种群竞争模型研究
实例 动物种群的相互竞争与相互依存的模型
实例2动物种群的相互竞争与相互依存的模型在生物的种群关系中,一种生物以另一种生物为食的现象,称为捕食.一般说来,由于捕食关系,当捕食动物数量增长时,被捕食动物数量就逐渐下降,捕食动物由于食物来源短缺,数量也随之下降,而被捕食动物数量却随之上升.这样周而复始,捕食动物与被捕食动物的数量随时间变化形成周期性的震荡.田鼠及其天敌的田间种群消长动态规律也是如此.实验调查数据表明:无论是田鼠还是其天敌的数量都呈周期性的变化,天鼠与天敌的作用系统随时间序列推移,田鼠密度逐渐增加,其天敌随之增加,但时间上落后一步.由于天敌密度增加,则田鼠密度降低,而田鼠密度的降低,则其天敌密度亦减少,如此往复循环,从而形成一定的周期.试用数学模型来概括这一现象,并总结出其数量变化的近似公式.一问题分析及模型的建立设)(t x 和)(t y 分别表示t 时刻田鼠与其天敌的数量,如果单独生活,田鼠的增长速度正比于当时的数量,即x dtdx λ=而田鼠的天敌由于没有被捕食对象,其数量减少的速率正比于当时的数量,即y dtdy μ-=现在田鼠与其天敌生活一起,田鼠一部分遭到其天敌的消灭,于是以一定的速率α减少,减少的数量正比于天敌的数量,因此有x y dtdx )(αλ-=类似地,田鼠的天敌有了食物,数量减少的速率μ减少β,减少的量正比于田鼠的数量,因此有y x dtdy )(βμ--=上述公式,最后两个方程联合起来称为Volterra-Lot 方程,这里μλβα,,,均为正数,初始条件为0)0(,)0(y y x x ==现在通过实验调查所得到的数据如表,此数据为每隔两个月田间调查一次,得到的田鼠及其天敌种群数量的记录,数量的单位经过处理.试建立合理的数学模型.表田鼠种群数量记录29.733.132.569.1134.2236.0269.6162.269.639.834.020.722.037.657.6124.6225.0272.7195.794.541.925.710.922.533.548.292.5183.3268.5230.6115.5表田鼠天敌种群数量记录1.6 1.3 1.1 1.2 1.1 1.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.20.91.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.00.9 1.1 1.3 1.9 2.3二模型的求解Volterra-Lotok 方程的解析解即y x ,的显示解难求出,因此公式的参数方程不宜直接用Matlab 函数来拟合解,可用如下的方法来求其近似解.Volterra-Lotok 可转化为⎩⎨⎧+-=-=dtx y d dt y x d )(ln )(ln βμαλ在区间],[1i i t t -上积分,得ii i i i S t t x x 111)(ln ln αλ--=---ii i i i S t t y y 211)(ln ln βμ+--=---这里,⎰-=ii t t i ydt S 11,⎰-=ii t t i xdt S 22,m i ,,1 =于是得到方程组⎩⎨⎧==222111B P A B P A 这里⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-im m m S t t S t t S t t A 1121211011 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-m m mS t t S t t S t t A 212212012 ⎪⎪⎭⎫ ⎝⎛=αλ1P ⎪⎪⎭⎫ ⎝⎛-=βμ2P Tm m x x x x B ln ,,(ln 1011-= T m m y y y y B )ln ,,(ln 101-= 因此方程组参数的最小二乘解为111111)(B A A A P T T -=22122)(B A A A P T T -=由于)(t x 和)(t y 均为未知,因此21,S S i 用数值积分方法的梯形公式解)(21111--+-≈=⎰-i i i i t t i y y t t ydt S i i )(1121--+-==⎰-i i i i t t x x t t xdt S i i这样就可求得参数的近似值.模型参数求解的程序为clear all,clcX=[29.733.132.569.1134.2236.0269.6162.269.639.8...34.020.722.037.657.6124.6225.0272.7195.794.541.925.7...10.922.533.548.292.5183.3268.5230.6115.5];Y=[1.6 1.3 1.1 1.2 1.11.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.20.9...1.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.00.9 1.1 1.3 1.9 2.3];N=[X;Y];T=[0:2:60];for i=1:30A(i,1)=T(i+1)-T(i);A(i,[23])=((T(i+1)-T(i))/2)*[-(N(1,i+1)+N(1,i)),-(N(2,i+1)+N(2,i))];B(i,[12])=[log(N(1,i+1)/N(1,i)),log(N(2,i+1)/N(2,i))];end;A1=A(:,[13]);P1=inv((A1'*A1))*A1'*B(:,1)A2=A(:,[12]);P2=inv((A2'*A2))*A2'*B(:,2)上述结果代入Volterra-Lotok方程,用MATLAB函数ode45求方程在时间[0,60]的数值解.作图可看到田鼠及其天敌数量的周期震荡.求方程Volterra-Lotok的数值解的程序为定义函数vlok为[vlok.m]function dydt=vlok(T,Y)dydt=[(0.8765-0.5468*Y(2))*Y(1);(-0.1037+0.0010*Y(1))*Y(2)];clear all,clcX=[29.733.132.569.1134.2236.0269.6162.269.639.8...34.020.722.037.657.6124.6225.0272.7195.794.541.925.7...10.922.533.548.292.5183.3268.5230.6115.5];Y=[1.6 1.3 1.1 1.2 1.11.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.20.9...1.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.00.9 1.1 1.3 1.9 2.3];N=[X,Y];T=[0:2:60];[t,Y]=ode45(@vlok,[0:0.5:60],[29.71.6]);plot(t,Y(:,1)/100,'k');hold on;plot(t,Y(:,2),'-.k');title('田鼠及其天敌的Volterra-Lotok模型拟合曲线');xlabel('时间');ylabel('数量(只/每百)');gtext('田鼠');gtext('天敌');legend('田鼠','天敌');legend('田鼠','天敌');图田鼠及其天敌的模拟曲线实线和虚线分别为田鼠和天敌的实际值,田鼠的数量为y坐标乘以100.。
两种群竞争模型的定性分析
() 4
£ 一 dY ( 一r;£一b 2£ 2f+kc l£. ) 2l£ y ( ) ) z ( ( ) ) 2Y( )
维普资讯
12 0
高 等数 学 研 究
S TUDI N ES I C0LL EGE ATHEM ATI M CS
Vo . 1 NO 1 11 . .
