盾构推进系统设计

盾构推进系统设计
盾构推进系统设计

盾构推进系统设计

隧道网 https://www.360docs.net/doc/0d4397388.html,(2006-8-4) 来源:隧道建设

摘要:分析了盾构推进系统的设计需要满足的功能要求,对盾构设计推力进行了详细的计算,结合盾构的结构及尺寸,确定了推进油缸的规格参数、外形尺寸和数量,分析了推进油缸的布置方式以及与管片间的匹配适应关系,阐述了盾构推进系统的控制。通过研究,掌握了盾构推进系统的设计方法,为盾构的施工提供参考。

关键词:盾构推进系统设计布置控制

中图分类号:U455.3+9 文献标识码:B

1 概述

盾构法施工以自动化程度高、施工速度快、安全可靠、对周边环境影响小等优点,得到了日益广泛的应用。但是,由于盾构的制造工艺复杂,现在国内施工用的盾构,主要依赖进口。在国内的隧道建设中,德国和日本在中国盾构市场占有率处于绝对垄断地位。

为了实行盾构国产化,在盾构关键技术领域内得到突破和发展,在引进设备并不断消化吸收的过程中,在盾构的设计方面有一定的进展,以下就盾构的推进系统的设计作一探讨。

盾构是集开挖、支护、衬砌、出碴于一体的隧道施工专业设备。盾构实现隧道的开挖,主要是由以下两个运动完成:一是刀盘切削,二是盾体的推进。刀盘的切削、盾体的推进均依靠支承环内大体等距布置的推进油缸作用于管片从而提供反作用力为基础。因此,盾构推进系统的设计需要满足以下功能要求:为盾构前进提供足够的动力;控制盾构的前进速度,与出碴速度相配合,实现土压平衡状态;能够控制盾构的姿态,实现盾构的纠偏及转向要求;适应管片的尺寸及操作要求;从整体角度考虑,满足盾构的总体功能设计、综合施工作业要求。

以下盾构的推进系统的设计主要包括确定盾构的推力;推进油缸的规格参数、外形尺寸和数量的计算;推进油缸的布置方式;推进油缸的控制。

对于如盾构的推力等主要技术参数的确定要基于具体的工程地质条件和隧道管片的设计,以下以越秀公园一三元里盾构区间的工程地质资料为依托进行盾构的推进系统的设计。

2 盾构推力计算

盾构在掘进时,需要克服五种推进阻力:盾体和外部土层的摩擦力;管片与盾尾间的摩擦阻力;刀具切人岩土时的贯人阻力;盾构机正面的土压力;后续设备的牵引阻力。盾构配备的推力除克服以上阻力,还应考虑盾构转向时,只有部分油缸工作的因素,并作足够的

推力储备。

2.1 地质参数及盾构的主要技术参数

越秀公园一三元里区间主要为含水的风化岩和泥土;最大埋深约26 m,计算中地质参数均按照此埋深对应断面的地层选取如下:岩土容重:γ=19.9kN/m3;岩土的内摩擦角:Φ=19.5°;土的粘结力:c=49kN/m2;覆盖层厚度:H nax≈26m;地面荷载:P 0=20kN/m2;地下水压:P W=30kN/m2;水平侧压力系数:λ=0.7;盾构外径:D=6.25 m;盾构主机长度:L=7.5 m;盾构主机重量:W=370t。

2.2 土压计算

对于深埋隧道首先按太沙基卸拱理论计算上覆地层压力,当上覆地层压力值小于2 D(D为隧道外径)隧道高度的上覆地层自重时,取2 D(两倍掘进机直径的全土柱土压)作为上覆地层压力。

(1) 松驰土压计算:

太沙基公式

其中:K0一般取值1.0;B1为盾构顶部松弛宽度,m;

B1=(D/2)2cot[(45°+Φ/2)/2]=3.1253cot[(45°+19.5°/2)/2]=6.04m

代入上式得

P s=6.043(19.9—49/6.04)/tan19.5°3(1-e-13tan19.5°3(26/6.04))+203e-13tan19.5°3(26/6.04)=161.63 kN/m2

(2) 计算2 D上覆地层压力(两倍掘进机直径的全土柱土压):

P q=γ222D=19.93236.25=248 kN/m2

根据计算结果:土压取248 kN/m2。

2.3 盾构荷载计算

根据土压,结合盾构的相关技术参数,确定盾构的荷载。

① 设计垂直土压:地面荷载取20 kN/m2,则P v=268 kN/m2;

② 垂直方向地层反力:Pv1.+Pv+W/(D2L)=347kN/m2;

③ 盾构顶部侧压力:P h=λ2Pv=193 kN/m2;

④ 盾构底部侧压力:P h1=P h+λ2γ2D≈283 kN/m2。

2.4 阻力计算

根据地质参数及以上荷载计算结果,以下进行各部分阻力计算:

(1) 盾壳和土层的摩擦力F1

这一阻力是由作用于盾壳外周的土压力引起的与盾壳钢板之间的阻力。在砂性土中,其计算式为:

F1=μ2[π2D2L(Pv+Pv1+P h+P hl)/4]

式中:μ为盾壳和土体间的摩擦系数,一般采用0.2~0.5,取值0.3;代入数值计算得:F1≈12044kN。

(2) 盾尾密封的摩擦力F2

这一阻力就是管片外表面同盾尾刷之间的摩擦阻力,其计算式为:

F2=n s3W s3μs

式中:n s为隧道管片的环数,一般采用2~3,取为2环;W s为隧道管片每环的重量,约为26t(管片外径为6m,内径5.4m,环宽1.5m);μs为盾尾刷和隧道管片之间的摩擦系数,一般采用0.3~0.5,取值0.35;计算得:F2≈180 kN

(3) 刀具切入岩土时的贯人阻力F3

刀盘上共安装了64把切刀、16把刮刀、33把滚刀(按刀刃计算)。按照海瑞克公司的经验计算,16把刮刀的推力相当于96把切刀的推力;根据每把切刀在软土中的推进力约为5.6 kN、每个滚刀的设计最大推力为250kN,考虑到装在刀盘边上的滚刀的分力作用,按31把滚刀来计算刀盘的推力(经验值)。

根据地质条件的不同,土压平衡式盾构分为两种掘进模式:

一是土压平衡(EPB)模式:推力按切刀及刮刀的贯入阻力进行计算:

