 km的沙漠,他仅有的交通工具是一辆每升汽油可行驶10km的吉普车.吉普车的油箱可装10升汽油。

另外吉普车上可携带8个可装5升汽油的油桶,也就是说,吉普车最多可带50升汽油(最多能在沙漠中连续行驶500 km)。

现假定在探险家出发地的汽油是无限充足的.问这位保险家应怎样设计他的旅行才能通过此沙漠?他要通过沙漠所需的汽油最少是多少升?为了穿越这片800km宽的沙漠,他总共需要行驶多少公里路程。

总共要花费多少升的汽油?思路:1、若沙漠只有500公里或者更短,这时很简单,一次搞定。

2、若沙漠有550km,怎么办?需要保证的是:车到了离沙漠终点还有500km的地方,能恰恰加满油且不会有多余。

方案可为:600-550=50,从起点处加5*3(升)=15升油,开出50km,设一加油站,存下5升,剩下5升刚好使得汽车返回起点。

再在起点处加满50升油,到加油站时,只乘45升了,把存放在那儿的5升油加上。

则可跑出沙漠。

(这样共加油15+50=65,总路程为150+500=650km)3、再看2的情况,符合这种情况的沙漠的最大距离是多少呢:答案是500*(1+1/3)公里。

即在起点准备100升油,第一次装50升,跑了500/3公里后存放50*1/3升油,然后返回起点,这时车里的油也正好用完,然后再在起点处装50升,跑了550/3公里后,车内剩下(50*2/3)升油,再加上存放的50*1/3升油,恰好为50升油,则可跑出沙漠。

数学建模答案(完整版)

数学建模答案(完整版)