J .0 8 a 2 0
两种 群 竞争 模 型 的定 性分 析 ‘
胡 广 平 ( 河西学院数学系 甘肃张掖 740) 300
●
£ )一
2£ ( )一 l ( )一 a ( )一 CX1 £ , l £ X1 £ x ()
) ll ) = ( 一凹; ) l2 2 ) l l ) ( 一6 ( ( +忌 ) (,
£ )= y ( ) d y ( )一 r ( )一 6 y, £ , 2£ 一 2 l £ yl £ s ( )
摘 要 讨 论 两 种 群 竞 争 系 统解 的渐 进 性 态 , 中两 种 群各 自具 有 阶段 结 构 和种 内 自食 .在 没 有 自食 现 象 发 其 生 的 条 件下 . 析 了 阶段 结 构 的 竞 争 系统 的种 群 共 存 和灭 绝.最后 考 虑 自食 的 作 用 . 到 了种 内 自食 既可 以维 持种 分 得 群 共存 . 可 以挽 救 种 群 灭 绝 . 也
种群实验
实验四 种间竞争
三、实验准备 2.将土壤和腐熟厩肥充分拌匀,取等量分装在
花盆里,使土面稍低于盆口(2cm); 3.按上述比例,每盆均匀播种100粒种子,并将
每个花盆贴上标签,注明处理、重复编号和播种日 期;把花盆放在温室内(冬季);
4.种子萌发后,统计其发芽率、幼苗成活情况 等;
5.在植物生长季节内,定期浇水,以利生长。
实验三 种内竞争
五、实验步骤 5.根据花盆的口径和花盆中油菜的株数计算植
株密度; 6.以单株平均干重的对数值对植株密度的对数
值作图; 7.计算平均干重对数值对密度对数值的回归系
数。在5%的置信度内,-1.5斜率的5%边线值是-1.25 和-1.83,若斜率在这一限度之内,则在5%水平,与 指数法则显著吻合。
种群数量 (P) 最初标记数 (a)
取样样本数 (n) 样本中标记个体数
(r)
实验二 标记重捕法估计动物种群密度
在Lincoln法中重捕取样的停止点很重要,不同 的取样方法进行估计的方法不同。
实验二 标记重捕法估计动物种群密度
二、目的要求 1.掌握标记重捕法的原理; 2.学会标记重捕技术; 3.掌握单次、多次重捕法估计动物种群大
实验四 种间竞争
四、实验步骤 1.植物成熟后,分盆分种收获、脱粒,记录种
子数目,将种子放入纸袋内。计算种子输出比率; 2.把每次重复的实验处理及结果分别登记在不
同的表格内; 3.用大麦与燕麦种子的输出比率(三次重复的
平均值)对输入比率作图,利用图解法进行分析。 不管大麦对燕麦的种子输入比率如何,如果
实验三 种内竞争
实验四 种间竞争
一、实验原理 种间竞争是种间关系研究的一个重要方面,
几类生物竞争模型的解
几类生物竞争模型的解全文共四篇示例,供读者参考第一篇示例:生物竞争是生态系统中普遍存在的现象,不同生物种群之间为了获取有限的资源或生存空间而展开斗争的过程。
生物竞争模型是对这种竞争过程进行数学建模和研究的方法,通过模型可以更好地理解和预测种群之间的相互作用及演化规律。
在生物学研究中,主要有几类生物竞争模型,包括物种竞争模型、资源竞争模型、捕食者-猎物模型等。
一、物种竞争模型:物种竞争模型用于描述不同种群之间的竞争关系,其中最著名的模型之一是Lotka-Volterra竞争模型。
该模型是由意大利数学家阿尔弗雷多·洛特卡和美国生物学家维托尔·沃尔泰拉于20世纪初提出的,它基于如下假设:1)只有两个物种竞争;2)竞争对个体出生和死亡的速率有影响。
Lotka-Volterra竞争模型可以用以下微分方程表示:\begin{cases}\frac{dx}{dt} = ax - bx^2 - cxy \\\frac{dy}{dt} = -fy + exy\end{cases}x和y分别表示两个竞争物种的种群数量,a、b、c、d为相关参数。
该模型可以描述两个种群在共享资源时的竞争关系,通过数值计算可以得到不同种群数量随时间的演化规律。
资源竞争模型用于研究不同种群对有限资源的竞争过程,其中最典型的模型是Rosenzweig-MacArthur资源竞争模型。
该模型基于几个基本假设:1)资源是有限的;2)种群的增长受到资源的限制;3)不同种群对资源的利用有差异。
Rosenzweig-MacArthur资源竞争模型可以用以下微分方程表示:三、捕食者-猎物模型:捕食者-猎物模型用于描述捕食者和猎物之间的相互作用,其中最著名的模型是Lotka-Volterra捕食者-猎物模型。
该模型基于捕食者和猎物种群数量之间的相互依赖关系,可以用以下微分方程表示:x表示猎物种群数量,y表示捕食者种群数量,a、b、c、d为相关参数。
两种群间的相互竞争
两种群间的相互竞争摘要本文针对两种群间的竞争问题作了详细的论述,主体分为两部分,第一部分主要通过理论分析的方法来阐述模型,第二部分主要利用MATLAB通过数值分析的方法从另一个角度来阐述模型,两个部分相辅相成,从不同的角度对同一个模型进行分析,并在最后得到一致的结果。
另外本文在第一部分主要以理论的方式对模型进行数学上的描述,在第二部分主要以生物间的角度对模型进行描述,与此同时对第一部分作一个总结。
关键词:稳定性平面动力系统增广相空间轨线一、问题提出两种群竞争模型很好的描述了种群间的各种关系,而如果从发展的眼光来看待问题,我们不禁对两种群在未来很长一段时间内的状态产生兴趣,换句话说,我们要研究的是在无穷远的将来,两个种群的数量变化关系,这对我们进一步研究生物学的各种问题是有意义的。
二、基本假设假设1: 有甲乙两个种群,它们独自生存时的数量变化服从Logistic 规律。
假设2: 两种群一起生存时,乙种群对甲种群增长的阻滞作用与乙种群的数量成正比,甲种群对乙种群增长的阻滞作用与甲种群的数量也成正比。
三、问题分析根据“假设1”,我们容易得到方程组如下1122()(1)()(1)dx t x r x dt n dy t y r y dtn ⎧=-⎪⎪⎨⎪=-⎪⎩ (1) 其中()x t ,()y t 分别为甲乙两种群随时间变化的数量;1r ,2r 为它们的固有增长率;1n 和2n 为环境允许条件下,甲乙两种群的最大数量。
再由“假设2”,对方程组(1)变形,我们得到方程组如下11122212()(1)()(1)dx t x y r x s dt n n dy t x y r y s dt n n ⎧=--⎪⎪⎨⎪=--⎪⎩(2) 其中1s 的含义是,对于供养甲种群的资源而言,单位数量乙(相对于2n )的消耗为单位数量甲(相对于1n )消耗的1s 倍;2s 的含义是,对于供养乙种群的资源而言,单位数量甲(相对于1n )的消耗为单位数量乙(相对于2n )消耗的2s 倍。
种群增长和竞争的数学模型