F3EPB=(64+96+31)35.6≈l 070kN

二是硬岩敞开掘进(TBM)模式:推力按滚刀的贯入阻力进行计算:

F3TBM=313250=7 750kN

(4) 盾构机正面的阻力F4

在土压平衡模式下,由开挖面土压力和水压力在盾构正面上产生阻力。

F4EPB=P3A

其中:P为开挖面土压力和水压力,P=(P h+P h1)/2+P w=268 kN/m2;A为盾构正面的投影面积。

计算得:F4EPB=8218kN

(5) 拖拉后配套台车的力F5

F 5=μ3

G t

式中:μ为摩擦系数,一般采用0.05;G t为后方台车重量。约4450kN。

计算得:F 5=222kN

2.5 总推力计算

(1) EPB模式

F EPB=F1+F2+F3EPB+F4EPB+F5=21 734 kN

(2) 硬岩敞开模式

F TBM=F1+F2+F3EPB+F4EPB+F5=20 196 kN

取二者之大值,在盾构上坡和转弯时盾构的推力按直线水平段的1.5倍考虑,盾构需要的推力应为:

F=32 601kN

3 推进油缸的选型和配置

推进油缸的选型和配置应根据盾构的操作性、管片组装施工方便性等确定。根据盾构各管片分布方位和受力点布置各油缸的最佳位置。推进油缸选型、配置时,必须满足下列要求:

① 推进系统不仅要考虑满足盾构设备在掘进中推力的需要,同时还要根据管片拼装的要求进行布置;

② 推进油缸的推力和数量应根据盾构外径、总推力、管片结构和隧道路线等因素确定;

③ 推进油缸应选用重量轻、耐久性好、结构紧凑的油缸,一般选用高压油缸;

④ 推进油缸一般情况下等间距配置在盾构壳板内侧附近,位置的确定要兼顾管片的强度;

⑤ 推进油缸配置时,应使推进油缸轴线平行于盾构轴线。

3.1 推进油缸的推力F0计算

F0=P3πD2/4

式中:P为液压系统压力,设计为300 bar;D为推进油缸的内径。

首先根据盾构外径、盾尾铰接和超前注浆机等设备的安装要求,计算推进油缸的外径。为了推进油缸的安装不和盾尾铰接部分发生干扰,设计中盾体容许的油缸布置外限界不超过盾尾最小直径处Φ6 066;同时,为了保证管片的受力点,油缸的推力中心应与管片的中心相对应,即分布在Φ5 700的中心圆上。油缸与盾体间安装间隙取为50mm。通过计算,油缸外径Φ为:23[(6 066—5 700)÷2—50]=266mm,取油缸外径260mm;油缸壁厚取20 mm;那么油缸内径为220mm。

计算得F 0=1140kN

3.2 推进缸个数

n=F/F0

式中:F为油缸的总推力,F=32601 kN;

计算得n=28.6≈30个

3.3 推进油缸的长度计算

确定推进油缸的长度是确定盾构壳体的长度及其它结构设计布置的前提条件。

推进油缸的长度为:L g=S+L d+L a1+L a2

式中:S为推进油缸行程,mm;L d为缸底尺寸和导向套尺寸,设计为485mm;L a1,L a2为油缸安装尺寸,固定端安装尺寸L a1=180mm,铰接端安装尺寸L a2=275mm。

推进油缸行程为管片环宽、封顶块搭接悬出长度、预留间隙之和。即S=L p+a+L x,其中,L p为管片环宽,设计为1 500mm;L x为封顶块搭接悬出长度,为1 5003(1—4/5)=300mm;a为预留间隙,考虑盾构转弯时两侧行程差及安装管片空间需要,取200mml。

代入数值计算得:S=2 000mm。

推进油缸长度在满足行程要求的情况下,应尽量短,以减少盾构的长度,有利于盾构的转向。相应的,油缸的安装尺寸和导向尺寸在满足油缸伸出的强度、刚度、稳定性的条件下,根据液压油缸外形尺寸的设计规范进行设计。

计算得推进油缸的长度为:L g=2 940mm

3.4 推进油缸的布置原则

盾构推进时,由于推进油缸直接作用于管片上,因此推进油缸的布置主要考虑管片的结构形式、分布方位、受力点布置、管片组装施工方便性等方面的因素。满足下列要求:

(1) 径向分布使管片受力均衡

管片的几何尺寸为:外径Φ6 000 mm,内径Φ5 400mm,管片厚300mm,管片的中心圆Φ5 700mm。为使管片在径向受力均衡,设计将油缸沿盾体周向成圆形均匀布置,油缸的轴线设计分布在管片的中心圆Φ5 700上。

(2) 环向布置与管片的分块相匹配

衬砌环设计为由1个封顶块、2个邻接块、3个标准块组成,采用错缝拼装,环间采用10个M24螺栓进行联接,螺栓布置间隔36°。一般情况下,封顶块的位置允许在正上方或偏离正上方±36°,也有可能偏离±72°。

为了保证无论管片如何错动,每块管片所受推进力总是相等,并且在整个衬砌环上受力均匀,确保管片的贴合均匀密实,要求油缸的环向布置的间距角度与管片错动角相对应,保证油缸合力作用在每块管片的中心上。那么每组油缸环向布置的间隔应为36°的倍数,根据这个原则推理,在整圆范围内,油缸总数为l0的倍数,与计算的油缸总数30个相适应。

(3) 考虑管片在整个衬砌环受力均匀,油缸布置应沿垂直轴线、水平轴线均匀对称布置。

3.5 推进油缸的布置方案

综上所述,30个油缸的布置方式可以有以下几种:

(1) 30个单油缸均匀分布

在绘图中,油缸的调节机构与铰接油缸支座发生干扰,方案不可行。

(2) 双油缸布置

15对双油缸沿盾体圆周均匀分布,环向布置的间距角度为24°。

与周向转动36°的管片不能对应,使油缸的推力中心线与管片的中心线不能重合,管片受力不均衡,不易实现管片拼装贴合严密的施工要求。

(3) 单双油缸间隔布置

单双油缸按每隔18°间隔布置,在封顶块位于正上方时,油缸的推力中心线与管片中心重合。并且每组油缸间有充分的空间布置铰接油缸和超前注浆管。在错缝拼装时,封顶块偏离正上方36°、72°时,推进油缸与管片能够相适应,因此这种油缸布置方案可行。见图1。

图1 推进油缸的布置(单位:mm)