1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。

在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数()f x = x=567.889与0.0368处的近似值(保留有效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算()f x a b=-的值,其中a=2.3,b=4.89. >> syms a b>> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans =2.08644用matlab 计算函数()f x =x=3π处的值. >> syms x>> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans =12.09625用matlab 计算函数()arctan f x x =在x=1.23处的值.>> syms x>> x=1.23;>> atan(x)+sqrt(log(x+1))ans =1.78376 用matlab 计算函数222sin cos ()()31a b x x f x f x a b xπ++==--在x=-2.1处的值. >> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数y=2x 在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数ln 10y x =+在[20,15]--上步长为0.2的图像. >> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,15]y x x=+--9 用红色.加号连线 虚线绘制函数sin()22x y π=-在[-10,10]上步长为0.2的图像. >> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数sin(2)3y x π=+在[0,4]π上步长为0.2的图像.sin(2)sin()[0,4]322x y x y πππ=+=- >> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=cos3x 与y x =.>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数234,,y x y x y x ===这三条曲线的图标,并要求用两种方法加各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线2sinx ty tz t⎧=⎪=⎨⎪=⎩的3维图像>> syms x y t z>> t=0:1/50:2*pi; >> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面(1cos)cos(1cos)sinsinx u vy u vz u=+⎧⎪=+⎨⎪=⎩在(0,2)(0,2)ππ⨯上的3维图像>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u); >> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y>> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right')ans =216 求极限1201lim ()3x x +→ >> syms y x>> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right')ans =17求极限lim x>> syms x y>> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf)ans =18 求极限21lim ()1x x x x →+∞+- >> syms x y>> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf)ans =exp(4)19 求极限01cos 2lim sin x x x x→->> syms x y>> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0)ans =220 求极限 0x → >> syms x y>> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0)ans =121 求极限2221lim 2x x x x x →+∞++-+ >> syms x y>> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf)ans =122 求函数y=5(21)arctan x x -+的导数>> syms x y>> y=(2*x-1)^5+atan(x);>> diff(y)ans =10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=2tan 1x x y x=+的导数 >> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数3tan x y e x -=的导数>> syms y x>> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x)y =exp(-3*x)*tan(x)>> diff(y)ans =exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=22ln sin 2xx π+在x=1的导数>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2)ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3>> syms x y>> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y)dxdy =2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi =226 求函数y=01cos 2limsin x x x x →-11x x-+的二阶导数 >> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2)ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数; >> syms x y>> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y)ans =(((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x -1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间(,-∞+∞)内求函数43()341f x x x =-+的最值.