种群增长和竞争的数学模型摘 要:本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的Volterra 模型,最后介绍了多种群的Gause-Lotka-Volterra 和三种群的RPS 博弈模型,对其做了比较和分析,得出了一些有益的启示。
为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。
本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的V olterra 模型,最后介绍了三种群的Gause-Lotka-V olterra 和RPS 博弈模型。
一般生态系统的分析可以通过一些简单模型的复合来研究,根据生态系统的特征建立相应的模型。
种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的误差将是十分微小的。
1.1 马尔萨斯(Malthus )模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r 基本上是一常数,(r =b -d , b 为出生率,d 为死亡率),既: 1dN r N dt = 或 dNrN dt= (1)其解为0()0()r t t N t N e -=(2)其中N 0=N (t 0)为初始时刻t 0时的种群数。
马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。
令种群数量翻一番所需的时间为T ,则有: 002rT N N e =(3)ln 2T r=(4)人口统计数据与Malthus 模型计算数据对比:表1 世界人口数量统计数据表2 中国人口数量统计数据比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6亿(即3.06×1010),人口增长率约为2%,人口数大约每35年增加一倍。
查1700年至1961年共260年的人口实际数量,发现两者几乎完全一致,且按马氏模型计算,人口数量每34.6年增加一倍,两者也几乎相同。
种群增长和竞争的数学模型
2013年06月05日 15:31:35在地中海中每平方米就有30至40只水母,种群增长和竞争的数学模型摘 要:本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的Volterra 模型,最后介绍了多种群的Gause-Lotka-Volterra 和三种群的RPS 博弈模型,对其做了比较和分析,得出了一些有益的启示。
为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。
本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的V olterra 模型,最后介绍了三种群的Gause-Lotka-V olterra 和RPS 博弈模型。
一般生态系统的分析可以通过一些简单模型的复合来研究,根据生态系统的特征建立相应的模型。
种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的误差将是十分微小的。
1.1 马尔萨斯(Malthus )模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r 基本上是一常数,(r =b -d , b 为出生率,d 为死亡率),既: 1dN r N dt = 或 dNrN dt= (1)其解为0()0()r t t N t N e -=(2)其中N 0=N (t 0)为初始时刻t 0时的种群数。
马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。
令种群数量翻一番所需的时间为T ,则有: 002rT N N e =(3)ln 2T r=(4)人口统计数据与Malthus 模型计算数据对比:表1 世界人口数量统计数据表2 中国人口数量统计数据比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6亿(即3.06×1010),人口增长率约为2%,人口数大约每35年增加一倍。
种群竞争模型
泰山教育版权所有 淘宝ID:liuxingma123
结果分析
最后数值稳定在x=100,y=0上,即物种甲达 到最大值,物种乙灭绝。
泰山教育版权所有 淘宝ID:liuxingma123
结果分析
改变r1,r2: r1=r2=0.3
我们可以看到甲乙两物种最终结果仍然是甲达到数量 极限而乙灭绝,但与原先不同的是变化速度减缓了,这 是由于自然增长率r1,r2变小的缘故(相当于变化率减 小)。
泰山教育版权所有 淘宝ID:liuxingma123
结果分析
改变n1,n2: n1=10000, n2=100
由于一开始甲物种的数量相对较少,所以乙物种 得以快速增长,数量一度达到90以上,但最终 仍然灭绝。物种容量的改变并不能影响最终谁会 灭绝。
泰山教育版权所有 淘宝ID:liuxingma123
s1>1,s2<1 s1=1.5,s2=0.7
最后甲物种灭绝,乙物种存活并达到数量极 限。
泰山教育版权所有 淘宝ID:liuxingma123
结果分析
s1<1,s2<1 s1=0.8,s2=0.7
最后稳定在x= 45.4546 y=68.1818上。两物种共存。
泰山教育版权所有 淘宝ID:liuxingma123
结果分析
改变x10,x20: x10=10,x20=100:
乙物种的初始数量大使其灭绝时间稍稍延后,但它灭绝的 趋势不变。综上,无论怎样改变r1,r2,n1,n2,x0,y0,都改变 不了最后甲物种存活并达到数量最大且乙物种灭绝的结果。
泰山教育版权所有 淘宝ID:liuxingma123
结果分析
其中x(t),y(t)分别为甲乙两种群的数量,r1 r2为它们的固有增长率, n1 n2为它们的最 大容量。s1的含义是对于供养甲的资源来说, 单位数量的乙(相对n2)的消耗为单位数量甲 (相对n1)消耗的s1倍,s2同理。
几类生物种群模型的定性研究
几类生物种群模型的定性研究
生物种群模型是研究生物种群数量动态变化的数学模型。
根据物种的
特点和研究的重点不同,生物种群模型可以分为多类。
1.多样性维持模型:
多样性维持模型关注的是物种之间的相互作用对物种多样性的影响。
其中,竞争-排除模型认为物种之间存在强烈的竞争关系,导致了物种数
量的稳定状态;互补-促进模型则认为物种之间存在互补关系,相互促进
物种的数量增加。
2.捕食者-猎物模型:
捕食者-猎物模型研究的是捕食者与猎物之间的相互作用对种群数量
的影响。
最经典的模型是Lotka-Volterra模型,它描述了捕食者和猎物
之间的动态关系,可以观察到周期性的数量变动。