4 盾构推进系统的控制

4.1 土压的控制

盾构在土压平衡工作状态下,刀盘开挖下来的土碴充满土仓,在推进油缸的推力作用下,通过土仓隔板进行加压,产生土压,土压作用于整个开挖面,抵抗开挖面的土压和水压,使开挖面保持稳定。因此,土压仓内的土压的控制是保证开挖面稳定的关键因素。

土仓内土压是通过安装在土仓隔板上分布在不同位置的土压传感器进行测量的,通过对土仓内土压的测量从而获取开挖面稳定控制所需的信息。

土仓内土压的控制可通过控制开挖量、排碴量、推力和推进速度来实现,在保持开挖量、排碴量一定的情况下,通过控制推进油缸的推力和推进速度来调节土仓内的土压,推进速度加快,则土仓内的土压上升,反之则下降,从而使土压仓内的土压与开挖面的土压和水压相平衡,保证开挖面的稳定。

在推进油缸上安装速度传感器,连续地调整推进油缸的推进速度,土仓内的土压可随改变盾构千斤顶的推进速度而增减。

4.2 盾构姿态控制

由于地层变化频繁、软硬交错,盾构机经常通过掌子面软硬不均地层,造成刀盘受力不均,从而使盾构姿态产生偏转、抬头、低头的现象,导致盾构的掘进轴线与隧道设计轴线发生偏离。

为了纠正盾构姿态,将30个推进油缸分组,每组推进油缸分别安装行程传感器,并可以单独调整每组推进油缸的推进力和推进行程,这样就可以实现盾构左转、右转、抬头、低头或直行。采用激光导向系统对盾构的姿态进行监控,操作者根据反馈信息调节每组推进油缸的压力,及时地调整盾构的姿态,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。

5 结束语

通过盾构推进系统的设计,对确定盾构的推力以及推进油缸的基本参数形成了一套成熟的计算方法,并深入了解盾构的推进系统的结构及其设计思想,这些成果对于以后盾构的开发、改造及施工选型起到积极的作用。

盾构推进系统设计

盾构推进系统设计 隧道网 https://www.360docs.net/doc/0d4397388.html,(2006-8-4) 来源:隧道建设 摘要:分析了盾构推进系统的设计需要满足的功能要求,对盾构设计推力进行了详细的计算,结合盾构的结构及尺寸,确定了推进油缸的规格参数、外形尺寸和数量,分析了推进油缸的布置方式以及与管片间的匹配适应关系,阐述了盾构推进系统的控制。通过研究,掌握了盾构推进系统的设计方法,为盾构的施工提供参考。 关键词:盾构推进系统设计布置控制 中图分类号:U455.3+9 文献标识码:B 1 概述 盾构法施工以自动化程度高、施工速度快、安全可靠、对周边环境影响小等优点,得到了日益广泛的应用。但是,由于盾构的制造工艺复杂,现在国内施工用的盾构,主要依赖进口。在国内的隧道建设中,德国和日本在中国盾构市场占有率处于绝对垄断地位。 为了实行盾构国产化,在盾构关键技术领域内得到突破和发展,在引进设备并不断消化吸收的过程中,在盾构的设计方面有一定的进展,以下就盾构的推进系统的设计作一探讨。 盾构是集开挖、支护、衬砌、出碴于一体的隧道施工专业设备。盾构实现隧道的开挖,主要是由以下两个运动完成:一是刀盘切削,二是盾体的推进。刀盘的切削、盾体的推进均依靠支承环内大体等距布置的推进油缸作用于管片从而提供反作用力为基础。因此,盾构推进系统的设计需要满足以下功能要求:为盾构前进提供足够的动力;控制盾构的前进速度,与出碴速度相配合,实现土压平衡状态;能够控制盾构的姿态,实现盾构的纠偏及转向要求;适应管片的尺寸及操作要求;从整体角度考虑,满足盾构的总体功能设计、综合施工作业要求。 以下盾构的推进系统的设计主要包括确定盾构的推力;推进油缸的规格参数、外形尺寸和数量的计算;推进油缸的布置方式;推进油缸的控制。 对于如盾构的推力等主要技术参数的确定要基于具体的工程地质条件和隧道管片的设计,以下以越秀公园一三元里盾构区间的工程地质资料为依托进行盾构的推进系统的设计。 2 盾构推力计算 盾构在掘进时,需要克服五种推进阻力:盾体和外部土层的摩擦力;管片与盾尾间的摩擦阻力;刀具切人岩土时的贯人阻力;盾构机正面的土压力;后续设备的牵引阻力。盾构配备的推力除克服以上阻力,还应考虑盾构转向时,只有部分油缸工作的因素,并作足够的 推力储备。 2.1 地质参数及盾构的主要技术参数 越秀公园一三元里区间主要为含水的风化岩和泥土;最大埋深约26 m,计算中地质参数均按照此埋深对应断面的地层选取如下:岩土容重:γ=19.9kN/m3;岩土的内摩擦角:Φ=19.5°;土的粘结力:c=49kN/m2;覆盖层厚度:H nax≈26m;地面荷载:P 0=20kN/m2;地下水压:P W=30kN/m2;水平侧压力系数:λ=0.7;盾构外径:D=6.25 m;盾构主机长度:L=7.5 m;盾构主机重量:W=370t。 2.2 土压计算 对于深埋隧道首先按太沙基卸拱理论计算上覆地层压力,当上覆地层压力值小于2 D(D为隧道外径)隧道高度的上覆地层自重时,取2 D(两倍掘进机直径的全土柱土压)作为上覆地层压力。 (1) 松驰土压计算: 太沙基公式 其中:K0一般取值1.0;B1为盾构顶部松弛宽度,m; B1=(D/2)2cot[(45°+Φ/2)/2]=3.1253cot[(45°+19.5°/2)/2]=6.04m

盾构

盾构施工安全知识 1 盾构机 2 盾构机施工 3 盾构机施工应注意的事项 4 盾构施工进场和盾构进洞整个流程 5 盾构施工开工阶段 6 盾构进出洞作业 7 管片堆放作业 8 行车垂直运输作业 9 电机车水平运输作业 10 车架段交叉施T作业 11 管片拼装作业