>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaNy =NaN>> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x =NaNy =NaN29在区间(-1,5)内求函数发()(f x x =-的最值.>> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y =-0.3470>>>> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =4.9999y =-10.505930 求不定积分(ln32sin )x x dx -⎰(ln32sin )x x dx -⎰ >> syms x y>> y=log(3*x)-2*sin(x);>> int(y)ans =2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分>> syms x y>> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found.ans =int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰ >> syms x y>> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found.ans =int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)x e x dx -+⎰>> syms x y>> y=exp(-x)*(3*x+2);>> int(y,0,1)ans =5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0lim x x→120(1)cos x arc xdx +⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y>> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found.ans =int(log(x + 1)*cos(x), x == 0..1)37计算广义积分2122x x dx +∞++-∞⎰;>> syms y x>> y=(1/(x^2+2*x+2));>> int(y,-inf,inf)ans =pi38.计算广义积分20x dx x e +∞-⎰; >> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题2作业讲评1. 继续考虑2.2节的“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议?(“两秒准则”,即后车司机从前车经过某一标志开始,默数2秒之后到达同一标志,而不管车速如何. 刹车距离与车速的经验公式20.750.082678d v v =+,速度单位为m/s ,距离单位为m )解答(1)“两秒准则”表明前后车距与车速成正比例关系. 引入以下符号:D ~ 前后车距(m );v ~ 车速(m/s );于是“两秒准则”的数学模型为22D K v v ==. 与“一车长度准则”相比是否一样,依赖于一车长度的选取.比较20.750.082678d v v =+与2D v =,得:()0.082678 1.25d D v v -=-所以当15.12 m/s v <(约合54.43 km/h )时,有d<D ,即前后车距大于刹车距离的理论值,可认为足够安全;当15.12 m/s v >时,有d>D ,即前后车距小于刹车距离的理论值,不够安全. 也就是说,“两秒准则”适用于车速不算很快的情况.另外,还可以通过绘图直观的解释“两秒准则”够不够安全. 用以下MATLAB 程序把刹车距离实测数据和“两秒准则”都画在同一幅图中(图1).v=(20:5:80).*0.44704;d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,41820,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2;k1=0.75; k2=0.082678; K2=2; d1=[v;v;v].*k1; d=d1+d2;plot([0,40],[0,K2*40],'k') hold on510152025303540车速v (m/s )距离(m )图1(2)用最大刹车距离除以车速,得到最大刹车距离所需要的尾随时间(表1),并以尾随时间为依据,提出更安全的“t秒准则”(表2)——后车司机根据车速快慢的范围,从前车经过某一标志开始,默数t秒钟之后到达同一标志.d2=0.3048.*d2;k1=0.75; k2=0.082678;d=d2+[v;v;v].*k1;vi=0:40;plot([0,10*0.44704],[0,10*0.44704],'k',...vi,k1.*vi+k2.*vi.*vi,'k:',...[v;v;v],d,'ok','MarkerSize',2)legend('t 秒准则','刹车距离理论值',...'刹车距离的最小值、平均值和最大值',2)hold onplot([10,35]*0.44704,2*[10,35]*0.44704,'k',... [35,60]*0.44704,3*[35,60]*0.44704,'k',... [60,75]*0.44704,4*[60,75]*0.44704,'k') title('t 秒准则,刹车距离的模型和数据') xlabel('车速v (m/s )') ylabel('距离(m )') hold off距离(m )t 秒准则,刹车距离的模型和数据4. 继续考虑2.3节“生猪出售时机”案例,假设在第t 天的生猪出售的市场价格(元/公斤)为2()(0)p t p gt ht =-+ (1)其中h 为价格的平稳率,取h =0.0002. 其它模型假设和参数取值保持不变.