3.分散子模型:
分散子模型主要研究的是物种的生殖与迁移对种群数量的影响。
例如,在孤立岛上的物种会受限于资源的有限性以及个体迁移的难度,因此种群
数量可能会下降。
4.生态位模型:
生态位模型主要研究的是一个物种在特定环境中的占据与竞争策略对
物种数量的影响。
生态位模型可以通过计算物种的竞争优势指数来推断物
种数量的变化。
总的来说,生物种群模型是研究生物种群数量动态变化的重要工具。
不同类型的模型从不同角度切入,揭示了生物种群数量变化的机制和规律,对于理解和保护生物多样性具有重要意义。
种内竞争与种间竞争数学模型实例分析
种内竞争与种间竞争数学模型实例分析1.1问题提出问题一:甲和乙两类群均能独立生存,比方将鲤鱼群放生,其在水中和卿鱼间的相互作用。
问题二:甲可以独自存活,但乙却只能依存甲而生活,这两者在一起能相互促进,令甲乙都得到存活,比方,植物能独自存活,但以花粉为食的昆虫却放须依靠其生存,而昆虫同时会帮助植物授粉推动其繁殖。
问题三:甲乙双方都无法独立生存,只能依靠彼此获得共生。
1.2问题分析(1)在某自然环境下只存在单类生物群体(即生态学中的种群)生存的情况下,人们往往通过Logistic 模型描述该种群数量产生的演变,公式为:)1()(N x rx t x -=')(t x 为种群为时刻t 的数量,r 代表固有增长率,N 代表环境资源下所能接受的最大种群量。
其中)1(N x -反应了一些种群对有限资源的消耗造成的影响其自身增长的作用,N x 代表着相对于N 来讲,单位数量中某个种群所消耗的食量(假设总量=1)(2)若同一自然环境内存在2个或多个种群,即其会产生竞争或依存关系,又或是供应链的关系,以下我们会由稳定转态角度展开对其依存关系的探讨。
1.3模型假设甲乙两种群各种独立于某个环境生存时,其数量产生的演变将遵守Logisti 规律。
设)(),(21t x t x 为两个种群数量,21,r r 为其固有增长率,21,N N 是它们的最大容量。
于是对于甲种群有:)1()(11111N x x r t x -=' 同理对于乙种群有 )1()(22221N x x r t x -=' 1.4模型建立与稳定性分析对于问题一:1、建立模型:)1()(22111111N x N x x r t x σ+-=' ④ )1()(11222222N x N x x r t x σ+-=' ⑤ 1σ的含义:单位数量乙(相对于2N )提供给甲的食量为单位数量(相对于1N )消耗食量的1σ2σ的含义:单位数量甲(相对于1N )提供给乙的食量为单位数量乙(相对于2N )消耗食量的1σ2、稳定性分析:3、数学建模过程与结果:根据数学实验以及数学建模的相关知识,利用数学软件Matlab 分别求解微分方程的图形和相轨线图形:Matlab 模型:function xdot=sheir(t ,x)n1=16;n2=1;r1=25;r2=18;q1=05;q2=16;xdot=[r1*x(1)*(1-(x(1)/n1)+q1*(x(2)/n2));r2*x(2)*(1-(x(2)/n2)+q2*(x(1)/n1))];>> ts=0:01:15;>> x0=[01,01];>> [t,x]=ode45('sheir',ts,x0);[t,x],>> plot(t,x),grid,gtext('x(t)'),gtext('y(t)'),>> plot(t,x),grid,gtext('x1(t)'),gtext('x2(t)'),>> ts=0:01:15;>> x0=[01,01];>> [t,x]=ode23('sheir',ts,x0);[t,x],>> plot(t,x),grid,gtext('x1(t)'),gtext('x2(t)'),相轨线:4、由上图可知:甲乙可以彼此立生存。
种群相互竞争模型
数学实验设计课题:两种群相互竞争模型如下:()1(11)12()2(12)12x y x t r x s n n x y y t r y s n n ⎧=--⎪⎪⎨⎪=--⎪⎩其中x (t ),y(t)分别是甲乙两种群`的数量,r1,r2为它们的固有增长率,n1,n2为它们的最大容量。
s1的含义是,对于供养甲的资源而言,单位数量乙(相对n2)的消耗量为单位数量甲(相对n1)消耗的s1倍,对于s2也可做相应的解释。
分析:这里用x (t)表示甲种群在时刻t 的数量,即一定区域内的数量。
y(t)表示乙种群在时刻t 的数量。
假设甲种群独立生活时的增长率(固有增长率)为r1,则x (t)/ x=r1,而种群乙的存在会使甲的增长率减小,且甲种群数量的增长也会抑制本身数量的增长,即存在种间竞争。
这里,我们设增长率的一部分减少量和种群乙的数量与最大容纳量的比值成正比,与s1(s1表示最大容纳量乙消耗的供养甲的资源是最大容纳量甲消耗该资源的s1倍)成正比。
另一部分的减少量和种群甲的数量与甲的最大容纳量的比值成正比。
则我们可以得到如下模型:x(t)=r1*x*(1-x/n1-s1*y/n2)同样,我们可以得到乙种群在t时刻的数量表达式:y(t)=r2*y*(1-s2*x/n1-y/n2)如果给定甲、乙种群的初始值,我们就可以知道甲、乙种群数量随时间的演变过程。
对于上述的模型,我们先设定好参数以后,就可以用所学的龙格库塔方法及MATLAB 软件求其数值解;问题一:设r1=r2=1,n1=n1=100,s1=0.5,s2=2, 初值x0=y0=10,计算x(t),y(t),画出它们的图形及相图(x,y),说明时间t充分大以后x(t),y(t)的变化趋势(人民今天看到的已经是自然界长期演变的结局)。
编写如下M文件:function xdot=jingzhong(t,x)r1=1;r2=1;n1=100;n2=100;s1=0.5;s2=2; xdot=diag([r1*(1-x(1)/n1-s1*x(2)/n2),r 2*(1-s2*x(1)/n1-x(2)/n2)])*x;然后运行以下程序:ts=0:0.1:10;x0=[10,10];[t,x]=ode45(@jingzhong,ts,x0);[t,x]plot(t,x),grid,gtext('\fontsize{12}x(t)'),gtext('\fontsize {12}y(t)'),pause,plot(x(:,1),x(:,2)),grid, xlabel('x'),ylabel('y')得到10年间甲、乙两种群数量变化的图象为:123456789100102030405060708090100x(t)y(t)相图为:1020304050607080901000510152025xy结论:当t 充分大时,x 和y 的数量悬殊变大,最终是一方灭绝,一方繁荣。
种群相互竞争模型
