函数的定义域与值域 知识点与题型归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
了解构成函数的要素,会求一些简单函数的定义域和值域.
★备考知考情
定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等.
一、知识梳理《名师一号》P13
知识点一常见基本初等函数的定义域
注意:
1、研究函数问题必须遵循“定义域优先”的原则!!!
2、定义域必须写成集合或区间的形式!!!
(1)分式函数中分母不等于零
(2)偶次根式函数被开方式大于或等于0
(3)一次函数、二次函数的定义域均为R
(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R
(5)y=log a x(a>0且a≠1)的定义域为(0,+∞)
(6)函数f(x)=x0的定义域为{x|x≠0}
部分内容来源于网络,有侵权请联系删除!
部分内容来源于网络,有侵权请联系删除! (7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充)
三角函数中的正切函数y =tan x 定义域为
{|,,}2
∈≠+∈x x R x k k Z π
π 如果函数是由几个部分的数学式子构成的,
那么函数的定义域是使各部分式子都有意义的实数集合.
知识点二 基本初等函数的值域
注意:
值域必须写成集合或区间的形式!!!
(1)y =kx +b (k ≠0)的值域是R .
(2)y =ax 2+bx +c (a ≠0)的值域是:
当a >0时,值域为{y |y ≥4ac -b 2
4a
}; 当a <0时,值域为{y |y ≤4ac -b 2
4a
} (3)y =k x (k ≠0)的值域是{y |y ≠0}
(4)y =a x (a >0且a ≠1)的值域是{y |y >0}
(5)y =log a x (a >0且a ≠1)的值域是R .
(补充)三角函数中
正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R
部分内容来源于网络,有侵权请联系删除! 《名师一号》P15 知识点二
函数的最值
注意:《名师一号》P16 问题探究 问题3
函数最值与函数值域有何关系?
函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在.
1、温故知新P11 知识辨析1(2)
函数21=+x y x 的值域为11,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭
( )
答案:正确
2、温故知新P11 第4题
部分内容来源于网络,有侵权请联系删除!
函数(]()
1122,,222,,2--⎧-∈-∞⎪=⎨-∈-∞⎪⎩x x x y x 的值域为( ) 3.,2⎛⎫-+∞ ⎪⎝⎭A ().,0-∞B 3.,2⎛⎫-∞- ⎪⎝
⎭C (].2,0-D
答案:D
注意:牢记基本函数的值域
3、温故知新P11 第6题
函数()=y f x 的值域是[]1,3,则函数()()123=-+F x f x 的值域是( )
[].5,1--A [].2,0-B [].6,2--C [].1,3D
答案:A
注意:图像左右平移没有改变函数的值域
二、例题分析:
(一)函数的定义域
1.据解析式求定义域
例1. (1)《名师一号》P13 对点自测1
部分内容来源于网络,有侵权请联系删除! (2014·山东) 函数()
=f x 为( )
A.⎝ ⎛⎭
⎪⎫0,12 B .(2,+∞) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦
⎥⎤0,12∪[2,+∞)
解析 要使函数有意义,应有(log 2x )2>1,且x >0, 即log 2x >1或log 2x <-1,
解得x >2或0 . 所以函数f (x )的定义域为⎝ ⎛⎭ ⎪⎫0,12∪(2,+∞). 例1. (2)《名师一号》P14 高频考点 例1(1) 函数f (x )=1-2x +1x +3 的定义域为( ) A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1]