(1) 试比较(1)式与(2.3.1)式,解释新的假设和原来的假设的区别与联系;(2)在新的假设下求解最佳出售时机和多赚的纯利润; (3)作灵敏度分析,分别考虑h 对最佳出售时机和多赚的纯利润的影响;(4)讨论模型关于价格假设的强健性. 解答一(用MATLAB 数值计算)(1)比较(1)式与(2.3.1)式,(1)式表明价格先降后升,(2.3.1)式假设价格匀速下降,(1)式更接近实际(图3). 两个假设都满足(0)p g '=-,在最佳出售时机附近误差微小(图4). 绘图的程序p=@(t)12-0.08*t+0.0002*t.^2; figure(1) n=400;plot([0,n],[12,12-0.08*n],'k:',... 0:.1:n,p(0:.1:n),'k') axis([0,400,0,20])title('模型假设(1)式与(2.3.1)式的比较')legend('p(0) - g t (1)式',... 'p(0) - g t + h t^2 (2.3.1)式') xlabel('t (天)')ylabel('p (元/公斤) ') figure(2) n=20;plot([0,n],[12,12-0.08*n],'k:',... 0:.1:n,p(0:.1:n),'k')title('模型假设(1)式与(2.3.1)式的比较')legend('p(0) - g t (1)式',... 'p(0) - g t + h t^2 (2.3.1)式') xlabel('t (天)'), ylabel('p (元/公斤) ')模型假设(1)式与(2.3.1)式的比较2468101214161820t (天)p (元/公斤)图4(2)在(1)式和(2.3.1)式组成的假设下,多赚的纯利润为()()23()(0)(0)(0)Q t rp gw c t hw gr t hrt =--+-+保留h ,代入其他具体数值,得()32()900.08 1.6Q t ht h t t =+-+令2代入为帮助理解,可用以下脚本绘制图5: figure(2) tp=0:250;plot(tp,Q(tp,0.0002),'k') title('纯利润Q') xlabel('t (天)') ylabel('Q (元) ')纯利润QQ (元)和(,S Q Qh=@(t)-Q(t,0.0002*1.05); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.05 (-Qn-Q1)/Q1/0.05Qh=@(t)-Q(t,0.0002*1.1); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.1 (-Qn-Q1)/Q1/0.1表3 数值计算最佳出售时机t 对h 的灵敏度答可以由(2.3.1)式导致的解答加上灵敏度分析所代替. 所以采用更为简单的(2.3.1)式作为假设更好.具体分析如下:由12()(,)g g t p t h -+∆=,得12(,)1g p t h g gt∆-=-, 代入h =0.0002,t =13.82852279,g =0.08,得0.034571gg∆=-. 由于(,)t g S t g t g∆∆≈,根据课本2.3节,代入(,) 5.5S t g =-,t =10,算得11.901t t +∆=,与t =13.829只相差两天.用于以上分析计算的MATLAB 脚本: dg_g=(12-p(ts,0.0002))/ts/0.08-1 10+dg_g*10*(-5.5)解答二(用MATLAB 的Symbolic Math Toolbox 的MuPAD 软件符号计算)(1)运行以下MuPAD 语句,绘得图6和图7:plot(plot::Function2d(12-0.08*t+0.0002*t^2,t=0..400), plot::Function2d(12-0.08*t,t=0..150, LineStyle=Dashed));plot(plot::Function2d(12-0.08*t+0.0002*t^2,t=0..20), plot::Function2d(12-0.08*t,t=0..20, LineStyle=Dashed),#O);(1)式表明价格先降后升,在实际当中有一定道理. 而 (2.3.1)式假设价格匀速下降. 两个假设都满足(0)p g '=-,在最佳出售时机附近误差微小.图6 假设(2.3.1)式与(1)式的比较图7 假设(2.3.1)式与(1)式的比较(2) 在(1)式和(2.3.1)式组成的假设下,保留h,代入其他具体数值,计算多赚的纯利润. 运行以下MuPAD语句:C:=t->32/10*t:w:=t->90+t:p:=(t,h)->12-8/100*t+h*t^2:Q:=(t,h)-->expand(w(t)*p(t,h)-C(t)-90*12); plot(plot::Function2d(Q(t,0.0002), t=0..290));算得223(2)825,905ht h h t Q t t t =+-+,绘得图8.图8 (,0.0002)Q t 的图像运行以下MuPAD 语句:S:=solve(diff(Q(t,h),t),t) assuming h>0; t1:=S[1];subs(t1,h=0.0002); t2:=S[2];ts:=subs(t2,h=0.0002); Q2:=Q(t2,h);Qs:=subs(Q2,h=0.0002);由方程0Qt∂=∂,解得两根:12t t ==代入h =0.0002,得12192.8381439, 13.82852279t t ==(天). 2t 符润为 d (,)0.367739025d Q hS Q h h Q=⋅=. 结论:h 的微小变化对t 2和Q 2的影响都很小. (4)同解答一5. 继续考虑第2.3节“生猪出售时机”案例,假设在第t 天的生猪体重(公斤)为()000()mt m w w w t w w w e α-=+- (2)其中0(0)90w w ==(公斤),270m w =(公斤),其它模型假设和参数取值保持不变.保持.. 当m w 重的线性递减函数,于是体重增加的速率先快后慢,时间充分长后,体重趋于m w . 而(2.3.2)式0()w t w rt =+只假设体重匀速增加. 长时间来看,新假设比原假设更符合实际(图9). 两个假设都满足(0)w r '=,在最佳出售时机附近误差微小(图10).价格 p (元/公斤)模型假设(2.3.2)式与(2)式的比较2468101214161820t (天)价格 p (元/公斤)图10(2) 在(2.3.1)式和(2)式组成的假设下,用MATLAB 函数fminbnd 计算,可以求得生猪出售时机为t =14.434天,多赚的纯利润为Q =12.151元.