种群相互竞争模型种群相互竞争模型是一种描述不同物种之间相互作用的模型。
在这个模型中,物种之间存在着竞争关系,它们彼此争夺有限的资源,如食物、空间、水等。
这种竞争关系是一种自然选择,只有适应环境的物种才能生存下来。
本文将介绍种群相互竞争模型的基本概念和模型类型。
一、基本概念种群:指在一个生态系统中,属于同一物种的个体集合。
相互作用:指不同种群之间在一个生态系统中进行的各种生物和非生物之间的相互作用。
竞争:指不同物种之间为获得生存所需的资源而进行的相互斗争。
资源:指能够提供生存所需的物质和能量,如食物、水、空间等。
竞争系数:指物种之间通过竞争所占据的位置和利用资源的能力。
二、模型类型1. Lotka-Volterra 模型Lotka-Volterra 模型是经典的种群相互竞争模型,它假设两个物种之间的竞争是无限的。
该模型有两个方程,包括一个描述一种物种的增长率和一个描述两种物种之间的交互作用。
该模型的形式为:dN1/dt = r1N1 - a12N2N1dN2/dt = r2N2 - a21N1N2其中,N1 和 N2 分别是种群1和2的数量,r1和r2是它们的增长率,a12和a21 是它们之间的交互作用。
2. Gause 模型其中,Ntotal=N1+N2是两种物种的总数量,r1和r2分别是它们的增长率,K1和K2是种群1和2的最大容量。
c1和c2 是两个物种之间的竞争系数,它们表示在某个条件下,一个物种的存在要比另一个物种更具有竞争力。
3. Ricker模型Ricker模型是一种离散的种群相互竞争模型,它包含了两个方程,描述了一种物种的数量随时间变化的规律。
Ricker模型的形式为:Nt+1 = Nt*exp(r(1-Nt/K)-a*Nc)其中,Nt是种群数量,r是增长率,K是种群的最大容量,a是物种之间的竞争系数,Nc是与物种竞争的物种数。
dN/dt = rN/(1 + aN)总结:种群相互竞争模型是描述不同物种之间相互作用的模型,包括竞争、相互作用、竞争系数、资源等基本概念。
物种竞争模型-概述说明以及解释
物种竞争模型-概述说明以及解释1.引言1.1 概述在物种竞争模型研究领域,物种之间的相互作用和竞争关系一直是一个重要的研究方向。
物种竞争模型可以帮助我们理解生态系统中的物种相互作用和资源分配,并且对于预测和管理生态系统的稳定性和多样性也具有重要意义。
物种竞争是指同一生态位上的不同物种为获得有限资源而相互斗争的过程。
竞争可以是直接的,例如争夺食物和栖息地,也可以是间接的,例如通过影响环境条件或其他生物的生存和繁殖。
在一个生态系统中,物种之间的竞争关系既可以是对抗性的,也可以是互惠互利的。
物种竞争模型的研究,涉及到许多重要的概念和理论,例如生态位、资源分配、种群增长和演替等。
通过建立数学模型来描述物种竞争的过程,我们可以定量地分析不同物种之间的竞争关系,并研究这些关系对生态系统动态和稳定性的影响。
物种竞争模型在生态学、进化生物学和环境保护等领域中都有广泛的应用。
它们可以用于解释物种多样性的形成和维持机制,预测物种的分布和演变,评估物种对环境变化的响应能力,以及制定生物多样性保护和生态系统恢复的策略。
本篇文章将详细介绍物种竞争模型的基本概念和理论,并探讨物种竞争的影响因素。
同时,我们还将总结现有的竞争模型应用案例,并展望未来物种竞争模型研究的发展方向。
在接下来的章节中,我们将逐步展开讨论,希望通过本文的阐述,能够增进对物种竞争模型的理解,促进相关领域的研究和应用的发展。
1.2 文章结构:本文将按照以下结构进行叙述和讨论。
第一部分是引言,包括对物种竞争模型的概述、文章结构和目的的介绍。
通过引言,读者可以了解本文的主要内容和研究目的,为后续的正文部分做好铺垫。
第二部分是正文,主要分为两个小节。
首先,将介绍物种竞争模型的基本概念和背景知识,包括不同竞争模型的定义、应用范围和研究方法等。
在这一节中,将重点讨论各种竞争模型的特点和适用性,以及它们在实际生态系统中的应用情况。
接下来,将介绍物种竞争的影响因素。
物种之间的竞争关系受到多种因素的影响,包括资源可利用性、环境条件、种群密度和物种间的相互作用等。
两个生物种群竞争的模型分析
c2N2m c1c2
,N21m
-
c1N1m c1c2
当直线 L1 和 L2 在第一象限内相交时 , 会出现如
图 3 的情形 3 或者如图 4 的情形 4 。
图3
图4 (3) 在图 3 中 , 直线 L1 和 L2 把第一象限分成 Ⅰ、 Ⅱ、 Ⅲ、 Ⅳ共四个部分 。在各部分区域内 , dN1和dN2的符号分别为负负 、负正 、正正 、正负 。 dt dt 如果点 (N1 ,N2) 在区域 Ⅱ或 Ⅳ, 点 (N1 ,N2) 的变化 趋势会指向稳定点 (0 , N2m) 和 (N1m , 0) ; 如果 点 (N1 ,N2) 在区域 Ⅰ或 Ⅲ内 , 其变化趋势指向直线 L1 和 L2 , 最终达到稳定平衡点 (N1m , 0) 或 (0 , N2m) 。可见 , 点 (N1 ,N2) 一旦偏离了 A 点 , 将会逐 渐趋向 稳 定 平 衡 点 ( N1m , 0) 或 ( 0 , N2m) 。因 此 , 点 A 是不稳定平衡点 。 (4) 在图 4 中 , 直线 L1 和 L2 也把第一象限分 成 Ⅰ、 Ⅱ、 Ⅲ、 Ⅳ共四个部分 。在各部分区域内 , dN1和dN2的符号分别为负负 、正负 、正正 、负正 。 dt dt 如果点 (N1 ,N2) 在区域 Ⅱ或 Ⅳ, 其变化趋势指向稳 定点 A ; 如果点 (N1 ,N2) 在区域 Ⅰ或 Ⅲ内 , 其变化 趋势指向直线 L1 和 L2 , 最终仍然达到稳定点 A 。 可见 , 点 (N1 ,N2) 即便是偏离了 A 点 , 也会逐渐 趋向平衡点 A 。因此 , 点 A 是稳定平衡点 。 综合以上四种情况 , 只有情形 (4) 才会维持 两个种群的稳定并存 。其它情形一旦发生 , 就会 导致两个种群之一发生灭顶之灾 。
第 26 卷 第 6 期 2006 年 12 月
种群的相互竞争模型-精选文档
因此 ,p (fx g )|P ,q det A |P ,i 1 , 2 , 3 , 4 . x 1 2 i i
对 P ( N , 0 ), p r r ( 1 ), q r r ( 1 ) 1 1 1 2 2 1 2 2
稳定条件 2
( 1 ) r N ( 1 ) r 1 1 1 1 1 1 1 N ( 1 ) 1 2 2 1 2 对 P ,A 3 r N ( 1 ) r ( 1 ) 2 2 2 2 2 2 ( 1 ) 1 1 1 2 1 2 N
N ( 1 ) N ( 1 1 1 2 2) P ( , ), P ( 0 ,0 ). 3 4 1 1 1 2 1 2
(5)
其中的第三个平衡点是在σ1,σ2 <1或σ1,σ2 >1的情形 下才会得到.