1 盾构机 盾构机是开挖土砂围岩的主要机械,由切口环、支承环及盾尾三部分组成,以上三部分总称为盾构壳体。盾构的基本构造包括盾构壳体、推进系统、拼装系统三大部分。盾构的推进系统有液压设备和盾构千斤顶组成。 2 盾构机施工 (1)随着施工技术的不断革新与发展,盾构的种类也越来越多,目前在我国地下工程施工中主要有:手掘式盾构、挤压式盾构、半机械式盾构、机械式盾构等四大类; (2)盾构施工前,必须进行地表环境调查、障碍物调查以及工程地质勘察,确保盾构施工过程中的安全生产; (3)在盾构施工组织设计中,必须要有安全专项方案和措施,这是盾构设计方案中的关键; (4)必须建立供、变电、照明、通信联络、隧道运输、通风、人行通道,给水和排水的安全管理及安全措施;

(5)必须有盾构进洞、盾构推进开挖、盾构出洞这三个盾构施工过程中的安全保护措施; (6)在盾构法施工前,必须编制好应急预案,配备必要的急救物品和设备。 3 盾构机施工应注意的事项 (1)拼装盾构机的操作人员必须按顺序进行拼装,并对使用的起重索具逐一检查,确认可靠方可吊装; (2)机械在运转中,须小心谨慎,严禁超负荷作业。发现盾构机械运转有异常或振动等现象,应立即停机作业; (3)电缆头的拆除与装配,必须切断电源方可进行作业; (4)操作盘的门严禁开着使用,防止触电事故。动力盘的接地线必须可靠,并经常检查,防止松动发生事故; (5)连续启动二台以上电动机时,必须在第一台电动机运转指示灯亮后,再启动下一台电动机; (6)应定期对过滤器的指示器、油管、排放管等进行检查保养;

南水北调配套工程施工组织设计(盾构施工 附CAD图纸)

目录 1.工程概况 (9) 1.1.工程所在位置及建设规模 (9) 1.1.1.工程所在位置 (9) 1.1.2.建设规模 (9) 1.2.工作内容及范围 (9) 1.2.1.永久工程 (9) 1.2.2.施工临时工程 (10) 1.2.3.环境保护工程 (11) 1.2.4.水土保持工程 (11) 1.3.水文、气象 (11) 1.4.工程地质 (12) 1.4.1.地质概况 (12) 1.4.2.工程地质条件 (12) 1.4.3.工程地质评价 (12) 1.4.4.盾构井段工程评价 (13) 1.5.对外交通及水、电、材料等供应条件 (13) 1.6.工期要求 (13) 1.7.主要工程量 (14) 2.施工总体布置 (14) 2.1.施工组织机构设置及施工队伍安排 (14) 2.1.1施工组织机构设置 (14) 2.1.2.管理职责 (15) 2.1.3.施工队伍安排及任务划分 (18) 2.2.各项规划目标 (19) 2.3.施工总体筹划 (19) 3.主体工程的施工方案及对本工程重点、难点分析及应对措施 (20)

3.1.始发兼接收井施工 (20) 3.1.1.施工降、排水 (20) 3.1.2.土方开挖 (23) 3.1.3.基坑支护 (31) 3.2.竖井、排气阀井施工 (41) 3.2.1.排降水 (41) 3.2.2.竖井锁口圈施工 (41) 3.2.3.提升设备安装 (42) 3.2.4.竖井井身开挖、支护 (42) 3.2.5.竖井封底 (49) 3.2.6.施工设备布置及进料 (49) 3.3.盾构机选型及性能介绍 (49) 3.3.1.选型依据 (49) 3.3.2.盾构机的选型 (50) 3.3.3.盾构机主要尺寸、技术性能和参数 (52) 3.3.4.盾构机特点与可靠性 (56) 3.3.5.各部件功能描述 (58) 3.3.6.盾构机的管理和保养维修 (83) 3.4.盾构施工方法及工艺 (86) 3.4.1盾构施工工艺流程图 (86) 3.4.2.始发兼接收井口设施布置 (86) 3.4.3.盾构进出洞地基加固 (92) 3.4.4.洞门的凿除 (97) 3.4.5.始发台(基座)的安装 (98) 3.4.6.反力架安装 (99) 3.4.7.洞口密封 (100) 3.4.8.负环管片的拼装 (102) 3.4.9.盾构机的运输和吊装、调试 (104)

盾构隧道施工组织设计

第一章地质描述 第一节概述 一、概述 二、线路段工程地质条件 (一)、地形、地貌 。 (二)、岩土体工程地质特征 (三)、水文地质特征 区间地质描述 区间地质描述详见表7-1-1、表7-1-2;土体主要物理力学性质指标表7-1-3、7-1-4。。 一、科技路站 第三节补充地质勘察

第二章工程特点 第一节工程主要技术难点及对策 第二节工程的主要特点 一、交叉多,干扰大 集中体现在结构交叉多、工序交叉多、接口界面交叉多、专业交叉多、前期与后期交叉多,施工相互干扰较大。执行关键工期计划所发生的各规定部分的工期偏差,会影响其它作业。结构的多交叉,存在空间效应与体系转换问题。 二、地处市区,环境特殊 主要体现在地面建筑物密集,施工对周围环境的影响必须严格控制,文明施工要求严格,环境保护标准高。 三、任务重,系统性强 全部工程要求在33个月内完成。其中,盾构机需要引进,鉴定、安装、调试,前期试掘进进度会放缓,中间加快,出洞又会放缓,还要调头、转场,工序复杂,任务重。采用盾构机施工,这是隧道工厂化施工的模式,其系统性特别强,环节与环节之间的衔接、匹配是否合理,直接影响施工效率,直接影响施工的安全、质量、速度。四、地质复杂,施工难度大 地铁隧道主要穿越Ⅱ4、Ⅲ1层。Ⅱ4层以上主要为砂性土,其渗透性强,富水性好,围岩稳定性极差。Ⅱ4、Ⅲ1层水平分层,盾构机易磕头;且局部地区覆盖层过浅。施工中容易造成地面隆起或沉降。 第三章施工准备 施工准备工作是否充分、到位,将直接影响施工总体安排,影响主体工程能否按时开工,影响到工程开工后能否顺利进行,施工前必须做好各项准备。我局中标后,迅速组成项目部开展各项工作。在最

盾构机液压系统原理

盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q m ax范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