(3) 编程计算(,)m m mt t S t w w w ∆=∆和(,)m m m Q QS Q w w w ∆=∆,将结论:m w 的微小变化对t 和Q 的影响都较小.(4)模型假设(2)式导致的模型解答可以由(2.3.2)式导致的解答加上灵敏度分析所代替,所以实践中采用更为简单的(2.3.2)式作为假设即可. 具体分析过程见解答二之(4).MATLAB 脚本:%% (1) 绘图的程序w=@(t)90*270./(90+180*exp(-t/60));figure(1)n=400;plot([0,n],[90,90+n],'k:',...0:.1:n,w(0:.1:n),'k')axis([0,400,0,300])legend('p(0) - g t (2.3.2)式',... 'p(0) - g t + h^2 (2)式',4) title('模型假设(2.3.2)式与(2)式的比较') xlabel('t(天)')ylabel('价格 p(元/公斤) ')figure(2)n=20;plot([0,n],[90,90+n],'k:',...0:.1:n,w(0:.1:n),'k')legend('p(0) - g t (2.3.2)式',... 'p(0) - g t + h^2 (2)式',2) xlabel('t(天)')ylabel('价格 p(元/公斤) ')%% (2) 最佳出售时机和多赚的纯利润C=@(t)3.2*t;w=@(t,m)90*m./(90+(m-90)*exp(-t/60)); p=@(t)12-0.08*t;Q=@(t,m)p(t).*w(t,m)-C(t)-90*12;Qh=@(t)-Q(t,270);ts=fminbnd(Qh,0,30)Qs=Q(ts,270)%% (3) 灵敏度分析Qh=@(t)-Q(t,270*1.01);[tn,Qn]=fminbnd(Qh,0,30);(tn-ts)/ts/0.01(-Qn-Qs)/Qs/0.01Qh=@(t)-Q(t,270*1.05);[tn,Qn]=fminbnd(Qh,0,30);(tn-ts)/ts/0.05(-Qn-Qs)/Qs/0.05Qh=@(t)-Q(t,270*1.1);[tn,Qn]=fminbnd(Qh,0,30);(tn-ts)/ts/0.1(-Qn-Qs)/Qs/0.1%% (4) 强健性分析dr_r=(w(ts,270)-90)/ts-110+dr_r*10*6.5解答二(用MATLAB 的Symbolic Math Toolbox 的MuPAD 软件符号计算)(1)运行以下MuPAD 语句,算得160α=:solve(subs(diff(90*270/(90+(270-90)*E^(-a*t)),t),重的增长率是体重的线性递减函数. 于是,体重w 是时间t 的增函数,体重增加的速率先快后慢,时间充分长后,体重趋于m w . 而(2.3.2)式0()w t w rt =+只假设体重匀速增加. 长时间来看,新假设比原假设更符合实际. 两假设都满足(0)w r '=,在最佳出售时机附近误差微小.图11 假设(2.3.2)式与(2)式的比较图12 假设(2.3.2)式与(2)式的比较w,代入其(2)在由(2)式和(2.3.1)式组成的假设下,保留m他具体数值,计算多赚的纯利润. 运行以下MuPAD语句:C:=t->3.2*t:w:=(t,wm)->90*wm/(90+(wm-90)*E^(-t/60)): p:=t->12-0.08*t:Q:=(t,wm)-->w(t,wm)*p(t)-C(t)-90*12;plot(plot::Function2d(Q(t,270),t=0..30));算得()()60(,) 3.210809090emm tmQ t w tw-=--+-,绘得图13.图13 (,270)Q t的图像运行以下MuPAD语句:T:=solve(diff(Q(t,270),t),t);ts:=T[1];Qs:=Q(ts,270);可解出Q的驻点的数值解14.43357158st=(天),根据函数图像和问题的实际意义,可知这是所求的最佳出售时机,对应的多赚的纯利润为12.15129217s Q =元.(3)接着上一小题,运行以下MuPAD 语句,但是求不出当(,)m Q t w 达到最大值时t 关于m w 的函数解析式:solve(diff(Q(t,wm),t),t);运行以下MuPAD 语句:m 的g2:=collect(g2,wm); //合并wm 的同类项,t 当作参数2606060306060801440016200e 270327038700e e e 648000e 64800012960000e e t m m t t t t t t t w t w ⎛⎫⎛⎫--++-- ⎪ ⎪⎝⎭⎝⎭+--=运行以下MuPAD 语句,由图像(图14)可知在实际问题关心的0<t <30范围内,二次项系数608027030et t -->: plot(plot::Function2d((270-80/E^(t/60)-3*t),t=0..100));图4 二次项系数的符号于是,运行以下MuPAD 语句,解方程:S:=solve(g2,wm);MuPAD 给出解的四种情况,其中第一种是二次项系数非零,正是本问题所要求的解. 但是二次方程有两个根,要检验哪一个根才是当(,)m Q t w 达到最大值时m w 关于t 的反函数解析式.float(subs(S[1][1],t=ts));算得当s t t =时,有0.8519704108m w =-,这是增根,舍去; float(subs(S[1][2],t=ts));算得当s t t =时,有270m w =,这是要找的根;wms:=S[1][2]; //当Q 达到最大值时wm 关于t 的反函数解析式float(subs(1/(diff(wms,t))*wm/t,t=ts,wm=270));//t 对wm 的灵敏度,利用反函数求导数利用反函数求导数算得t 对m w 的灵敏度:d 1(,) 3.80183985d d d m m m m m w w t S t w w w tt t=⋅=⋅=.式的(2.3.2)式作为假设更好. 具体分析如下:由()90(,)m r r t w t w ++∆=,得(,)90m w t w r r t-∆=-, 代入270m w =,14.43357158s t t ==,r =1,得0.036565352791r r r ∆∆==. 由于(,)t r S t r t r∆∆≈,根据2.3节,代入(,) 6.5S t r =,t =10,r =1,算得12.37674793t t +∆=,与14.43357158s t =只相差两天.以上计算可以用以下MuPAD 语句实现:dr:=float((w(ts,270)-90)/ts-1);10+dr*10*6.5;。

相关文档
最新文档