N ( 1 ) N ( 1 ) 1 1 2 2 P ( N , 0 ), P ( 0 , N ), P ( , ), P ( 0 , 0 ). 1 1 2 2 3 4 1 1 2 1 1 2
模型假设
的对其本身增长的阻滞 作用 ,x 可理解为相 N 1/ N 1 1 而言 ,数量为 x 时供养甲的食物量 ( 设食物总量 1 ). 1
于是对种群甲我们有
x 1 1(t)r x x ( 1 ) 1 1 N 1
这里因子 1 x 反映由于甲对有限资 的消耗导 1/ N 1
的对其本身增长的阻滞 作用 ,x 可理解为相 N 1/ N 1 1
种群的相互竞争模型
1.模型建立
当某个自然的环境中只有一种生物的群体(种群)生 存时,我们常用Logistic模型来描述它的数量的演变 过程,即 x
种群竞争模型
种群竞争模型
种群竞争模型作为一种经典的认知理论,可以被用来解释许多复杂的行为现象。
它的概念可以追溯到20世纪50年代,随着社会的发展,越来越多的研究者开始对这一理论进行检验和分析。
种群竞争模型不仅可以被用来解释生物进化,而且还可以被用来解释社会进化、经济进化、文化进化等等一系列复杂的行为模式。
种群竞争模型的基本概念是,在一个种群当中,一些成员拥有更强大的竞争力,它们可以更有效地收集资源,并且可以更高效地进行繁殖,因此这些优势成员会逐渐占据更多的资源,同时会抑制其他劣势成员的成长,最终形成一个更加均衡的种群结构。
种群竞争模型在社会文化领域也有类似的应用。
在文化进化中,一个社会中有很多文化元素,它们可以分为高竞争和低竞争两类。
在这种模型中,高竞争文化元素有更强的竞争力,它们在社会中的受欢迎程度会高于低竞争文化元素,所以它们会逐渐成为社会主流,而低竞争文化元素则会受到抑制。
种群竞争模型也在经济学领域受到广泛应用。
例如,在市场竞争中,一些具有更大优势的企业会抑制其他劣势企业的竞争力,从而获得更多的市场份额,最终形成一个垄断结构,而优势企业的优势也会持续扩大。
总的来说,种群竞争模型是一种经典的认知理论,它可以被用来解释生物学、社会学、文化学以及经济学等复杂的行为模式。
这一理论在解释复杂现象时有着重要的意义,并且也为研究者提供了一个深
入理解社会系统及其行为规律的有效途径。
种群的相互竞争模型
的
对
其
本
身
增
长
的
阻
滞作 用,
x1
/
N
可
1
理 解 为 相 对 于N1
而 言, 数 量 为x1时 供 养 甲 的 食 物 量(设 食 物 总 量 为1).
于是对种群甲我们有
x1(t )
r1 x1 (1
x1 N1
)
这
里
因
子1
x1
/
N
反
1
映
由
于
甲
对
有
限
资
源的
消
耗
导
致
的
对
其
本
身
增
长
的
阻
滞作 用,
x1
/
N
可
)
,
N 2 (1 2 1 1 2
)
)
r1(1 1 ) r2 (1 2 ) 1 1 2
r1r2 (1 1 )(1 2 ) 1 1 2
P4 (0,0)
(r1 r2 )
r1r2
1 1, 2 1
不稳定
注意到平衡点的定义我们可以看出,它是一个局部的
性质.对于非线性方程(4)所描述的种群竞争,我们更
x1 N1
1
x2 N2
( x1 , x2 )
12
x1 N1
x2 N2
x2 N 2 • P2
N2 /1
(2)1 1, 2 1
P2(0, N2 )全局稳定
0
0
O
N1
N1 / 2 x1
x2
N2 /1
N2
P3
•
0
(3)1 1, 2 1
基于阻滞增长模型的三种群竞争模型
基于阻滞增长模型的三种群竞争模型引言:竞争是生物界普遍存在的一种现象,它在起到优胜劣汰的作用的同时,也推动了物种的进化和适应。
为了研究物种之间的竞争关系,生态学家们提出了各种竞争模型。
其中,基于阻滞增长模型的三种群竞争模型是一种常用的研究方法。
本文将介绍这种竞争模型的基本原理和应用。
一、基本原理基于阻滞增长模型的三种群竞争模型是一种描述多物种竞争关系的数学模型。
它基于以下几个基本假设:1. 每个物种的增长率都受到资源的限制,即资源是有限的;2. 不同物种之间存在竞争关系,它们争夺有限的资源;3. 物种的竞争能力和适应性会随着时间的推移而发生变化。
根据这些假设,该模型可以描述三种物种之间的竞争关系。
在模型中,每个物种都有自己的增长率函数,该函数受到其他两个物种的竞争压力的影响。
通过求解模型方程组,可以得到各个物种的种群数量随时间的变化趋势。
二、三种群竞争模型的应用基于阻滞增长模型的三种群竞争模型在生态学研究中得到了广泛的应用。
以下是该模型在不同领域的应用举例:1. 植物竞争研究植物之间的竞争关系对于生态系统的稳定性和物种多样性起着重要的作用。
基于阻滞增长模型的三种群竞争模型可以用于研究不同植物物种之间的竞争关系及其对生态系统的影响。
通过调整模型中的参数,可以模拟不同竞争强度下植物种群的动态变化,从而为植物保护和生态恢复提供科学依据。
2. 动物竞争研究动物之间的竞争关系在资源有限的环境中尤为显著。
基于阻滞增长模型的三种群竞争模型可以用于研究不同动物物种之间的竞争关系及其对生态系统的影响。
例如,研究狮子、斑马和牛羚之间的竞争关系可以帮助我们理解草原生态系统的稳定性和恢复能力。
通过模型模拟,可以预测不同竞争强度下各个物种的种群数量和空间分布。
3. 昆虫竞争研究昆虫是自然界中数量最多的一类生物,它们之间的竞争关系对于种群动态和生态系统的稳定性具有重要影响。
基于阻滞增长模型的三种群竞争模型可以用于研究不同昆虫物种之间的竞争关系及其对农业和生态系统的影响。
种群的相互竞争
§ 7 种 群 的 相 互 竞 争*[问题的提出] 当某个自然环境中只有一种生物的群体(生态学上称为种群)生存时,人们常用Logisdc 模型来描述这个种群数量的演变过程,即)(t x 是种群在时刻t 的数量,r 是固有增长率,N 是环境资源容许的种群最大数量,在1.5节和6.1节我们曾应用过这种模型.由方程(1)可以直接得到,0x =N 是稳定平衡点,即r ∞→时)(t x →N .从模型本身的意义看这是明显的结果.如果一个自然环境中有两个或两个以上种群生存,那么它们之间就要存在着或是相互竞争,或是相互依存,或是弱肉强食(食饵与捕食者)的关系.本节和下面两节将从稳定状态的角度分别讨论这些关系. 当两个种群为了争夺有限的同一种食物来源和生活空间而进行生存竞争时,最常见的结局是竞争力较弱的种群灭绝,竞争力较强的种群达到环境容许的最大数量.人们今天可以看到自然界长期演变成的这样的结局.例如一个小岛上虽然有四种燕子栖息,但是它们的食物来源各不相同,一种只在陆地上觅食,另两种分别在浅水的海滩上和离岸稍远的海中捕鱼,第四种则飞越宽阔的海面到远方攫取海味,每一种燕子在它各自生存环境中的竞争力明显的强于其他几种.本节要建立一个模型解释类似的现象,并分析产生这种结局的条件.[模型建立] 有甲乙两个种群,当它们独自在一个自然环境中生存时,数量的演变均遵从logistic 规律.记)(1t x ,)(2t x 是两个种群的数量,1r ,2r 是它们的固有增长率,1N ,2N 是它们的最大容量.于是对于种群甲有 其中因子⎪⎪⎭⎫ ⎝⎛-111N x 反映由于甲对有限资源的消耗导致的对它本身增长的阻滞作用,11N x 可解释为相对于1N 而言单位数量的甲消耗的供养甲的食物量(设食物总量为1).