盾构调头专项工程施工组织设计方案

1、工程概况 1.1工程概述 地铁*标盾构工程包括三个盾构区间。三个区间均为地下双线单圆盾构隧道,隧道外径6.2m,径5.5m,管片厚35cm。 为区分盾构掘进情况,根据车站部署及施工产值计划,本标区间按两台盾构机进行盾构施工并编号,分别为*号盾构机和**号盾构机。 *盾构机自A站南端头沿下行线始发,到达B站后解体吊出,再从A站南端头下井第二次始发沿上行线到达B站后解体吊出。 **盾构机自A站北端头始发,沿上行线到达C站后在站调头,从南端头下行线二次始发,到达A站解体吊出,然后运至B站南端头井,沿入段线第三次始发到达*车辆段明挖区间,在*车辆段明挖区间盾构井调头后第四次始发,沿出段线到达B站,完成后解体吊出。线路基本情况见下图《盾构施工筹划图》。 本标段涉及的两次调头均是**盾构机在明挖区间和C站进行。 盾构施工筹划图 1.2调头环境概述 *车辆段明挖区间盾构井尺寸:长28m,宽12.5m,净空8.65m,盾构井为全封闭形式,目前已施工完成。明挖区间全长200m为全封闭且有中隔墙,除盾构主机外其余后配套设备均需在明挖区间以南的U型槽进行调头。各种物资吊放均需在U型槽进行。 **标C站已于年月日完成主体结构施工。C站调头井尺寸:长21.2m,宽12.5m,净空高7.16m,中板、顶板接收位置上方设置吊装孔尺寸为5×8m。C站已完成主体结构施工,可利用C站盾构井吊装孔进行盾构机调头、后配套的翻转和接收托架、反力架等材料的下吊。后配套进入下行线的移动需在车站标准段进行。 经现场量测,明挖区间和C站调头井尺寸均满足盾构主机调头所需空间要求。2、编制依据 (1)**盾构机图纸及其使用维护技术文件; (2)明挖区间、U型槽及C站结构图纸; 1

海瑞克土压平衡盾构机结构分析

海瑞克土压平衡式盾构机结构分析 [2008-08-07] 关键字:盾构机结构分析 承担修建深圳地铁—期工程第七标段(华强至岗厦区间内径为5.4m的双线隧道)的施工任务,根据施工地段地层自立条件差,地下水较丰富的特点,购进了两台德国海瑞克公司生产的世界上最先进的土压平衡式盾构机。这两台盾构机都由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。 本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN&#82 26;m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土

盾构隧道施工组织设计范本

盾构隧道施工组织 设计

第一章地质描述 第一节概述 一、概述 二、线路段工程地质条件 (一)、地形、地貌 。 (二)、岩土体工程地质特征 (三)、水文地质特征 区间地质描述 区间地质描述详见表7-1-1、表7-1-2;土体主要物理力学性质指标表7-1-3、7-1-4。。 一、科技路站 第三节补充地质勘察

第二章工程特点 第一节工程主要技术难点及对策 第二节工程的主要特点 一、交叉多,干扰大 集中体现在结构交叉多、工序交叉多、接口界面交叉多、专业交叉多、前期与后期交叉多,施工相互干扰较大。执行关键工期计划所发生的各规定部分的工期偏差,会影响其它作业。结构的多交叉,存在空间效应与体系转换问题。 二、地处市区,环境特殊 主要体现在地面建筑物密集,施工对周围环境的影响必须严格控制,文明施工要求严格,环境保护标准高。 三、任务重,系统性强 全部工程要求在33个月内完成。其中,盾构机需要引进,鉴定、安装、调试,前期试掘进进度会放缓,中间加快,出洞又会放缓,还要调头、转场,工序复杂,任务重。采用盾构机施工,这是隧道工厂化施工的模式,其系统性特别强,环节与环节之间的衔接、匹配是否合理,直接影响施工效率,直接影响施工的安全、质量、速度。 四、地质复杂,施工难度大 地铁隧道主要穿越Ⅱ4、Ⅲ1层。Ⅱ4层以上主要为砂性土,其

渗透性强,富水性好,围岩稳定性极差。Ⅱ4、Ⅲ1层水平分层,盾构机易磕头;且局部地区覆盖层过浅。施工中容易造成地面隆起或沉降。 第三章施工准备 施工准备工作是否充分、到位,将直接影响施工总体安排,影响主体工程能否按时开工,影响到工程开工后能否顺利进行,施工前必须做好各项准备。我局中标后,迅速组成项目部开展各项工作。在最短的时间内完成建筑物、管线等的调查及地质补充勘探。并组织精测人员对设计控制桩进行复测,将测量结果上报监理及有关部门。绘制详细的线路纵断面、横断面图,上报监理。做好开工前的各项准备,上报开工报告。全部技术人员经过各种途径达到岗前培训。 第二节盾构施工场地平面布置与设施 第三节洞口地层加固 一、洞口土体加固标准 洞外土体加固是将洞外侧一定范围的土体进行改良,使土体的抗剪、抗压强度提高、透水性减弱,使土体具有自身保持短期稳定的能力。洞门打开后,加固后的土体不倒塌、不滑移;盾构机刀盘旋转、直接切削加固土体,对刀具无损伤,加固后的各种指标如

1.盾构法施工

1.6盾构法施工 我国盾构法施工种类:手掘式盾构机、挤压式盾构机、半机械式盾构机、机械式盾构机等四大类。 1.6.1盾构施工 (1)盾构施工前,必须进行地表环境调查、障碍物调查以及工程地质勘察,确保盾构施工过程中的安全生产。 (2)在盾构施工组织设计中,必须要有安全专项方案和措施,这是盾构设计方案中的关键问题。 (3)必须建立供、变电,照明、通信联络、隧道运输、通风、人行通道、给水和排水的安全管理及安全措施。 (4)必须有盾构机进洞、盾构机推进开挖、盾构机出洞这三个盾构施工过程中的安全保护措施。 (5)在盾构法施工前,必须编制好应急预案,配备必要的急救物品和设备。 1.6.2盾构施工应注意的事项 (1)拼装盾构机的操作人员必须按顺序进行拼装,并对使用的起重索逐一检查,认为可靠方可吊装。 (2)机械在运转中,须谨慎操作,严禁超负荷作业。发现盾构机械运转有异常或振动等现象,应立即停机进行检查。 (3)电缆头的拆除与装配,必须切断电源方可进行作业。 (4)操作盘的门严禁开着使用,防止触电事故。动力盘的接地线必须可靠,并经常检查,防止松动发生事故。 (5)禁止同时启动二台以上电动机。连续启动二台以上电动机时,必须在第动机运转指示灯亮后,再启动下一个电动机。 (6)应定期对过滤器的指示器、油管、排放管等进行检查保养。 (7)开始作业时,应对盾构机各部件、液压系统、油箱、千斤顶、电压等仔细检查,严格执行锁荷“均匀运转”。