当两个种群在同一自然环境中生存时,考察由于乙消耗同一种有限资源对甲的增长产生的影响,可以合理地在因子⎪⎪⎭⎫ ⎝⎛-111N x 中再减去一项,该项与种群乙的数量2x (相对于2N 而言)成正比,于是得到种群甲增长的方程为这里1σ的意义是:单位数量乙(相对2N 而言)消耗的供养甲的食物量为单位数量甲(相对1N )消耗的供养甲的食物量的1σ倍.类似地,甲的存在也影响了乙的增长,种群乙的方程应该是对2σ可作相应的解释.在两个种群的相互竞争中1σ,2σ是两个关键指标.从上面对它们的解释可知,1σ >l 表示在消耗供养甲的资源中,乙的消耗多于甲,因而对甲增长的阻滞作用乙大于甲,即乙的竞争力强于甲.对2σ>l 可作相应的理解.一般地说,1σ与2σ之间没有确定的关系,但是可以把这样一种特殊情况作为较常见的一类实际情况的典型代表,即两个种群在消耗资源中对甲增长的阻滞作用与对乙增长的阻滞作用相同.具体地说就是:因为单位数量的甲和乙消耗的供养甲的食物量之比是l :1σ,消耗的供养乙的食物量之比是2σ:l ,所谓阻滞作用相同即1:1σ =2σ:1,所以这种特殊情形可以定量地表示为即1σ,2σ互为倒数.可以简单地理解为,如果一个乙消耗的食物是一个甲的1σ=k 倍,则一个甲消耗的食物是一个乙的2σ=l /k .下面我们仍然讨论1σ,2σ相互独立的一般情况,而将条件(4)下对问题的分析留给读者(习题3).[稳定性分析] 为了研究两个种群相互竞争的结局,即r+oo 时11(f), J2(r)的趋向,不必要解方程(2),(3)*,只需对它的平衡点进行稳定性分析.首先根据微分方程(2),(3)解代数方程组得到4个平衡点:因为仅当平衡点位于平面坐标系的第一象限时(1x ,2x ≥0)才有实际意义,所以对3P 而言要求1σ,2σ同时小于1,或同时大于1.按照判断平衡点稳定性的方法(见6,6节(18),(19)式)计算将4个平衡点p ,q 的结果及稳定条件列入表2.注意:按照6.6节(15)式给出的p>0,q>0得到的1P 的稳定条件只有2σ>l ,表2中的1σ<1是根据以下用相轨线分析的结果添加的.2P 的稳定条件2σ<l 有类似的情况.对于由非线性方程(2),(3)描述的种群竞争,人们关心的是平衡点的全局稳定(即不论初始值如何,平衡点是稳定的),这需要在上面得到的局部稳定性的基础上辅之以相轨线分析.在代数方程组(5)中记对于1σ,2σ的不同取值范围,直线0=ϕ和0=φ在相平面上的相对位置不同,图4给出了它们的4种情况.下面分别对这4种情况进行分析.1.1σ<l ,2σ>1.图4(1)中0=ϕ和0=φ两条直线将相平面(1x ,2x ≥0)划分为3个区域: 可以证明,不论轨线从哪个区域的任一点出发,∞→t 时都将趋向)0,(11N P .若轨线从1S 的某点出发,由(6)可知随着t 的增加轨线向右上方运动,必然进入2S ;若轨线从2S 的某点出发,由(7)可知轨线向右下方运动,那么它或者趋向1P 点,或者进入但是进入3S 是不可能的,因为,如果设轨线在某时刻1t 经直线0=ϕ进入3S ,则)(11t x=0,由方程(2)不难算出 由(7),(8)知)(12t x<0,故)(11t x >0,表明)(1t x 在1t 达到极小值,而这是不可能的,因为在2S 中1x >0,即)(1t x 一直是增加的;若轨线从3S 的某点出发,由(8)可知轨线向左下方运动,那么它或者趋向1P 点,或者进入2S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物种混居,必然会出现以食物、空间等资源为核心的种间关系。从理论上讲, 任何物种对其他物种的影响只可能有三种形式,即有利、有害、或无利无害的中 间态。因此,全部的种间关系只是这三种作用形式的可能组合。最常见的关系为 种间竞争、捕食和寄生。当环境中同时存在着两个种群,且两个种群存在着竞争
时可建立方程进行讨论,得到两种不同种群之间竞争的结果。研究种群竞争的关 系有很多应用,现举例如下:
假如人口数真能保持每 34.6 年增加一倍,那么人口数将以几何级数的方式 增长(如图 1)
例如,到 2515 年,人口约达 2×1014 人,即使海洋全部变成陆地,每人也 只有 9.3 平方英尺的活动范围,而到 2665 年,人口约达 4×1015 人,只好一个 人站在另一人的肩上排成二层了。故马尔萨斯模型是不完善的。
r
人口统计数据与 Malthus 模型计算数据对比:
年
1625
人口(亿) 5
表 2.2.1 世界人 口数量统计数据
1830 1930 1960 1974
10
20
30
40
1987 50
1999 60
年
1908
人口(亿) 3.0
表 2.2.2 中国人口数量统计数据
1933
1953 1964 1982
4.7
关键词:种群 竞争 数学模型 环境条件
1.2 英文摘要 Biological populations have different biomass at different growth
stages, and the changes of biomass over time are restricted by various complex factors. The competition between the biological populations is often reflected in the competition between the limited space resources and other living conditions, and the change of environmental conditions has an effect on the real growth rate of the biological population. In this paper, we give the mathematical model of the competition of biological populations, and then apply it in ecology, and then predict the competition outcome of the biological species. The relationship between the species is important for food and living space. Darwin wrote in the book "natural selection and the origin of the species": "because of the similarities in the habits and qualities especially in terms of structure, so if they are in a state of mutual competition, they are more intense than those of different biological species." In this paper, we give a mathematical model of population competition, and apply it to some aspects of ecology, and then predict the results of biological competition.