(8)盾构机出土皮带运输机,应设防护,并应专人负责。 (9)装配皮带运输机时,必须清扫干净;在制动开关周围,不得堆放障碍物操作,检修时必须停机断电。 (10)利用电瓶车作牵引时,司机必须经培训、考核合格持证驾驶;不准将手伸入电瓶车与出土车的连接处;车辆牵引时,应按照约定信号进行拖运。 (11)出土车应设专人指挥引车,严禁超载。在轨道终端,必须安装限位装置。 (12)门吊司机必须持让上岗,司索工对钢丝绳、吊钩经常检查,不得使用不合格的吊索具,严禁超负荷吊运。 (13)每天斑前必须检测盾构机头部可燃气体的浓度,做好预测、预防和序控工作,并认真做好记录。 (14)要及时清除盾构机内部的油回丝及零星可燃物。对乙炔、氧气要加强管理,严格执行动火审批制度及动火监护工作。在气压盾构施工时,严禁将易燃、易爆物品带入气压盾构施工区。 (15)在隧道工程施工中,土层采用冻结法加固时,必须以适当的观测方法测定温度,掌握土层的冻结状态,必须对附近的建筑物或地下埋设物及盾构隧道本身采取防护措施。

土压平衡盾构机推进液压系统设计分析解读

收稿日期:2011-05-27 基金项目:国家科技支撑项目(No.2006BAJ16B06) 作者简介:刘福东(1982—),男,黑龙江双城人,2004年毕业于东北大学机械工程及自动化学院液压与控制专业,本科,现从事盾构机液压系统设计。 土压平衡盾构机推进液压系统设计分析 刘福东1,郭京波 2 (1.北京华隧通掘进装备有限公司,北京100081;2.石家庄铁道大学,石家庄050043) 摘要:盾构机具机、电、液、测控、土木等多学科技术于一体的工程机械。本文就北京地铁施工中所使用的一种直径10.22m 土压平 衡盾构机的推进液压系统, 对其功能、原理及设计进行分析研究。关键词:土压平衡;盾构机;推进系统;液压原理 中图分类号:TH 137文献标志码:A 文章编号:1672-741X (2011)增刊1-0405-06 Analysis on Design of Hydraulic System of EPB Shield Stepping LIU Fudong 1,GUO Jingbo 2 (1.Beijing Huasuitong Boring Equipment Co.,Ltd.,Beijing 100081,China ;

2.Shijiazhuang Tiedao University ,Shijiazhuang 050043,China ) Abstract :Tunnel boring machine is a kind of construction machinery which includes machine ,electricity ,hydraulic ,monitoring and control and civil engineering.The functions ,principles and design of screw conveyer hydraulic system of a 10.22m-diameter EPB shield adopted in the construction of Beijing Metro are analyzed. Key word :EPB shield ;stepping system ;hydraulic ;theorery 0引言 盾构是城市地铁及地下隧道施工中的重要设备,随着城市进程的加快,其使用范围越来越广,在工程施工中所占的比重也越来越大,盾构机是具机、电、液、测控、土木等多学科技术于一体的工程机械。 在地下隧道施工过程中,为保证地面建筑以及地表设施的安全、防止地表隆起或塌陷,必须严格控制地表沉降。所谓土压平衡就是密封土仓中切削下来的土体和泥水充满密封土仓,并建立适当压力与开挖面的土体压力平衡,以减少对土体的扰动,控制地表沉降。要做到土 压平衡控制, 就要依赖推进系统及螺旋机系统(见图1)配合使用。本文就北京地铁施工中的某一土压平衡盾构机,对其推进液压系统设计进行分析研究。 图1螺旋输送机在盾体中布置示意图 Fig.1Position of screw conveyer in the shield machine 盾构机中盾周边均匀设置36根推进油缸,该油缸通过对已安装完的隧道管片施力,使盾构获得向前掘进的推力。改变推进油缸的推进速度或者改变螺旋输送机的转速均可以达到改变土仓压力的目的。

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

(完整版)海瑞克盾构机液压系统说明(附电路图)

一、液压系统元件 1液压泵 液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量 泵,按输出出口方向又可以分为单向泵、双向泵。 泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作 用,控制着执行元件的运行。 在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向 变量泵,管片安装机种使用两个单向变量泵,注浆系统 中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵 注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的

c.定量叶片泵 注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定 d.斜盘式柱塞泵 注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的

2液压阀 液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。 压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。 流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。 方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。 各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。 a.单向阀 注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2 口流出,油液只能从p1流向p2

b.溢流阀 注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液 从溢流口

c.液控单向阀 注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,

工程施工安全生产技术模拟试题

建设工程安全生产技术模拟试题 一、单选题 1.土按坚硬程度和开挖方法及使用工具可分为几类:____。 [选择:][正确答案:D] A.5 B.6 C.7 D.8 2.野外鉴别人工填土的颜色为____。 [选择:][正确答案:B] A.固定的红色 B.无固定颜色 C.有固定颜色 D.都是黄色 3.在斜坡上挖土方,应作成坡势以利____。 [选择:][正确答案:B] A.蓄水 B.泄水 C.省力 D.行走 4.在滑坡地段挖土方时,不宜在什么季节施工?____。 [选择:][正确答案:D] A.冬季 B.春季 C.风季 D.雨季 5.湿土地区开挖时,若为人工降水,降至坑底____深时方可开挖? [选择:][正确答案:D] A.0.2m以下 B.0.5m以下 C.0.2m以上 D.0.5m-1.0m以下 6.在膨胀土地区开挖时,开挖前要作好____。 [选择:][正确答案:C] A.堆土方案 B.回填土准备工作 C.排水工作 D.边坡加固工作 7.坑壁支撑采用钢筋混凝土灌注桩时,开挖标准是桩身混凝土达到____。 [选择:][正确答案:A] A.设计强度后 B.混凝土灌注72小时 C.混凝土灌注24小时 D.混凝土凝固后 8.人工开挖土方时,两人的操作间距应保持:____。 [选择:][正确答案:C] A.1m B.1~2m C.2~3m D.3.5~4m 9.在临边堆放弃土,材料和移动施工机械应与坑边保持一定距离,当土质良好时,要距坑边____远。 [选择:][正确答案:B] [选择:][正确答案:D] A.粘土 B.软土 C.老黄土 D.干燥的砂土 11.对于高度在5m以的挡土墙一般多采用____。 [选择:][正确答案:A] A.重力式挡土墙 B.钢筋混凝土挡土墙 C.锚杆挡土墙 D.锚定板挡土墙 12.基坑(槽)四周排水沟及集水井应设置在____。 [选择:][正确答案:A] A.基础围以外 B.堆放土以外 C.围墙以外 D.基础围以 13.基坑(槽)明排水法由于设备简单和排水方便,所以采用较为普遍,但它只宜用于____。[选择:][正确答案:D] A.松软土层 B.粘土层 C.细沙层 D.粗粒土层

盾构机主要部件组成及施工工艺

盾构机主要部件组成及施工工艺 雷宏 盾构是一个具备多种功能于一体的综合性设备,它集合了隧道施工过程中的开挖、出土、支护、注浆、导向等全部的功能。盾构施工的过程也就是这些功能合理运用的过程。 盾构在结构上包括刀盘、盾体、人舱、螺旋输送机、管片安装机、管片小车、皮带机和后配套拖车等;在功能上包括开挖系统、主驱动系统、推进系统、出碴系统、注浆系统、油脂系统、液压系统、电气控制系统、自动导向系统及通风、供水、供电系统、有害气体检测装置等。 1、刀盘和刀具 刀盘:根据北京地铁特殊地质条件设计。辐条式刀盘,开口率约为50%。6个刀梁。刀梁及隔板上有5路碴土改良的注入孔(泡沫、膨润土、水注入管路)。刀盘表面采用耐磨材料或堆焊耐磨材料,确保刀盘的耐磨性。刀盘具有正反转功能,切削性能相同。 刀具:中心鱼尾刀1把,先行刀36把、主切刀82把(高64把、低18把),保径刀24把;合计:143把。另配超挖刀2把。 2、盾体 盾体钢结构承受土压、水压和工作荷载(土压3bar)。 盾体包括:前盾、中盾、盾尾。 ●前盾 前盾又称切口环,它里面装有支撑主驱动和螺旋输送机的钢结构。隔板上面设人舱、球阀通道、四个搅拌器。前盾上有液压闭合装置,可以关闭螺旋输送机的前闸门。前盾的隔板上装有土压传感器。 ●中盾和盾尾 中盾又称支承环,前盾和中盾用螺栓联接,并加焊接联接。 中盾内布置有推进油缸、铰接油缸和管片安装机架。中盾的盾壳园周布置有超前钻孔的预留孔。

中盾和盾尾之间通过铰接油Array缸连接,两者之间可以有一定的 夹角,从而使盾构在掘进时可以 方便的转向。 盾尾安装了三道密封钢丝刷 及8个油脂注入管道、8根内置 的同步注浆管道(4根正常使用4 根注浆管为备用)。 3、主驱动系统 主驱动机构包括主轴承、八个液压马达、八个减速器和安装在后配套拖 车上的主驱动液压泵站。刀盘通过螺栓与主轴承的内齿圈联接在一起,刀盘 驱动系统通过液压马达驱动主轴承的内齿圈来带动刀盘旋转。 主轴承采用大直径三滚柱轴承,外径2820mm。 4、推进系统 盾构的推进机构提供盾构向前推进的动力。推进机构包括32个推进油缸 和推进液压泵站。推进油缸按照在圆周上的区域分为四组,顶部3对油缸一 组、左侧4对油缸一组、右侧4对油缸一组、底部5对油缸一组。油缸的后

盾构施工组织设计

盾构施工组织设计 一、工程概况 1、工程范围 本标段盾构隧道包括三个区间,分别为长隆隧道进口明挖段至长隆车站、长隆车站至番禺大道车站、番禺大道车站至长隆隧道出口明挖段区间。 长隆隧道进口明挖段至长隆车站盾构区间起止点里程为:左线DK0+225~DK4+840,长4615米;右线YDK0+165~YDK4+840,短链27.05米,长4647.95米。区间设置联络通道10座,里程分别为:1#联络通道DK0+490.1、2#联络通道DK0+874.1、3#联络通道DK1+365.3、4#联络通道DK1+954.9、5#联络通道DK2+254.9、6#联络通道DK2+637.3、7#联络通道 DK3+131.7、8#联络通道DK3+525.3、9#联络通道DK3+989.3、10#联络通道DK4+400.5。 长隆车站至番禺大道车站盾构区间起止点里程为:左线DK5+375~DK9+345,长3970米;右线YDK5+375~YDK9+345.617,长链12.93米,长3983.547米。区间设置联络通道8座,里程分别为:11#联络通道DK5+830.4、12#联络通道DK6+320、13#联络通道DK6+790.801、14#联络通道DK7+300.8、15#联络通道7+785.6、16#联络通道DK8+275.2、17#联络通道DK8+750.4、18#联络通道DK9+180.8。此区间还设置两个临时工作井,其中1#工作井设置在左线,起止点里程为DK8+457.96~DK8+465.96; 2#工作井设置在右线,起止点里程为 YDK8+485.31~YDK8+493.31. 番禺大道车站至长隆隧道出口明挖段盾构区间起止点里程为:左线DK9+615~DK10+370,长链24.21米,长779.21米;右线YDK9+614.23~YDK10+371.641,长链17.18米,长774.591米。区间设置联络通道1座,里程为:19#联络通道DK10+070.590。 2、主要工程量清单 本合同段盾构施工主要内容有: ?长隆隧道进口明挖段至长隆车站、长隆车站至番禺大道车站、番禺大道车站至长隆隧道出口明挖段区间盾构掘进。 ?联络通道施工 ?临时工程的施工、安装及拆除,施工用水用电等 ?工程及其影响范围内的建筑物、构筑物、管线的保护等。 3、工程地质、水文及气象等自然条件 ?地形地貌:本标段地处珠三角地区的中南部,为三角洲冲积平原和丘坡地貌,地形平坦开阔,地势相对较低。

盾构机各系统原理浅析

盾构机各系统原理浅析 本文针对分析海瑞克EPB土压平衡盾构机的各个系统及其工作原理,及整个盾构施工介绍。 海瑞克盾构机由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。 1盾构机的工作原理 1.1盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 1.2掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持