2.2 历史回顾
⑴马尔萨斯(Malthus)模型 马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率 r 基本上
是一常数,(r=b-d, b 为出生率,d 为死亡率),既:
其解为
1 ������
������N ������������
=
������或dN
dt
=
rN…………………………(2.2.1)
图 2.2.1 马尔萨斯模型人口预测呈几何级数增长
Malthus 模型实际上只有在群体总数不太大时才合理,到总数增大时,生物 群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就可能 发生生存竞争等现象,后续将展开讨论。所以 Malthus 模型假设的人口净增长率 不可能始终保持常数,它应当与人口数量有关。
XXXXXX
常微分方程课程论文
题 目: 种群竞争模型研究
专 业:
信息与计算科学
班 级:
XXXXX
姓 名:
XXXXXXX
年月日
种群竞争模型研究
1. 摘要 1.1 中文摘要
生物种群在不同的生长阶段有不同的生物量, 而生物量随时间的变化是受 各种复杂因素制约的。生物种群之间的竞争往往表现在对有限空间资源和其它生 活条件之间的竞争,还有环境条件变化对生物种群实际增长率也有影响。本文给 出生物种群竞争的数学模型以后,把它应用在生态学,进而预测生物种群竞争结 局。生物种群间的关系,重要的是表现在食物和生存空间上。达尔文在“自然选 择和物种起源”一书中写道:“因为同属的生物在习性、素质特别是在构造方面 通常具有的相似性,所以如果处于相互竞争状态时,则他们之间的斗争比不同属 生物之间的斗争更为激烈。”本文给出种群竞争的数学模型,并把它应用在生态 学的某些方面,进而预测生物竞争的结果。
对(2.2.7)式分离变量:
两边积分并整理得:
(1
N
+
1)
K−N
dN
=
kKdt…………………………(2.2.8)
N
=
K 1+Ce−kKt
………………………………(2.2.9)
令N(0) = N0,求得:
C = K−N0………………………………(2.2.10)
N0
故(2.2.7)的满足初始条件N(0) = N0的解为:
Keywords: population competition, mathematical model, environmental conditions
2. 主体部分 2.1 绪论
问题的提出与研究背景: 种群是在一定空间范围内同时生活着的同种个体的集群,是生态学所研究的 最小的生态单位。种群指的是分布在同一生态环境中,能自由交配、繁殖的一群 同种个体。在生物组织层次结构中,种群代表由个体水平进入群体水平的第一个 层次。因为有性生殖过程是一个基因重组过程,重组产生新的变异,可供自然选择, 所以相互交配繁育的种群便构成了一个进化的单位,它可能成为分化新物种的起 点。有的生物还环绕着繁育关系组成一定的社群结构。另一方面,同一地区的个 体共享同一资源,因而在对待资源的关系上又表现出种内竞争或合作的关系。 一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存; 弱肉强食。当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局 是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。种群竞争可分为种 间竞争和种内竞争。种间竞争是不同种群之间为争夺生活空间、资源、食物等而 产生的一种直接或间接抑制对方的现象。在种间竞争中常常是一方取得优势而另 一方受抑制甚至被消灭。种间竞争的能力取决于种的生态习性、生活型和生态幅 度等,具有相似生态习性的种群,在资源的需求和获取资源的手段上竞争都十分 激烈,尤其是密度大的种群更是如此。种间竞争可以保证物种的生存和对资源的 有效利用,以及保持稳定的生态位;当个体对资源的需要非常相似时,竞争会特 别激烈。种内竞争是生态学的一种主要影响力,是扩散和领域现象的原因,并且 是通过密度制约过程进行调节的主要原因。种内竞争的主要作用是优胜劣汰,保 持种群活力,维持种群健康发展。 近年来,随着自然生态平衡失调、人为捕杀和环境污染等问题的频繁发生, 导致各种物种面临着灭绝的危害,人们对生态学的研究也越来越重视。两个或两 个以上的种群生活在同一环境下时,为了争夺有限的同一食物来源和生活空间, 在它们之间就会存在着相互竞争、相互依存或弱肉强食的关系。最常见的结局便 是竞争力较弱的种群灭绝,而竞争力较强的种群得以生存,并达到环境容许的最 大量。再这样的现状下,我们通过常微分方程的学习,提出了研究种群竞争模型 的课题,为了更好地保护环境,保护生态平衡做出相应的保护措施。
年克朗皮克(Crombic)做了一个人工饲养小谷虫的实验,数学生物学家高斯 (E·F·Gauss)也做了一个原生物草履虫实验,实验结果都和 Logistic 曲线十 分吻合。
大量实验资料表明用 Logistic 模型来描述种群的增长,效果还是相当不错的。 例如,高斯把 5 只草履虫放进一个盛有0.5cm3营养液的小试管,他发现,开始时 草履虫以每天 230.9%的速率增长,此后增长速度不断减慢,到第五天达到最大 量 375 个。
⑵Logistic 模型 人口净增长率应当与人口数量有关,即:r=r(N),
从而有:
dN dt
=
r(N)N……………………………(2.2.5)
对马尔萨斯模型引入一次项(竞争项),令 r(N)=r-aN 此时得到微分方程:
dN dt
=
(r
−
aN)
或dN
dt
=
r
(1
−
N)
K
N………………(2.2.6)
(2.2.6)式被称为 Logistic 模型或生物总数增长的统计筹算律,是由荷兰
数学生物学家弗赫斯特(Verhulst)首先提出的。一次项系数是负的,因为当种