从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人 泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 1.3管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400 kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 2.1盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸

盾构理论试题库100道

盾构操作、结构、流体试题库合理化建议:简答题及问答题答案只作为参考答案,不完全作为给分依据。考生答案如若与参考答案达到70%以上的相似度(正常情况下,答题人根据所学进行阐述,很难做到与参考答案较高的相似度),视为有作弊嫌疑,评卷人员应降低给分分值;反之,考生按照平时工作积累所学知识进行答题,阐述内容确合理,考试态度诚恳评卷人员应提高给分分值。 建议按照建造师考试制度进行考试,禁止携带手机、与考试有关的纸张等进入考场,一经发现,需严肃处理。 一、填空题(1~40题为操作、41~50题为结构、51~60题为流体) 1.盾构机操作包括了、铰接油缸、、泡沫系统、螺旋输送机、皮带输送机、、仿形刀、膨润土等部分的控制。(推进系统、主驱动系统、盾尾油脂密封) 2.泡沫系统界面显示了泡沫系统各路的实际值。(空气及混合液) 3.泡沫注入分、、三种模式。(手动、半自动、自动) 4.盾壳膨润土控制有、两种模式。(手动、自动) 5.报警系统界面显示了盾构的,方便检修人员进行检修。(运行故障) 6.曲线图界面能通过曲线趋势图,实时对盾构机的进行曲线描绘。(参数) 7.通常情况下,绿灯快速闪烁是显示;绿灯闪烁(慢)是泵过程中;绿灯常亮:正常运行。(故障、启动) 8.泡沫参数的设定应根据工程地质的具体情况设定泡沫的。(压力及流量)。 9. 盾尾油脂密封的自动控制模式又分为和两种模式。(行程控制、压力控制) 10.泡沫混合液和压缩空气的流量由进行检测,PLC 控制电控阀

门的开度,得到最佳的混合比例。(流量传感器) 11.在界面设定各液压系统的报警温度,一般最大报警温度不超过 60℃。(参数设置) 12.在“参数设置”界面根据土木工程师的要求下,设定注浆系统的 及。(起始压力、终止压力) 13.导向系统是用来监视盾构精确姿态,提供盾构相对于的详细偏差信息,便于用户及时纠正盾构的姿态。(隧道设计轴线) 14.衬砌背后注浆量的确定,是以为基础,结合地层、线路及掘进方式等,并考虑适当的饱满系数,以保证达到充填密实的目的。(盾尾建筑空隙量) 15.管片输送小车在盾构联接桥下方,它起着管片储备的作用。(运输和中间) 16.如果开挖地层稳定性不好或有较大的地下水时,需采用掘进,此时需根据前面地层的不同来保持不同的渣仓压力,具体压力值应由 决定。(土压平衡模式、土木工程师) 17.当盾构推进油缸左侧压力大于右侧时,盾构姿态。(自左向右摆) 18.在施工进行期间结合反馈信息及情况进行总结分析,对掘进参数进行动态管理。(地面监测、实际施工) 19.在直线平坡段掘进时,则应尽量使所有保持一致,以保证盾构机正确的掘进方向。(油缸的推力) 20.压力传感器连接于盾尾注浆管处,用于注浆时,采 集。(入口、注浆压力) 21.注浆压力过大,可能会损坏管片,而反之浆液不易注入,故应综合考虑地质情况、、设备性能、、等,以确定能完全充填且安全的最佳压力值。(管片强度、浆液性质、开挖仓压力) 22.在粘性土层,添加泡沫则可以防止碴土附着刀盘和土仓室内壁,另一方面,由于泡沫中的微细气泡可以置换土颗粒中的空隙水,因而可以到达效果。(止水)

盾构施工专项测量工程施工组织设计方案培训资料全

盾构施工专项测量施工方案培训资料 -----------------------作者:-----------------------日期:

市轨道交通3号线一期工程 土建施工02标 区间专项测量方案 编制: 审核: 审批: 中铁二局股份 市轨道交通3号线工程土建施工02标项目经理部 2017年9月 目录 1 测量标准及依据1 2 工程概况1 2.1工程位置1

2.2地质水文条件2 3总体测量方案6 3.1测量组织机构6 3.2测量管理制度7 3.3总体测量方案12 4测量准备工18 4.1测量技术准备18 4.2资源准备19 4.2.1主要仪器清单19 4.2.2仪器鉴定证书19 4.2.3主要测量人员表19 5控制测量20 5.1地面控制测量20 5.1.1平面控制测量20 5.1.2地面高程控制网22 5.2联系测量24 5.2.1联系测量的概念25 5.2.2联系测量的目的25 5.2.3联系测量的任务25 5.2.4地面近井点测量25 5.2.5定向测量25 5.2.6高程联系测量30

5.3地下控制测量31 5.3.1导线控制测量31 5.3.2高程控制测量32 6盾构施工测量32 6.1区间测量32 6.1.1准备工作32 6.2.2始发测量33 6.2.3盾构激光站的建立33 6.2.4盾构姿态测量33 6.2.5管片测量35 7 贯通测量36 7.1地面控制网复测36 7.2接收井门洞中心位置测定36 7.3联系测量和地下控制测量37 7.4盾构姿态人工37 7.5贯通测量误差测量37 8竣工测量38 8.1竣工测量目的38 8.2竣工测量容38 8.3净空横断面测量38 8.3.1净空测量有关要求38 8.3.2隧道和车站横断面形式测点位置要求39

盾构机操作及参数控制

盾构机操作及参数控制 目前,住总集团大多采用德国海瑞克盾构机、日本小松及日立盾构机,现就其小松盾构机操作情况及参数控制作如下总结: 1 开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查测量导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示技术负责人并记录有关盾构掘进所需要的相关参数,如掘进模式,土仓保持压力,线路数据,注浆压力等; 16)请示设备机修负责人并记录有关盾构掘进的设备参数; 17)若需要则根据技术负责人和设备机修负责人的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式;

4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理; 5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 根据测量系统面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; 选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在 2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 慢慢开启螺旋输送机的后门; 启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据 ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则; 2) 如果开挖地层有一定的自稳性而采用半敞开式掘进,则注意调节螺旋输送机的转速,使土仓内保持一定的渣土量,一般约保持 2/3左右的渣土。

相关文档
最新文档